EP0275813B1 - Vorrichtung zur Erhöhung der Wärmeübertragung - Google Patents

Vorrichtung zur Erhöhung der Wärmeübertragung Download PDF

Info

Publication number
EP0275813B1
EP0275813B1 EP87630278A EP87630278A EP0275813B1 EP 0275813 B1 EP0275813 B1 EP 0275813B1 EP 87630278 A EP87630278 A EP 87630278A EP 87630278 A EP87630278 A EP 87630278A EP 0275813 B1 EP0275813 B1 EP 0275813B1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
tube
wall
transfer device
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87630278A
Other languages
English (en)
French (fr)
Other versions
EP0275813A1 (de
Inventor
Michael J. Werle
Walter Michael Presz, Jr.
Robert W. Paterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP0275813A1 publication Critical patent/EP0275813A1/de
Application granted granted Critical
Publication of EP0275813B1 publication Critical patent/EP0275813B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • This invention relates to a heat transfer device comprising wall means defining a fluid flow channel and having a first surface portion over which a first fluid is adapted to flow in one direction for transferring heat energy between the first fluid and said wall means, and heat transfer enhancing means comprising a vortex generating wall adapted so that the fluid flows over both sides thereof in said one direction, said vortex generating wall having downstream edge and comprising a plurality of adjoining alternating lobes and troughs extending in said one direction from upstream ends thereof to said downstream edge, each lobe on one side of said wall having a corresponding trough opposite thereto on the other side of said wall such that said wall and said downstream edge are wave-shape.
  • a heat transfer device of this type is disclosed in US-A-2,488,615.
  • heat exchangers such as air conditioners, furnaces, and in other apparatus which requires the efficient exchange of heat between a fluid and the wall over which the fluid flows.
  • the effectiveness of the geometry of the convective heat transfer surfaces of such apparatus in producing efficient heat exchange with a minimal amount of friction losses can influence the required size and thus the initial cost of such apparatus, as well as operating costs and pumping power requirements.
  • more efficient heat transfer means can reduce the needed mass flow rate of coolant, allow the apparatus to operate in a hotter environment, or permit the use of less exotic, less costly materials.
  • Lobed mixers having troughs increasing in depth in a downstream direction are known in the art for mixing two streams flowing on either side of the lobed wall, such as for mixing the cooler fan exhaust stream with the core engine stream in a gas turbine engine, generally for the purpose of sound reduction.
  • One patent describing such a device is US-A-4,066,214.
  • the obect of the present invention is to provide a heat transfer device having an improved rate of heat transfer between a fluid and the wall over which it flows without creating high pressure drops within the fluid.
  • the heat transfer device is characterized in that said troughs increase in depth in said one direction from the upstream ends thereof, said first surface portion being disposed downstream of said downstream edge of said vortex generating wall to generate a plurality of adjacent vortices downstream of said downstream edge adjacent said first surface portion, adjacent vortices rotating in opposite directions about respective axes extending in the direction of the bulk fluid flow adjacent said lobes and troughs such that fluid flowing over both said sides mixes together downstream of said downstream edge adjacent said first surface portion, the contour and dimensions of each said lobes and troughs being selected to ensure that each trough flows full throughout its length.
  • the troughs and lobes are sized and contoured to flow full throughout their length to minimize losses and to generate vortices which wash over the downstream heat transfer surface scrubbing away the insulating thermal boundary layer and stirring in the core flow to maintain as large a temperature difference as possible between the surface and the fluid in contact with the surface.
  • the axial vortices produced in the wake of the vortex generating wall are large scale in that their "diameter" is comparable to the amplitude of the lobes which create them.
  • the vortices scrub the boundary layer fluid from the wall, transport it up into the vortex core, and subsequently convey it downstream. Simultaneously the fluid vortex motion creates a mixing which averages out temperature nonuniformities within the fluid flow passage adjacent the heat transfer surface.
  • An important advantage of the present invention is in its ability to improve heat transfer efficiencies with the introduction of relatively low total pressure losses.
  • the buildup of an insulating boundary layer is minimized on a heat exchanger surface and mixing of a fluid within the flow channel of a heat exchanger is improved, without inducing an excessive pressure drop within the fluid.
  • Prior art devices often introduced relatively high pressure losses, which seriously detracted from and/or limited their usefulness.
  • the size and lateral spacing of the vortices can be controlled. Furthermore, trough and lobe size and shape can be used to control the vortex intensity. It is therefore possible to establish a secondary flow field downstream of the vortex generator which is not simply a turbulent, random mixing process.
  • a flat plate 10 having a top surface 12 is spaced from an insulating wall 14 to define a flow channel therebetween having an inlet 15 and outlet 16.
  • the plate is shown being heated from its opposite side 17.
  • a fluid is flowing in the passage in the direction designated by the arrow 18. It is desired to heat the fluid as it travels through the passage over the surface 12. The rate of heating will depend upon how efficiently the heat energy Q is transmitted from the hot plate 10 into the fluid.
  • a thermal boundary layer represented by the dotted line 20 is formed on the surface 12 and increases in thickness in the downstream direction.
  • the fluid velocity within this boundary layer is essentially retarded relative to the velocity of bulk fluid flow within the passage and consequently increases in temperature and acts as an insulating layer between the surface 12 and the bulk flow. As the boundary layer increases in thickness, its insulating effect increases. Thus, while the heat transfer rate from the late to the fluid may be relatively high near the inlet of the passage, it uniformly decreases in the downstream direction, eventually reaching a minimum constant rate.
  • curve A of Fig. 2 shows that the average temperature of the fluid within the passages increases from its initial temperature T o at the inlet to an eventual temperature which approaches the temperature of the plate T p as it moves downstream. Heating is efficient and relatively quick near the inlet where the boundary layer is thin, and then tapers off to a slow rate, resulting from a combination of the increase in the boundary layer thickness as well as the reduction in the temperature difference between the fluid and the plate.
  • the boundary layer could be eliminated or kept very thin, and if the fluid within the passage could be stirred as it moves downstream to continuously mix fluid which is furthest from the plate with the fluid which is closest to the plate, the fluid temperature would increase much more rapidly, as represented by the phantom line designated by the reference letter B.
  • the local heat transfer coefficient at the inlet is about 4.5 times greater than the final, minimum constant heat transfer rate.
  • the distance from the inlet at which such minimum rate is attained is directly proportional to the Reynolds number. This distance can be a negligible fraction of the overall tube length in many heat exchanger applications.
  • FIG. 3 the plate 100 is analogous to the plate 10 of Fig. 1.
  • Heat energy Q represented by the arrows 102 is being applied to the undersurface 104.
  • the heat Q may be from a fluid flowing over the surface 104, or the plate 100 may be heated by having imbedded therein heating elements.
  • a thin wall or plate 106 has a top side or upper surface 108 and lower side or bottom surface 110. Fluid flows over both of these surfaces in the same direction, which is the downstream direction as represented by the arrows 112 over the top surface and the arrows 114 over the bottom surface.
  • the downstream or trailing edge portion 116 of the plate is convoluted or wave-shaped.
  • each of the surfaces 108, 110 of the downstream portion 116 is comprised of a plurality of adjoining, alternating lobes 118 and troughs 120 which extend in the downstream direction to the downstream edge 122 of the plate 106.
  • a lobe on one side of the plate has a corresponding trough on the opposite side of the plate.
  • the lobes and troughs initiate upstream with essentially zero height or depth in the plate 106, and increase in depth and height to an appropriate size and shape at the downstream edge 122.
  • the contour and dimensions of the troughs and lobes are selected to insure that each trough flows full throughout its length.
  • each surface 108, 110 results in the generation of vortices which rotate about axes extending substantially in the direction of the bulk fluid flow adjacent the plate surfaces, which is the downstream direction.
  • Each wave length produces a pair of oppositely rotating large scale vortices having a diameter approximately the size of the peak to peak wave amplitude.
  • Fig.3 One such pair are shown in Fig.3 and designated by the letters Y and Z.
  • Vortex Y rotates clockwise and vortex Z rotates counterclockwise.
  • the plate 106 is located and the lobes and troughs are configured and oriented such that the vortices generated thereby travel adjacent to the surface 124 of the wall 100 with which it is desired to exchange heat energy.
  • the vortices are believed to scrub the surface 124 to minimize or prevent the buildup of an insulating thermal boundary layer and simultaneously convect the near-wall fluid into the outer flow and the outer flow back to the wall surface where the increased temperature differential between the wall surface and the fluid produces increased heat flux. It is believed that the fluid scrubbed from the wall is carried into the vortex core where the temperature is averaged out by small scale convective mixing. This mixed-out fluid, when subsequently carried into the near-wall region further downstream will again produce a larger surface/fluid temperature gradient and increased heat transfer rates.
  • the peak to peak wave amplitude is designated "A”
  • the wave length is "P”
  • the maximum steepness of the trough side wall at the trough outlet is the angle "D”.
  • D the maximum steepness of the trough side wall at the trough outlet
  • the angle "E” between the floor of a trough and the downstream direction is the "ramp angle”. If the ramp angle is too steep the trough will not flow full. If too shallow, the intensity of the generated vortex will be too low to be effective. Ramp angles of less than 10° will probably be too low and greater than 45° too high. The Reynolds number and other factors will play a role in optimizing the ramp angle for a particular application.
  • the wavelength P should be no less than about half and no more than about four (4) times the wave amplitude A in order to assure the formation of strong vortices without inducing excessive pressure losses.
  • An important advantage of the present invention is that it improves heat transfer rates while generating pressure losses which are considerably less than the losses created by prior art vortex generators used in similar applications. Such prior art vortex generators often create high losses because they cause channel blockage in the direction of flow and produce flow separation around their edges. These undesirable phenomenon are reduced or eliminated by the present invention.
  • the present invention is particularly well suited for use in heat exchangers of the tube and fin type commonly used, for example, in air conditioners and residential and industrial furnaces.
  • the tube and fin type heat exchanger comprises a plurality of closely spaced apart thin plates or fins. Adjacent plates thereby define a fluid channel therebetween through which, for example, air to be cooled is pumped, such as by a blower.
  • the plates contact the tubes around their circumference where the tubes intersect the plates.
  • Heat is transferred from the fluid in the channel to the fluid within each tube by at least two mechanisms. One is by direct contact of the air within the channel with the external surface of the tube; and another is by conduction from the plates to the tube. In many applications the major amount of heat is transferred by the latter mechanism such that it is most important to efficiently transfer heat from the air within the channels to the plates.
  • a portion of a heat exchanger is comprised of a plurality of plates 202 and tubes 204.
  • the tubes 204 pass through the plates 202 perpendicular to the fin surfaces and are in contact with the fins around the circumference of each tube via circumferentially extending lips 206 which are an integral part of the plates.
  • the direction of bulk fluid flow through the channels 213 formed between adjacent fins is represented by the arrows 210.
  • the direction which is perpendicular to the surfaces of the plates 202 is herein referred to as the transverse direction and is the direction of the axes 212 of the tubes 204.
  • the plates are disposed in a plurality of transverse, interconnected stacks (A, B, C, etc.), the stacks being arranged one after the other in the downstream direction with the plates of one stack being offset in the transverse direction from the plates of the following stack by a distance which is one-half the transverse distance between adjacent plates within a stack.
  • the spaces between adjacent plates in a stack are the flow channels 213.
  • the downstream edges 214 of the plates in each stack are disposed substanstially adjacent the upstream edges 216 of the plates of the following stack, but are displaced transversely thereof.
  • the downstream portion of each plate 202 is wave-shaped.
  • the waves are formed by a plurality of laterally adjacent, alternating downstream extending lobes and troughs which generate adjacent counter rotating vortices represented by the arrows 217, 218.
  • These vortices move downstream within the channel aligned with the downstream edge of the plate and scrub the boundary layer from each of the oppositely facing surfaces of the channel.
  • the length of the channel in the downstream direction is no longer than the distance over which the vortices are effective.
  • the peak to peak wave amplitude of the undulating downstream edge should be between about 50 and 100 percent of the distance between the channel surfaces over which the vortices are being directed.
  • the present invention also improves the heat transfer rate between the fluid in the channels 208 and the external surface of the tubes 204 (or the external surface of the lips 206 which surround and are in direct contact with the external surface of the tubes 204). It is believed that the action of the vortices within the channels 213 significantly reduces the stagnation region on the downstream side of each tube. This is believed to be the result of 1) the vortices energizing the boundary layer on the tube surface, thereby shifting its separation point further downstream on the tube surface and 2) the vortices enhancing mixing of the bulk fluid with fluid directly downstream of the tube to result in a more uniform temperature within the channel behind the tube.
  • Figs. 5 and 6 show another embodiment of the present invention.
  • the vortex generating walls 300 each have upper and lower surfaces 302, 304, respectively.
  • a fluid flows on both sides of each wall in the downstream direction represented by the arrows 306.
  • the tubes 308 Disposed downstream of the vortex generating walls are the tubes 308 carrying a second fluid.
  • the axes of the tubes 308 are parallel to the direction of lateral extent of the downstream edges 310 of the walls 300.
  • each wall 300 has a plurality of lobes and troughs disposed therein as discussed above with respect to the plates 202 of Fig. 4 and the plate 106 of Fig. 3.
  • the counter rotating vortices generated downstream of the walls 300 help mix out temperature uniformities in the fluid flow field and reduce the size of the wake behind the tubes 308 over and adjacent to which they pass, thereby increasing the coefficient of heat transfer through the tube walls and increasing the rate of exchange of heat energy between the fluid within the tubes and the fluid surrounding the tubes.
  • additional rows of tubes may be disposed in the flow path, or the tubes may be more randomly distributed downstream of the vortex generating walls.
  • the spacing between the tubes should be comparable to the peak to peak amplitude of the wave shape of the downstream edge 310.
  • the vortex generating walls are oriented and located to direct the vortices midway between adjacent pairs of tubes in the single row shown, this is not believed to be critical. It may be equally beneficial to direct the vortices directly at a tube, which would be the case if there were a second row of tubes following the rows shown which were staggered in relation to the first row.
  • Figs. 8 and 9 show yet another embodiment of the present invention.
  • a vortex generating wall 400 is disposed within a tube or conduit 402 which carries fluid flowing in the direction of the arrow 404.
  • the wall 400 extends substantially across the tube along a diameter.
  • the lobes and troughs in the downstream portion of the wall 400 generate adjacent counter rotating vortices 406, 408 downstream thereof which scrub the thermal boundary layer from the internal wall surface 410 of the tube and mix the core flow with the fluid flowing adjacent the wall.
  • the net effect is to increase the coefficient of heat transfer between the fluid and the wall of the conduit 402 for the purpose of ultimately exchanging heat energy between the fluid within the conduit 402 and fluid surrounding the conduit 402.
  • Figs. 10 and 11 show another embodiment of the present invention wherein a tube or conduit 500 has an axis 502 and is surrounded by a first fluid flowing in the axially direction (504) within a surrounding conduit 505.
  • the tube 500 carries a second fluid, and it is an object of the apparatus to transfer heat energy between the first and second fluids.
  • a vortex generating wall 508 is disposed within the first fluid and surrounds the conduit 500 and includes a plurality of axially extending, adjacent, circumferentially spaced apart lobes 510 and troughs 512 formed therein. Fluid flows over both sides of the vortex generator which creates large-scale, adjacent, counter rotating vortices 514 downstream thereof adjacent the external surface 516 of the conduit 500.
  • vortex generating wall 508 Although only a single circumferentially extending vortex generating wall 508 is shown, as with the embodiment of Figs. 8 and 9, a plurality of such walls 508 may be spaced apart along the length of the conduit 500. Furthermore, it will be obvious that the embodiment of Figs. 8 and 9 may be combined with the embodiment of Figs. 10 and 11 whereby vortex generating walls configured in accordance with the teachings of the present invention may be disposed both within and surrounding the same conduit to even further increase the rate of heat exchange between fluids flowing within and over the external surface of the conduit.
  • a vortex generating wall with circumferentially spaced apart troughs and lobes similar in configuration to the wall 508 may be disposed within a conduit to increase heat transfer between the fluid flowing in the conduit and the conduit wall.
  • Such a vortex generating wall would be an alternate configuration for the vortex generating wall 400 of Figs. 8 and 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (17)

1. Wärmeübertragungsvorrichtung mit einer Wandeinrich­tung, die einen Fluidströmungskanal (213) bildet und einen ersten Oberflächenteil (124; 410; 516) hat, über den ein erstes Fluid in einer Richtung strömen kann, um Wärmeener­gie zwischen dem ersten Fluid und der Wandeinrichtung zu übertragen, und mit einer Wärmeübertragungsverstärkungsein­richtung, die eine Wirbelerzeugungswand (106; 202; 300; 400; 508) aufweist, die so ausgebildet ist, daß das Fluid über beide Seiten (108, 110; 302; 304) derselben in der einen Richtung strömt, wobei die Wirbelerzeugungswand (106; 202; 300; 400; 508) einen stromabwärtigen Rand (122; 214; 310) hat und mehrere benachbarte abwechselnde Erhöhungen und Vertiefungen (118, 120; 510, 512) aufweist, die sich in der einen Richtung von den stromaufwärtigen Enden derselben zu dem stromabwärtigen Rand (122; 214; 310) erstrecken, wo­bei jede Erhöhung (118; 510) auf einer Seite der Wand (106; 202; 300; 400; 508) eine entsprechende Vertiefung (120; 512) dazu entgegengesetzt auf der anderen Seite der Wand (106; 202; 300; 400; 508) hat, so daß die Wand und der stromabwärtige Rand (122; 214; 310) wellenförmig sind, da­durch gekennzeichnet, daß die Vertiefungen (120; 512) in der Tiefe in der einen Richtung ab den stromaufwärtigen En­den derselben zunehmen, wobei der erste Oberflächenteil (124; 410; 516) stromabwärts von dem stromabwärtigen Rand (122; 214; 310) der Wirbelerzeugungswand (106; 202; 300; 400; 508) angeordnet ist, um eine Vielzahl von benachbarten Wirbeln (Y, Z; 217, 218; 406, 408; 514) stromabwärts des stromabwärtigen Randes (122; 214; 310) an dem ersten Ober­flächenteil (124; 410; 516) zu erzeugen, wobei sich benach­barte Wirbel in entgegengesetzten Richtungen um Achsen dre­hen, die sich in der Richtung der Hauptfluidströmung an den Erhöhungen und Vertiefungen (118, 120; 510, 512) erstrec­ken, so daß Fluid, das über beide Seiten (108, 110; 302, 304) strömt, sich stromabwärts des stromabwärtigen Randes (122; 214; 310) an dem ersten Oberflächenteil (124; 410; 516) vermischt, wobei die Kontur und die Abmessungen jeder Erhöhung und jeder Vertiefung (118, 120; 510, 512) so ge­wählt sind, daß sichergestellt ist, daß jede Vertiefung auf ihrer gesamten Länge voll durchströmt wird.
2. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die stromaufwärtigen Enden der Erhöhun­gen und Vertiefungen (118, 120; 510, 512) im wesentlichen die Tiefe bzw. Höhe null haben.
3. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der erste Oberflächenteil (124; 410; 516) zu der Richtung der Hauptfluidströmung im wesentlichen parallel ist.
4. Wärmeübertragungsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der erste Oberflächenteil (214) im we­sentlichen eben ist und daß die einen Fluidströmungskanal bildende Wandeinrichtung einen zugewandten zweiten Oberflä­chenteil mit Abstand von und im wesentlichen parallel zu dem ersten Oberflächenteil hat, so daß dazwischen der Strö­mungskanal (213) gebildet ist, und daß die Wirbelerzeu­gungswand (202) so ausgerichtet ist und die Erhöhungen und Vertiefungen so ausgebildet sind, daß die Wirbel (217, 218) innerhalb der Kanäle (213) erzeugt werden.
5. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der erste Oberflächenteil (410; 516) um eine Achse zylindrisch ist, die sich in der Richtung der Hauptfluidströmung erstreckt.
6. Wärmeübertragungsvorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die einen Fluidströmungskanal bildende Wandeinrichtung ein Rohr (402) ist, daß der erste Oberflä­chenteil die innere Oberfläche (410) des Rohres (402) ist und daß die Wirbelerzeugungswand (400) innerhalb des Rohres (402) angeordnet ist.
7. Wärmeübertragungsvorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die einen Fluidströmungskanal bildende Wandeinrichtung ein Rohr (500) ist, das eine Achse (502) hat, daß der erste Oberflächenteil (516) die äußere Ober­fläche des Rohres (500) ist, daß die Wirbelerzeugungswand (508) das Rohr (500) umgibt und daß die Erhöhungen und Ver­tiefungen (510, 512) in gegenseitigem Umfangsabstand um die Achse (502) des Rohres (500) angeordnet sind.
8. Wärmeübertragungsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Wärmeübertragungsverstärkungsein­richtung eine Vielzahl der Wirbelerzeugungswände (400) auf­weist, die in gegenseitigem Abstand in der Richtung der Hauptfluidströmung angeordnet sind, um die Wirbel (406, 408) über einer Länge des Rohres (402) zu regenieren.
9. Wärmeübertragungsvorrichtung nach Anspruch 4, gekenn­zeichnet durch wenigstens ein Rohr (204) zum Transportieren eines zweiten Fluids in Wärmeaustauschbeziehung mit dem er­sten Fluid, wobei das Rohr (204) durch die einen Fluidströ­mungskanal bildende Wandeinrichtung hindurchführt, sich durch den Kanal (213) erstreckt, den ersten und den zweiten Oberflächenteil schneidet und die einen Fluidströmungskanal bildende Wandeinrichtung um den Rohrumfang berührt, wo das Rohr (204) den ersten und den zweiten Oberflächenteil schneidet, wobei das Rohr (204) stromabwärts des stromab­wärtigen Randes (214) der Wirbelerzeugungswand (202) ange­ordnet ist.
10. Wärmeübertragungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Wellenform an dem stromabwärtigen Rand (122) eine Amplitude A zwischen 50 und 100 Prozent des Abstands zwischen dem ersten und dem zweiten Oberflächen­teil hat.
11. Wärmeübertragungsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Wellenform an dem stromabwärtigen Rand (122) eine Wellenlänge P zwischen etwa dem 0,5- und dem 4,0-fachen der Wellenamplitude A hat.
12. Wärmeübertragungsvorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß an dem stromabwärtigen Rand die Wellen­länge dividiert durch die Wellenamplitude A zwischen 0,5 und 4,0 beträgt.
13. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sich der stromabwärtige Rand (310) in Querrichtung erstreckt, daß die einen Fluidströmungskanal bildende Wandeinrichtung ein Rohr (308) zum Transportieren eines zweiten Fluids in Wärmeaustauschbeziehung mit dem er­sten Fluid ist, daß das Rohr (308) eine zu der Querrichtung im wesentlichen parallele Achse hat und daß der erste Ober­flächenteil die äußere Oberfläche des Rohres (308) ist.
14. Wärmeübertragungsvorrichtung nach Anspruch 13, gekenn­zeichnet durch eine Vielzahl der Rohre (308), die zueinan­der parallel sind und gegenseitigen Abstand voneinander ha­ben, wobei die Wirbelerzeugungswand (300) so ausgerichtet ist und die Erhöhungen und Vertiefungen so ausgebildet sind, daß die Wirbel zwischen einem benachbarten Paar Roh­ren (308) und an den äußeren Oberflächen der Rohre (308) erzeugt werden.
15. Wärmeübertragungsvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Wirbelerzeugungswand eine erste An­zahl von Platten (202) aufweist, die engen gegenseitigen Abstand haben, eine zweite Anzahl von gegenseitigen Abstand aufweisenden Platten (202) parallel zu den ersten Platten (202), so daß der Strömungskanal (213) zwischen jedem Paar der zweiten Anzahl von Platten gebildet ist, wobei die Strömungskanäle (213) jeweils in der einen Richtung mit dem stromabwärtigen Rand (214) einer der ersten Platten (202) ausgerichtet sind und wobei sich wenigstens ein Rohr (204) durch eine Vielzahl der Kanäle (213) erstreckt.
16. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Winkel (E) zwischen dem Boden einer Vertiefung und der einen Richtung zwischen etwa 10 und 45 Grad liegt.
17. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß jede Vertiefungsseitenwand an dem Ver­tiefungsauslaß einen Winkel (D) mit der Oberfläche der Wir­belerzeugungswand bildet, wobei der Winkel (D) wenigstens etwa 30° beträgt.
EP87630278A 1986-12-29 1987-12-23 Vorrichtung zur Erhöhung der Wärmeübertragung Expired - Lifetime EP0275813B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94734986A 1986-12-29 1986-12-29
US947349 1986-12-29

Publications (2)

Publication Number Publication Date
EP0275813A1 EP0275813A1 (de) 1988-07-27
EP0275813B1 true EP0275813B1 (de) 1991-02-27

Family

ID=25486005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87630278A Expired - Lifetime EP0275813B1 (de) 1986-12-29 1987-12-23 Vorrichtung zur Erhöhung der Wärmeübertragung

Country Status (4)

Country Link
EP (1) EP0275813B1 (de)
JP (1) JP2520680B2 (de)
KR (1) KR950014054B1 (de)
BR (1) BR8707080A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516791B2 (en) 2007-07-30 2013-08-27 General Electric Company Methods and apparatus for mixing fluid in turbine engines

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718064B4 (de) * 1997-04-29 2005-02-10 Behr Gmbh & Co. Kg Turbulenzeinlage
DE10202768A1 (de) * 2002-01-25 2003-07-31 Behr Gmbh & Co Wärmeübertrager
DE102011006793A1 (de) 2011-04-05 2012-10-11 Behr Gmbh & Co. Kg Abgaskühler
CN107024137B (zh) * 2017-04-12 2019-03-05 华中科技大学 楔形波浪式插入物及使用其的强化传热管
CN110953901A (zh) * 2019-11-13 2020-04-03 黄伟臣 一种自检测可调节的高效换热器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR391043A (fr) * 1908-06-06 1908-10-21 Francois Aertsens Perfectionnements apportés à la fabrication des radiateurs pour automobiles
FR472122A (fr) * 1913-06-05 1914-11-24 G Moreux & Cie Soc Perfectionnements aux radiateurs à ailettes pour moteurs à explosions
US2344588A (en) * 1941-01-06 1944-03-21 Blauvelt Associates Inc Heat transfer device
US2376749A (en) * 1942-01-16 1945-05-22 Cyril Terence Delaney And Gall Radiator
DE839508C (de) * 1942-10-18 1952-05-19 Brown Rippenrohr-Waermeaustauscher
US2488615A (en) * 1942-11-11 1949-11-22 Modine Mfg Co Oil cooler tube
FR946793A (fr) * 1947-03-27 1949-06-14 Manuf Generale Metallurg Appareil d'échange thermique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516791B2 (en) 2007-07-30 2013-08-27 General Electric Company Methods and apparatus for mixing fluid in turbine engines

Also Published As

Publication number Publication date
BR8707080A (pt) 1988-08-02
KR880007993A (ko) 1988-08-30
JPS63194193A (ja) 1988-08-11
EP0275813A1 (de) 1988-07-27
KR950014054B1 (ko) 1995-11-20
JP2520680B2 (ja) 1996-07-31

Similar Documents

Publication Publication Date Title
US4815531A (en) Heat transfer enhancing device
US3931854A (en) Plate-type heat-exchange apparatus
US6019160A (en) Heat transfer element assembly
EP0887612B1 (de) Wärmeübergangsstruktur
WO1992015831A1 (en) Optimized offset strip fin for use in compact heat exchangers
US6179276B1 (en) Heat and mass transfer element assembly
Utriainen et al. A numerical investigation of primary surface rounded cross wavy ducts
US4586563A (en) Tube-and-plate heat exchanger
EP0275813B1 (de) Vorrichtung zur Erhöhung der Wärmeübertragung
JPH0250399B2 (de)
GB2220259A (en) Heat exchanger
JPH01134198A (ja) 管−フィン型の熱交換器組立体
RU2000534C1 (ru) Пакет пластинчатого теплообменника
Shah et al. Relative assessment of various annular fin shapes for heat transfer and pressure penalty
RU2055294C1 (ru) Радиатор
RU2044248C1 (ru) Теплообменная труба с оребрением
SU1746194A1 (ru) Теплообменна поверхность
RU1776959C (ru) Теплообменник
EP0519886A1 (de) Fluiddynamische Vorrichtung, insbesondere für Wärmeaustausch
RU2171436C2 (ru) Способ нагрева теплообменника и устройство для его осуществления
MORIMOTO et al. Optimal Shape Design of Recuperators with Oblique Wavy Walls
JPS6268112A (ja) 車両用熱発電装置
JP2023180087A (ja) 熱交換器
RU2018060C1 (ru) Водогрейный котел
Prabakaran CFD INTEGRATED OPTIMUM DESIGN AND PROTOTYPING OF SHELL AND TUBR HX

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

17P Request for examination filed

Effective date: 19890106

17Q First examination report despatched

Effective date: 19890720

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981110

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981124

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991223

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051223