EP1323171B1 - Kabel mit einem wiederverwertbaren kabelmantel - Google Patents

Kabel mit einem wiederverwertbaren kabelmantel Download PDF

Info

Publication number
EP1323171B1
EP1323171B1 EP01962964A EP01962964A EP1323171B1 EP 1323171 B1 EP1323171 B1 EP 1323171B1 EP 01962964 A EP01962964 A EP 01962964A EP 01962964 A EP01962964 A EP 01962964A EP 1323171 B1 EP1323171 B1 EP 1323171B1
Authority
EP
European Patent Office
Prior art keywords
cable
copolymer
equal
propylene
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01962964A
Other languages
English (en)
French (fr)
Other versions
EP1323171A1 (de
Inventor
Luca Castellani
Gaia Dell'anna
Cristiana Scelza
Enrico Albizzati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prysmian Cavi e Sistemi Energia SRL
Original Assignee
Pirelli and C SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pirelli and C SpA filed Critical Pirelli and C SpA
Priority to EP01962964A priority Critical patent/EP1323171B1/de
Publication of EP1323171A1 publication Critical patent/EP1323171A1/de
Application granted granted Critical
Publication of EP1323171B1 publication Critical patent/EP1323171B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • H01B3/22Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2947Synthetic resin or polymer in plural coatings, each of different type

Definitions

  • the present invention relates to a cable with recyclable covering.
  • the invention relates to a cable for transporting or distributing medium or high voltage electrical energy, wherein an extruded covering layer based on a thermoplastic polymer material in admixture with a dielectric liquid with high mechanical and electrical properties is present, enabling, in particular, the use of high operating temperatures and the transportation of high power energy.
  • the various coverings surrounding the conductor commonly consist of polyolefin-based crosslinked polymer material, in particular crosslinked polyethylene (XLPE), or elastomeric ethylene/propylene (EPR) or ethylene/propylene/diene (EPDM) copolymers, also crosslinked.
  • XLPE crosslinked polyethylene
  • EPR elastomeric ethylene/propylene
  • EPDM ethylene/propylene/diene
  • Electric cables are also known having their insulation consisting of a multi-layer wrapping of a paper or paper/polypropylene laminate impregnated with a large quantity of a dielectric liquid (commonly known as mass impregnated cables or also oil-filled cables). By completely filling the spaces present in the multi-layer wrapping, the dielectric liquid prevents partial discharges arising with consequent perforation of the electrical insulation.
  • a dielectric liquid commonly used such as mineral oils, polybutenes, alkylbenzenes and the like (see for example US-4,543,207, US-4,621,302, EP-A-0987718, WO 98/32137).
  • mass impregnated cables have numerous drawbacks compared with extruded insulation cables, so that their use is currently restricted to specific fields of application, in particular to the construction of high and very high voltage direct current transmission lines, both for terrestrial and in particular for underwater installations.
  • the production of mass impregnated cables is particularly complex and costly, both for the high cost of the laminates and for the difficulties encountered during the steps of wrapping the laminate and then of impregnating it with the dielectric liquid.
  • the dielectric liquid used must have low viscosity under cold conditions to allow rapid and uniform impregnation, while at the same time it must have a low tendency to migrate during installation and operation of the cable to prevent liquid loss from the cable ends or following breakage.
  • mass impregnated cables cannot be recycled and their use is limited to an operating temperature less than 90°C.
  • HDPE high density polyethylene
  • Thermoplastic low density polyethylene (LDPE) insulating coverings are also used in medium and high voltage cables; again in this case, these coverings are limited by too low an operating temperature (about 70°C).
  • LDPE low density polyethylene
  • WO 99/13477 describes an insulating material consisting of a thermoplastic polymer forming a continuous phase which incorporates a liquid or easily meltable dielectric forming a mobile interpenetrating phase within the solid polymer structure.
  • the weight ratio of thermoplastic polymer to dielectric is between 95:5 and 25:75.
  • the insulating material can be produced by mixing the two components while hot either batchwise or continuously (for example by means of an extruder). The resultant mixture is then granulated and used as insulating material for producing a high voltage electric cable by extrusion onto a conductor.
  • the material can be used either in thermoplastic or crosslinked form.
  • thermoplastic polymers polyolefins, polyacetates, cellulose polymers, polyesters, polyketones, polyacrylates, polyamides and polyamines.
  • the use of polymers of low crystallinity is particularly suggested.
  • the dielectric is preferably a synthetic or mineral oil of low or high viscosity, in particular a polyisobutene, naphthene, polyaromatic, ⁇ -olefin or silicone oil.
  • US 4410869 describes dielectric compositions comprising a mixture of ditoluyl ether isomers, optionally in the presence of hydroquinone or a derivative thereof, used for impregnating electrical devices, including capacitors and transformers.
  • US 4543207 describes dielectric compositions comprising dielectric oils and aromatic mono-olefins and/or diolefins having condensed or noncondensed aromatic nuclei.
  • Said compositions comprise, in particular, mixtures of organic acid esters, vegetable or animal oils and aromatic ethers with 0.01-50% aromatic mono- and/or diolefins having two condensed or noncondensed aromatic rings.
  • the compositions are used to impregnate capacitors, transformers and electric cables.
  • US 4,900,766 discloses a a radiation-resistant high molecular composition which comprises a high molecular polymer, such as, for example, polyethylene, polypropylene, polybutene; a halogenated acenaphtylene and/or condensates thereof; and a diphenylether derivative.
  • the composition can be used for making crosslinked covering materials of electric wires and cables.
  • JP 52 003 180 discloses oil impregnated electric power cables wherein one or two or more types of oil, selected among the di(alkylphenyl) ether oils and the phenyl alkylphenyl ether oils, where the total number of carbons atoms in the alkyl groups is from 8 to 30, is impregnated into a polypropylene tape wound insulating layer of which the extraction factor with decalin at 77°C is not more than 20 wt%.
  • JP 08 289 454 discloses a rubber mold stress cone at prefabricated joint having sufficient flexibility and long term stabilized insulation performance by employing a composition of ethylene propylene rubber and phenyl ether oil in the molding and subjecting the molding to crosslinking.
  • the Applicant considers as still unsolved the technical problem of producing an electric cable with a covering made from a thermoplastic polymer material having mechanical and electrical properties comparable to those of cables with an insulating covering of crosslinked material.
  • the Applicant has considered the problem of producing a cable with a non-crosslinked insulating covering having good flexibility and high mechanical strength under both hot and cold conditions, while at the same time possessing high dielectric strength.
  • the Applicant considers that the addition of dielectric liquids to polymer materials as proposed in the cited WO 99/13477 gives totally unsatisfactory results.
  • the Applicant maintains that adding a dielectric liquid to an insulating material should on the one hand determine a significant increase in its electrical properties (in particular its dielectric strength), while on the other hand maintaining the material characteristics (thermomechanical properties, manageability) unchanged, even at high operating temperature (at least 90°C and beyond).
  • the Applicant has now found it possible to solve said technical problem by using, as recyclable polymer base material, a thermoplastic propylene homopolymer or copolymer mixed with a dielectric liquid as hereinafter defined.
  • the resultant composition possesses good flexibility even when cold, excellent thermomechanical strength and high electrical performance, such as to make it particularly suitable for forming at least one covering layer, and in particular an electrical insulating layer, of a medium or high voltage cable of high operating temperature, of at least 90°C and beyond.
  • the dielectric liquid suitable for implementing the invention has high compatibility with the base polymer and high efficiency in the sense of improving electrical performance, consequently allowing the use of small quantities of additive such as not to impair the thermomechanical characteristics of the insulating layer.
  • High compatibility between the dielectric liquid and the base polymer ensures homogeneous dispersion of the liquid in the polymer matrix and improves cold behaviour of the polymer.
  • the invention therefore relates to a cable (1) comprising at least one electrical conductor (2) and at least one non-crosslinked extruded covering layer (3, 4, 5) comprising a thermoplastic polymer material in admixture with a dielectric liquid, wherein:
  • said extruded covering layer based on said thermoplastic polymer material in admixture with said dielectric liquid is an electrically insulating layer.
  • said extruded covering layer based on said thermoplastic polymer material in admixture with said dielectric liquid is a semiconductive layer.
  • the propylene homopolymer or copolymer has a melting point of from 145 to 170°C.
  • the propylene homopolymer or copolymer has a melting enthalpy of from 30 to 85 J/g.
  • the propylene homopolymer or copolymer has a flexural modulus, measured in accordance with ASTM D790, at room temperature, of from 30 to 1400 MPa, and more preferably from 60 to 1000 MPa.
  • the propylene homopolymer or copolymer has a melt flow index (MFI), measured at 230°C with a load of 21.6 N in accordance with ASTM D1238/L, of from 0.05 to 10.0 dg/min, more preferably from 0.5 to 5.0 dg/min.
  • MFI melt flow index
  • a copolymer of propylene with an olefin comonomer is used, this latter is preferably present in a quantity of less than or equal to 15 mol%, and more preferably less than or equal to 10 mol%.
  • Propylene/ethylene copolymers are particularly preferred.
  • thermoplastic material is selected from:
  • the homopolymers or copolymers of class a) show a single-phase microscopic structure, ie substantially devoid of heterogeneous phases dispersed as molecular domains of size greater than one micron. These materials do not show, in fact, the optical phenomena typical of heterophase polymer materials, and in particular are characterised by better transparency and reduced whitening due to local mechanical stresses (commonly known as "stress whitening").
  • Particularly preferred of said class a) is a propylene homopolymer or a copolymer of propylene with at least one olefin comonomer selected from ethylene and an ⁇ -olefin other than propylene, said homopolymer or copolymer having:
  • the heterophase copolymers of class b) are thermoplastic elastomers obtained by sequential copolymerization of: i) propylene, possibly containing minor quantities of at least one olefin comonomer selected from ethylene and an ⁇ -olefin other than propylene; and then of: ii) a mixture of ethylene with an ⁇ -olefin, in particular propylene, and possibly with minor portions of a diene.
  • This class of product is also commonly known by the term "thermoplastic reactor elastomers”.
  • the said class b) is a heterophase copolymer in which the elastomeric phase consists of an elastomeric copolymer of ethylene and propylene comprising from 15 to 50 wt% of ethylene and from 50 to 85 wt% of propylene on the weight of the elastomeric phase. Further details of these materials and their use in covering cables are given in patent application WO00/41187 in the name of the Applicant.
  • thermoplastic base material a propylene homopolymer or copolymer as hereinbefore defined can be used in mechanical mixture with a low crystallinity polymer, generally with a melting enthalpy of less than 30 J/g, which mainly acts to increase flexibility of the material.
  • the quantity of low crystallinity polymer is generally less than 70 wt%, and preferably from 20 to 60 wt%, on the total weight of the thermoplastic material.
  • the low crystallinity polymer is a copolymer of ethylene with a C 3 -C 12 ⁇ -olefin, and possibly with a diene.
  • the ⁇ -olefin is preferably selected from propylene, 1-hexene and 1-octene.
  • a diene comonomer is present, this is generally C 4 -C 20 , and is preferably selected from conjugated or non-conjugated linear diolefins, such as 1,3-butadiene, 1,4-hexadiene, 1,6-octadiene or their mixtures and the like; monocyclic or polycyclic dienes, such as 1,4-cyclohexadiene, 5-ethylidene-2-norbomene, 5-methylene-2-norbornene, 5-vinyl-2-norbornene or their mixtures and the like.
  • conjugated or non-conjugated linear diolefins such as 1,3-butadiene, 1,4-hexadiene, 1,6-octadiene or their mixtures and the like
  • monocyclic or polycyclic dienes such as 1,4-cyclohexadiene, 5-ethylidene-2-norbomene, 5-methylene-2-norbornen
  • Particularly preferred ethylene copolymers are:
  • the dielectric liquid according to the invention preferably comprises at least one diphenyl ether having the following structural formula: where R 1 and R 2 are equal or different and represent hydrogen, a phenyl group non-substituted or substituted by at least one alkyl group, or an alkyl group non-substituted or substituted by at least one phenyl.
  • alkyl group it is meant a linear or branched C 1 -C 24 , preferably C 1 -C 20 , hydrocarbon radical.
  • Liquids advantageously usable in the present invention are for example phenyl toluyl ether, 2,3'-ditoluyl ether, 2,2'-ditoluyl ether, 2,4'-ditoluyl ether, 3,3'-ditoluyl ether, 3,4'-ditoluyl ether, 4,4'-ditoluyl ether, octadecyl diphenyl ether either as pure isomers or in mixture with each other.
  • Said dielectric liquid has a ratio of number of aryl carbon atoms to number of total carbon atoms greater than or equal to 0.4, preferably greater than or equal to 0.7.
  • the diphenyl ether of the invention preferably has a dielectric constant, at 25°C, of less than or equal to 8, preferably less than 4 (measured in accordance with IEC 247).
  • the diphenyl ether of the invention has a predetermined viscosity such as to prevent fast diffusion of the liquid within the insulating layer and hence its outward migration, while at the same time such as to enable it to be easily fed and mixed into the polymer.
  • the dielectric liquid of the invention has a kinematic viscosity, at 20°C, of between 1 and 100 mm 2 /s, preferably between 3 and 50 mm 2 /s (measured in accordance with ISO 3104).
  • the diphenyl ether of the invention has a hydrogen absorption capacity greater than or equal to 5 mm 3 /min, preferably greater than or equal to 50 mm 3 /min (measured in accordance with IEC 628-A).
  • an epoxy resin can be added to the dielectric liquid suitable for forming the cable of the invention, generally in a quantity of less than or equal to 1 wt% on the weight of the liquid, this being considered to mainly act to reduce the ion migration rate under an electrical field, and hence the dielectric loss of the insulating material.
  • the dielectric liquid suitable for implementing the invention has good heat resistance, considerable gas absorption capacity, in particular for hydrogen, and hence high resistance to partial discharges, so that dielectric loss is not high even at high temperature and high electrical gradient.
  • the weight ratio of dielectric liquid to base polymer material of the invention is generally between 1:99 and 25:75, preferably between 2:98 and 20:80, and more preferably between 3:97 and 15:85.
  • Dielectric liquids of the present invention can be prepared for example by reacting a cresol, in the form of a salt of an alkaline metal, with halogen toluene possibly in the presence of a copper or copper salt-based catalyst.
  • the cable of the invention has at least one extruded covering layer with electrical insulation properties formed from the thermoplastic polymer material in admixture with the aforedescribed dielectric liquid.
  • the cable of the invention has at least one extruded covering layer with semiconductive properties formed from the thermoplastic polymer material in admixture with the aforedescribed dielectric liquid.
  • a conductive filler is generally added to the polymer material.
  • this latter is preferably selected from propylene homopolymers or copolymers comprising at least 40 wt% of amorphous phase, on the total polymer weight.
  • the cable of the invention has at least one electrical insulation layer and at least one semiconductive layer formed from a thermoplastic polymer material in admixture with a dielectric liquid as hereinabove described. This prevents the semiconductive layers from absorbing, with time, part of the dielectric liquid present in the insulating layer, so reducing its quantity just at the interface between the insulating layer and semiconductive layer, in particular the inner semiconductive layer where the electrical field is higher.
  • the invention relates to a polymer composition
  • a polymer composition comprising a thermoplastic polymer material in admixture with a dielectric liquid, in which:
  • the invention relates to the use of a polymer composition, as described hereinabove, as the base polymer material for preparing a non-crosslinked covering layer (4) with electrical insulation properties, or for preparing a covering layer (3, 5) with semiconductive properties.
  • a covering layer for the cable of the invention In forming a covering layer for the cable of the invention, other conventional components can be added to the aforedefined polymer composition, such as antioxidants, processing aids, water tree retardants, and the like.
  • antioxidants suitable for the purpose are for example distearylthio-propionate, pentaerithryl-tetrakis [3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate] and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tertbutyl-4-hydroxy-benzyl)benzene and the like, or mixtures thereof.
  • Processing aids which can be added to the polymer base include, for example, calcium stearate, zinc stearate, stearic acid, paraffin wax and the like, or their mixtures.
  • the polymer materials as hereinabove defined can be advantageously used to form an insulating layer.
  • these polymer materials show indeed good mechanical characteristics both at ambient temperature and under hot conditions, and also show improved electrical properties, in particular they enable high operating temperature to be employed, comparable with or even exceeding that of cables with coverings consisting of crosslinked polymer base materials.
  • a conductive filler in particular carbon black, is generally dispersed within the polymer material in a quantity such as to provide the material with semiconductive characteristics (i.e. such as to obtain a resistivity of less than 5 Ohm.m at ambient temperature).
  • This quantity is generally between 5 and 80 wt%, and preferably between 10 and 50 wt%, of the total weight of the mixture.
  • the possibility to use the same type of polymer composition for both the insulating layer and the semiconductive layers is particularly advantageous in producing cables for medium or high voltage, in that it ensures excellent adhesion between adjacent layers and hence better electrical behaviour, particularly at the interface between the insulating layer and the inner semiconductive layer, where the electrical field and hence the risk of partial discharges are higher.
  • compositions of the present invention can be prepared by mixing together the base polymer material, the dielectric liquid and any other additives possibly present by methods known in the art. Mixing can be carried out for example by an internal mixer of the type with tangential rotors (Banbury) or with interpenetrating rotors, or, preferably, in a continuous mixer of Ko-Kneader (Buss) type, or of co- or counter-rotating double-screw type.
  • the dielectric liquid of the invention can be added to the polymer material during the extrusion step by direct injection into the extruder cylinder.
  • the use of the aforedefined polymer composition in covering cables for medium or high voltage enables recyclable, flexible coverings to be obtained with excellent mechanical and electrical properties.
  • the cables of the invention can carry, for the same voltage, a power at least equal to or even greater than that transportable by a traditional cable with XLPE covering.
  • the term “medium voltage” generally means a voltage of between 1 and 35 kV, whereas “high voltage” means voltages higher than 35 kV.
  • the polymer composition of the invention can be used for covering electrical devices in general and in particular cables of different type, for example low voltage cables, telecommunications cables or combined energy/telecommunications cables, or accessories used in constructing electrical lines, such as terminals or connectors.
  • the cable 1 comprises a conductor 2, an inner layer with semiconductive properties 3, an intermediate layer with insulating properties 4, an outer layer with semiconductive properties 5, a metal screen 6, and an outer sheath 7.
  • the conductor 2 generally consists of metal wires, preferably of copper or aluminium, stranded together by conventional methods. At least one covering layer selected from the insulating layer 4 and the semiconductive layers 3 and 5 comprises the composition of the invention as hereinbefore defined.
  • a screen 6 generally of electrically conducting wires or strips wound helically. This screen is then covered by a sheath 7 of a thermoplastic material, for example non-crosslinked polyethylene (PE) or preferably a propylene homopolymer or copolymer as hereinbefore defined.
  • PE non-crosslinked polyethylene
  • propylene homopolymer or copolymer as hereinbefore defined.
  • the cable can also be provided with an outer protective structure (not shown in Figure 1) the main purpose of which is to mechanically protect the cable against impact and/or compression.
  • This protective structure can be, for example, a metal reinforcement or a layer of expanded polymer as described in WO 98/52197.
  • FIG. 1 shows only one possible embodiment of a cable of the present invention. Suitable modifications known in the art can evidently be made to this embodiment, but without departing from the scope of the invention.
  • the cable of the invention can be constructed in accordance with known methods for depositing layers of thermoplastic material, for example by extrusion.
  • the extrusion is advantageously carried out in a single pass, for example by the tandem method in which individual extruders are arranged in series, or by co-extrusion with a multiple extrusion head.
  • the polymer in granular form was preheated to 80°C in a turbomixer.
  • the dielectric liquid was added, in the quantities specified for the formulations given in Table 1, to the polymer preheated in the turbomixer under agitation at 80°C over 15 min. After the addition agitation was continued for a further hour at 80°C until the liquid was completely absorbed in the polymer granules.
  • the resultant material was kneaded in a laboratory double-screw Brabender Plasticorder PL2000 at a temperature of 185°C to complete homogenization.
  • the material left the double-screw mixer in the form of granules.
  • the dielectric strength of the polymer compositions obtained was evaluated on test-pieces of insulating material having the geometry proposed by the EFI (Norwegian Electric Power Research Institute) in the publication "The EFI Test Method for Accelerated Growth of Water Trees” (IEEE International Symposium on Electrical insulation, Toronto, Canada, June 3-6 1990).
  • the cable is simulated with glass-shaped test pieces of insulating material having their base coated on both sides with a semiconductive material coating.
  • the glass-shaped test-pieces were formed by moulding discs of insulating material at 160-170°C from a plate of thickness 10 mm obtained by compressing granules at about 190°C.
  • the inner and outer surfaces of the base which had a thickness of about 0.40-0.45 mm, were coated with a semiconductive coating.
  • the DS measurement was made by applying to these specimens, immersed in silicone oil at 20°C, an alternating current at 50 Hz starting with a voltage of 25 kV and increasing in steps of 5 kV every 30 minutes until perforation of the test-piece occurred. Each measurement was repeated on 10 test-pieces.
  • the values given in Table 1 are the arithmetic mean of the individual measured values.
  • the dielectric strength values given in Table 1 highlight the improvement in electrical performance deriving from the dielectric liquids of the invention, compared to that of the base polymer as such or when mixed with the comparison dielectric liquids.
  • composition Ex 1 The composition of the insulating layer and of the semiconductive layers is described in Table 2 below.
  • Reference cable Composition Ex 1
  • Cable of the invention Composition Ex 5
  • Insulation Inner and outer semicond The composition of the insulating layer and of the semiconductive layers is described in Table 2 below.
  • Reference cable Composition Ex 1
  • Cable of the invention Composition Ex 5
  • Insulation Inner and outer semicond The composition of the insulating layer and of the semiconductive layers is described in Table 2 below.
  • Reference cable Composition Ex 1
  • Composition Ex 5 Cable of the invention
  • Insulation Inner and outer semicond The composition of the insulating layer and of the semiconductive layers is described in Table 2 below.
  • Reference cable Composition Ex 1
  • Composition Ex 5 Cable of the invention
  • Insulation Inner and outer semicond The composition of the insulating layer and of the semiconductive layers is described in Table 2 below.
  • Reference cable Composition Ex 1
  • Cable of the invention Composition Ex 5
  • Insulation Inner and outer semicond The composition of the insul
  • Nero Y-200 acetylene carbon black of the firm SN2A with specific surface of 70 m 2 /g; Irganox R 1330: 1,3,5-trimethyl-2,4,6-tris (3,5-di-tertbutyl-4-hydroxy-benzyl)benzene (Ciba Geigy).
  • the process used for manufacturing the cable was the following.
  • the cable leaving the extrusion head was fed into a tube containing silicone oil at 100°C and then into water where it was cooled to ambient temperature.
  • the finished cable consisted of a copper conductor (cross-section 400 mm 2 ), an inner semiconductive layer of about 2 mm, an insulating layer of about 5.5 mm and finally an outer semiconductive layer of about 2 mm.
  • Partial discharges were measured at 20 kV/mm without encountering currents exceeding 5 pico Columb (pC) (in accordance with IEC 60-502).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Claims (51)

  1. Kabel (1), das mindestens einen elektrischen Leiter (2) und mindestens eine unvernetzte, extrudierte Abdeckschicht (3, 4, 5) umfaßt, die ein thermoplastisches Polymermaterial unter Zumischung einer dielektrischen Flüssigkeit enthält, wobei:
    das thermoplastische Material ein Propylen-Homopolymer oder ein Copolymer von Propylen mit mindestens einem Olefin-Comonomer, ausgewählt aus Ethylen und einem anderen α-Olefin als Propylen umfaßt, wobei das Homopolymer oder Copolymer einen Schmelzpunkt größer als oder gleich 140°C und eine Schmelzenthalpie von 30 bis 100 J/g besitzt;
    die dielektrische Flüssigkeit mindestens einen Diphenylether umfaßt, der unsubstituiert ist oder substituiert ist mit mindestens einem linearen oder verzweigten, aliphatischen, aromatischen oder gemischt aliphatischen und aromatischen C1-C30-Kohlenwasserstoffrest.
  2. Kabel wie in Anspruch 1 beansprucht, wobei das Propylen-Homopolymer oder -Copolymer einen Schmelzpunkt von 145 bis 170°C besitzt.
  3. Kabel wie in Anspruch 1 oder 2 beansprucht, wobei das Propylen-Homopolymer oder -Copolymer eine Schmelzenthalpie von 30 bis 85 J/g besitzt.
  4. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer oder -Copolymer einen bei Raumtemperatur gemessenen Biegemodul von 30 bis 1.400 MPa besitzt.
  5. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer oder -Copolymer einen bei Raumtemperatur gemessenen Biegemodul von 60 bis 1.000 MPa besitzt.
  6. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer oder -Copolymer einen bei 230°C gemessenen Schmelzflußindex von 0,05 bis 10,0 dg/min besitzt.
  7. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Propylen-Homopolymer oder -Copolymer einen bei 230°C gemessenen Schmelzflußindex von 0,5 bis 5,0 dg/min besitzt.
  8. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Olefin-Comonomer in einer Menge von weniger als oder gleich 15 mol% vorliegt.
  9. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Olefin-Comonomer in einer Menge von weniger als oder gleich 10 mol% vorliegt.
  10. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Olefin-Comonomer Ethylen oder ein α-Olefin der Formel CH2=CH-R ist, worin R ein lineares oder verzweigtes C2-C10-Alkyl ist.
  11. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das α-Olefin ausgewählt ist aus 1-Buten, 1-Penten, 4-Methyl-1-penten, 1-Hexen, 1-Octen, 1-Decen, 1-Dodecen und dergleichen oder Kombinationen davon.
  12. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das thermoplastische Material ausgewählt ist aus:
    (a) einem Propylen-Homopolymer oder einem Copolymer von Propylen mit mindestens einem Olefin-Comonomer, ausgewählt aus Ethylen und einem anderen α-Olefin als Propylen, mit einem Biegemodul von 30 bis 900 MPa;
    (b) einem Heterophasen-Copolymer, das eine thermoplastische Phase auf Basis von Propylen und eine elastomere Phase auf Basis von mit einem α-Olefin copolymerisiertem Ethylen umfaßt, wobei die elastomere Phase in einer Menge von mindestens 45 Gew.% des Gesamtgewichts des Heterophasen-Copolymers vorliegt.
  13. Kabel wie im vorhergehenden Anspruch beansprucht, wobei das Propylen-Homopolymer oder -Copolymer unter a) einen Biegemodul von 50 bis 400 MPa besitzt.
  14. Kabel wie in Anspruch 12 oder 13 beansprucht, wobei das Propylen-Homopolymer oder -Copolymer unter a) aufweist:
    einen Schmelzpunkt von 140 bis 165°C;
    eine Schmelzenthalpie von 30 bis 80 J/g;
    eine in siedendem Diethylether lösliche Fraktion in einer Menge von weniger als oder gleich 12 Gew.% mit einer Schmelzenthalpie von weniger als oder gleich 4 J/g;
    eine in siedendem n-Heptan lösliche Fraktion in einer Menge von 15 bis 60 Gew.% mit einer Schmelzenthalpie von 10 bis 40 J/g; und
    eine in siedendem n-Heptan unlösliche Fraktion in einer Menge von 40 bis 85 Gew.% mit einer Schmelzenthalpie größer als oder gleich 45 J/g.
  15. Kabel wie in mindestens einem der Ansprüche 12 bis 14 beansprucht, wobei das Propylen-Homopolymer oder -Copolymer unter a) aufweist:
    eine in siedendem Diethylether lösliche Fraktion in einer Menge von 1 bis 10 Gew.% mit einer Schmelzenthalpie von weniger als oder gleich 2 J/g; eine in siedendem n-Heptan lösliche Fraktion in einer Menge von 20 bis 50 Gew.% mit einer Schmelzenthalpie von 15 bis 30 J/g; und
    eine in siedendem n-Heptan unlösliche Fraktion in einer Menge von 50 bis 80 Gew.% mit einer Schmelzenthalpie von 50 bis 95 J/g.
  16. Kabel wie in Anspruch 12 beansprucht, wobei das α-Olefin, das in die elastomere Phase des Heterophasen-Copolymers unter b) eingeschlossen ist, Propylen ist.
  17. Kabel wie im vorhergehenden Anspruch beansprucht, wobei die elastomere Phase aus einem elastomeren Copolymer von Ethylen und Propylen besteht, das 15 bis 50 Gew.% Ethylen und 50 bis 85 Gew.% Propylen, bezogen auf das Gewicht der elastomeren Phase, enthält.
  18. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das thermoplastische Basismaterial das Propylen-Homopolymer oder -Copolymer in mechanischer Mischung mit einem Polymer niedriger Kristallinität mit einer Schmelzenthalpie von weniger als oder gleich 30 J/g und einer Menge von weniger als oder gleich 70 Gew.%, bezogen auf das Gesamtgewicht des thermoplastischen Materials, ist.
  19. Kabel wie im vorhergehenden Anspruch beansprucht, wobei das Polymer niedriger Kristallinität in einer Menge von 20 bis 60 Gew.%, bezogen auf das Gesamtgewicht des thermoplastischen Materials, vorliegt.
  20. Kabel wie in Anspruch 18 oder 19 beansprucht, wobei das Polymer niedriger Kristallinität ein Copolymer von Ethylen mit einem C3-C12-α-Olefin ist.
  21. Kabel wie in Anspruch 18 oder 19 beansprucht, wobei das Polymer niedriger Kristallinität ein Copolymer von Ethylen mit einem α-Olefin und einem Dien ist.
  22. Kabel wie in Anspruch 20 oder 21 beansprucht, wobei das Ethylen-Copolymer ausgewählt ist aus:
    (i) einem Copolymer mit der folgenden Monomerzusammensetzung: 35-90 mol% Ethylen; 10-65 mol% eines α-Olefins; 0-10 mol% eines Diens;
    (ii) einem Copolymer mit der folgenden Monomerzusammensetzung: 75-97 mol% Ethylen; 3-25 mol% eines α-Olefins; 0-5 mol% eines Diens.
  23. Kabel wie im vorhergehenden Anspruch beansprucht, wobei das Ethylen-Copolymer ausgewählt ist aus einem Copolymer mit der folgenden Monomerzusammensetzung: 90-95 mol% Ethylen; 5-10 mol% eines α-Olefins; 0-2 mol% eines Diens.
  24. Kabel wie in mindestens einem der Ansprüche 20 bis 23 beansprucht, wobei das α-Olefin ausgewählt ist aus Propylen, 1-Hexen und 1-Octen.
  25. Kabel wie in mindestens einem der Ansprüche 20 bis 24 beansprucht, wobei das Dien 4 bis 20 Kohlenstoffatome besitzt.
  26. Kabel wie in mindestens einem der Ansprüche 20 bis 25 beansprucht, wobei das Dien ausgewählt ist aus einem konjugierten oder nicht-konjugierten linearen Diolefin und einem monozyklischen oder polyzyklischen Dien.
  27. Kabel wie in mindestens einem der Ansprüche 20 bis 26 beansprucht, wobei das Dien ausgewählt ist aus 1,3-Butadien, 1,4-Hexadien, 1,6-Octadien, 1,4-Cyclohexadien, 5-Ethyliden-2-norbornen, 5-Methylen-2-norbornen, 5-Vinyl-2-norbornen oder ihren Mischungen und dergleichen.
  28. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei der Kohlenwasserstoffrest 1 bis 24 Kohlenstoffatome besitzt.
  29. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei die dielektrische Flüssigkeit mindestens einen Diphenylether mit der folgenden Strukturformel enthält:
    Figure 00290001
    worin R1 und R2 gleich oder verschieden sind und Wasserstoff, eine Phenylgruppe, die unsubstituiert oder mit mindestens einer Alkylgruppe substituiert ist, oder eine Alkylgruppe, die unsubstituiert oder mit mindestens einem Phenyl substituiert ist, bedeuten.
  30. Kabel wie im vorhergehenden Anspruch beansprucht, wobei die Alkylgruppe 1 bis 20 Kohlenstoffatome besitzt.
  31. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei die dielektrische Flüssigkeit ausgewählt ist aus Phenyltoluylether, 2,3'-Ditoluylether, 2,2'-Ditoluylether, 2,4'-Ditoluylether, 3,3'-Ditoluylether, 3,4'-Ditoluylether, 4,4'-Ditoluylether, Octadecyldiphenylether, entweder als reine Isomere oder in Mischung miteinander.
  32. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Verhältnis der Zahl der Arylkohlenstoffatome zur Gesamtzahl von Kohlenstoffatomen der dielektrischen Flüssigkeit größer als oder gleich 0,4 ist.
  33. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Verhältnis der Zahl der Arylkohlenstoffatome zur Gesamtzahl von Kohlenstoffatomen der dielektrischen Flüssigkeit größer als oder gleich 0,7 ist.
  34. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei der Diphenylether bei 25°C eine dielektrische Konstante von weniger als oder gleich 8 besitzt.
  35. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei der Diphenylether bei 25°C eine dielektrische Konstante von weniger als oder gleich 4 besitzt.
  36. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei die dielektrische Flüssigkeit bei 20°C eine kinematische Viskosität zwischen 1 und 100 mm2/s besitzt.
  37. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei die dielektrische Flüssigkeit bei 20°C eine kinematische Viskosität zwischen 3 und 50 mm2/s besitzt.
  38. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei der Diphenylether eine Wasserstoffabsorptionskapazität von größer als oder gleich 5 mm3/min besitzt.
  39. Kabel wie im vorhergehenden Anspruch beansprucht, wobei die Wasserstoffabsorptionskapazität größer als oder gleich 50 mm3/min ist.
  40. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei der dielektrischen Flüssigkeit ein Epoxyharz in einer Menge von weniger als oder gleich 1 Gew.%, bezogen auf das Gewicht der Flüssigkeit, zugesetzt ist.
  41. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Gewichtsverhältnis der dielektrischen Flüssigkeit zum Polymerbasismaterial 1:99 bis 25:75 ist.
  42. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Gewichtsverhältnis der dielektrischen Flüssigkeit zum Polymerbasismaterial 2:98 bis 20:80 ist.
  43. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Gewichtsverhältnis der dielektrischen Flüssigkeit zum Polymerbasismaterial 3:97 bis 15:85 ist.
  44. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei das Polymerbasismaterial ausgewählt ist aus Propylen-Homopolymeren oder -Copolymeren, die, bezogen auf das Polymergesamtgewicht, mindestens 40 Gew.% amorphe Phase enthalten.
  45. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei die extrudierte Abdeckschicht eine Schicht (4) mit elektrischen Isolierungseigenschaften ist.
  46. Kabel wie in mindestens einem der Ansprüche 1 bis 44 beansprucht, wobei die extrudierte Abdeckschicht eine Schicht (3, 5) mit halbleitenden Eigenschaften ist.
  47. Kabel wie im vorhergehenden Anspruch beansprucht, wobei ein leitfähiger Füllstoff in der Schicht mit halbleitenden Eigenschaften dispergiert ist.
  48. Kabel wie in mindestens einem der vorhergehenden Ansprüche beansprucht, wobei mindestens eine Schicht mit elektrischen Isolierungseigenschaften und mindestens eine Schicht mit halbleitenden Eigenschaften vorliegen.
  49. Polymerzusammensetzung, die ein thermoplastisches Polymermaterial unter Zumischung einer dielektrischen Flüssigkeit gemäß mindestens einem der Ansprüche 1 bis 44 enthält.
  50. Verwendung einer Polymerzusammensetzung wie in Anspruch 49 beansprucht, als Polymerbasismaterial für die Herstellung einer unvernetzten Abdeckschicht (4) mit elektrischen Isolierungseigenschaften.
  51. Verwendung einer Polymerzusammensetzung wie in Anspruch 49 beansprucht, als Polymerbasismaterial für die Herstellung einer unvernetzten Abdeckschicht (3, 5) mit halbleitenden Eigenschaften.
EP01962964A 2000-09-28 2001-08-22 Kabel mit einem wiederverwertbaren kabelmantel Expired - Lifetime EP1323171B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01962964A EP1323171B1 (de) 2000-09-28 2001-08-22 Kabel mit einem wiederverwertbaren kabelmantel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP00121110 2000-09-28
EP00121110 2000-09-28
US23673500P 2000-10-02 2000-10-02
US236735P 2000-10-02
EP01962964A EP1323171B1 (de) 2000-09-28 2001-08-22 Kabel mit einem wiederverwertbaren kabelmantel
PCT/EP2001/009700 WO2002027731A1 (en) 2000-09-28 2001-08-22 Cable with recyclable covering

Publications (2)

Publication Number Publication Date
EP1323171A1 EP1323171A1 (de) 2003-07-02
EP1323171B1 true EP1323171B1 (de) 2004-12-15

Family

ID=29762590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962964A Expired - Lifetime EP1323171B1 (de) 2000-09-28 2001-08-22 Kabel mit einem wiederverwertbaren kabelmantel

Country Status (14)

Country Link
EP (1) EP1323171B1 (de)
JP (1) JP4875282B2 (de)
KR (1) KR100777011B1 (de)
CN (1) CN1229821C (de)
AR (1) AR037079A1 (de)
AT (1) ATE285112T1 (de)
AU (2) AU8403001A (de)
BR (1) BR0114264B1 (de)
CA (1) CA2425382C (de)
DE (1) DE60107864T2 (de)
ES (1) ES2234874T3 (de)
HU (1) HU229633B1 (de)
NZ (1) NZ525495A (de)
WO (1) WO2002027731A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861143B2 (en) * 1999-11-17 2005-03-01 Pirelli Cavi E Sistemi S.P.A. Cable with recyclable covering
WO2002047092A1 (en) 2000-12-06 2002-06-13 Pirelli S.P.A. Process for producing a cable with a recyclable coating
WO2004066317A1 (en) * 2003-01-20 2004-08-05 Gabriele Perego Cable with recycable covering layer
JP2007515742A (ja) * 2003-07-25 2007-06-14 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ 電気ケーブルを製造する連続的な方法
AU2005337789B2 (en) 2005-10-25 2012-09-13 Prysmian Cavi E Sistemi Energia S.R.L. Energy cable comprising a dielectric fluid and a mixture of thermoplastic polymers
WO2008058572A1 (en) * 2006-11-15 2008-05-22 Prysmian S.P.A. Energy cable
WO2009000326A1 (en) 2007-06-28 2008-12-31 Prysmian S.P.A. Energy cable
CN102822257B (zh) 2010-01-29 2014-03-12 普睿司曼股份公司 能量电缆
RU2539359C1 (ru) * 2010-11-25 2015-01-20 Призмиан С.П.А. Силовой кабель, содержащий термопластичный электроизоляционный слой со стабилизатором напряжения
BR112013014593B1 (pt) 2010-12-23 2019-12-10 Prysmian Spa processo para fabricar um cabo de energia, e, aparelho para fabricar um cabo de energia
US9576703B2 (en) 2010-12-23 2017-02-21 Prysmian S.P.A. Energy cable having stabilized dielectric resistance
US20140255692A1 (en) * 2011-08-04 2014-09-11 Gabriele Perego Energy cable having a thermoplastic electrically insulating layer
US9697927B2 (en) 2011-12-23 2017-07-04 Prysmian S.P.A. Cable comprising an element indicating water infiltration and method using said element
US10297372B2 (en) 2012-05-18 2019-05-21 Prysmian S.P.A Process for producing an energy cable having a thermoplastic electrically insulating layer
ES2749509T3 (es) * 2012-05-18 2020-03-20 Prysmian Spa Procedimiento para producir un cable de energía que presenta una capa termoplástica de aislamiento eléctrico
EP2711938B1 (de) * 2012-09-25 2014-11-26 Nexans Mehrschichtige Silikonisolierung für Elektrokabel
KR102003567B1 (ko) * 2013-02-14 2019-07-24 한국전력공사 전력 케이블
KR102003568B1 (ko) * 2013-02-14 2019-07-24 한국전력공사 전력 케이블
US10662323B2 (en) 2013-08-12 2020-05-26 Nkt Hv Cables Ab Thermoplastic blend formulations for cable insulations
WO2016005791A1 (en) 2014-07-08 2016-01-14 Prysmian S.P.A. Energy cable having a thermoplastic electrically insulating layer
EP3234013B1 (de) 2014-12-17 2018-11-28 Prysmian S.p.A. Stromkabel mit kalt-ablösbarer halbleiterschicht
CN108350583B (zh) 2015-09-25 2020-09-08 普睿司曼股份公司 由四唑化合物腐蚀抑制剂涂覆的铝的电力电缆
DK3365952T3 (da) 2015-10-23 2020-06-15 Prysmian Spa Samling til elektriske kabler med termoplastisk isolering og fremgangsmåde til fremstilling deraf
EP3549144A1 (de) 2016-11-30 2019-10-09 Prysmian S.p.A. Stromkabel
US20200126687A1 (en) 2016-12-27 2020-04-23 Prysmian S.p. A. Electric cable having a protecting layer
FR3068038B1 (fr) * 2017-06-21 2020-09-18 Nexans Composition polymere comprenant un liquide dielectrique polaire
DK3695424T3 (da) * 2017-10-12 2022-09-12 Prysmian Spa Elektrisk kabel med forbedret termoplastisk isoleringslag
KR102603200B1 (ko) * 2017-12-27 2023-11-16 주식회사 엘지화학 전력 케이블 절연용 폴리프로필렌 수지 조성물
US20220112367A1 (en) * 2018-06-13 2022-04-14 Nexans Polymer composition comprising a dielectric liquid of improved polarity
KR102097237B1 (ko) * 2019-06-19 2020-04-07 엘에스전선 주식회사 전력 케이블
KR102097238B1 (ko) * 2019-06-19 2020-04-07 엘에스전선 주식회사 전력 케이블
JP6800362B1 (ja) 2020-03-30 2020-12-16 古河電気工業株式会社 電力ケーブル及び電力ケーブルの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523180A (en) * 1975-06-25 1977-01-11 Dainichi Nippon Cables Ltd Oil immersed power cables
DE3115545A1 (de) * 1981-04-16 1982-11-18 Bayer Ag, 5090 Leverkusen Impraegniermittel und seine verwendung
US4543207A (en) * 1982-12-25 1985-09-24 Nippon Petrochemicals Company, Limited Electrical insulating oil and oil-filled electrical appliances
US4501688A (en) * 1984-02-01 1985-02-26 National Distillers And Chemical Corporation Silane oligomers useful as anti-treeing additives
CA1290479C (en) * 1986-09-22 1991-10-08 Teruo Fukuda Radiation-resistant high molecular composition
JPH0781049B2 (ja) * 1986-12-15 1995-08-30 チッソ株式会社 デイストリビユ−タキヤツプ用樹脂組成物
EP0690458A3 (de) * 1994-06-27 1997-01-29 Mitsubishi Cable Ind Ltd Isolierende Zusammensetzung und daraus hergestellter Formkörper
JPH08289454A (ja) * 1995-04-13 1996-11-01 Hitachi Cable Ltd ゴムモールドストレスコーン
AU740973B2 (en) * 1997-09-09 2001-11-15 Nkt Research Center A/S An electrically insulating material, method for the preparation thereof, and insulated objects comprising said material

Also Published As

Publication number Publication date
AU8403001A (en) 2002-04-08
ATE285112T1 (de) 2005-01-15
CN1229821C (zh) 2005-11-30
CN1466766A (zh) 2004-01-07
DE60107864T2 (de) 2005-12-22
BR0114264B1 (pt) 2011-10-18
JP2004510299A (ja) 2004-04-02
DE60107864D1 (de) 2005-01-20
BR0114264A (pt) 2004-01-06
CA2425382C (en) 2010-01-12
HUP0303679A3 (en) 2010-01-28
AR037079A1 (es) 2004-10-20
KR100777011B1 (ko) 2007-11-16
HU229633B1 (hu) 2014-03-28
WO2002027731A1 (en) 2002-04-04
NZ525495A (en) 2004-07-30
KR20040030420A (ko) 2004-04-09
HUP0303679A2 (hu) 2004-03-01
AU2001284030B2 (en) 2006-01-12
JP4875282B2 (ja) 2012-02-15
EP1323171A1 (de) 2003-07-02
ES2234874T3 (es) 2005-07-01
CA2425382A1 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
EP1323171B1 (de) Kabel mit einem wiederverwertbaren kabelmantel
EP1295301B1 (de) Kabel mit wiederverwertbarer ummantelung
US7196270B2 (en) Cable with recyclable covering layer
AU2001284030A1 (en) Cable with recyclable covering
EP2092535B1 (de) Energiekabel
EP1941519B1 (de) Energiekabel mit einem dielektrischen fluid und einer mischung thermoplastischer polymere
AU2001272485A1 (en) Cable with recyclable covering
US6824870B2 (en) Cable with recyclable covering
US6908673B2 (en) Cable with recyclable covering
RU2377677C1 (ru) Силовой кабель, включающий в себя диэлектрическую жидкость и смесь термопластичных полимеров

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030306

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIRELLI & C. S.P.A.

17Q First examination report despatched

Effective date: 20031113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60107864

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2234874

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050822

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050916

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

NLS Nl: assignments of ep-patents

Owner name: PRYSMIAN CAVI E SISTEMI ENERGIA S.R.L.

Effective date: 20071113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190826

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190828

Year of fee payment: 19

Ref country code: FI

Payment date: 20190828

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190827

Year of fee payment: 19

Ref country code: AT

Payment date: 20190801

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200901

Year of fee payment: 20

Ref country code: FR

Payment date: 20200825

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200821

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60107864

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 285112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200822

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210823