EP1322764A2 - Verfahren zur verbesserten herstellung von cyanophycin und dessen folgeprodukte - Google Patents

Verfahren zur verbesserten herstellung von cyanophycin und dessen folgeprodukte

Info

Publication number
EP1322764A2
EP1322764A2 EP01962878A EP01962878A EP1322764A2 EP 1322764 A2 EP1322764 A2 EP 1322764A2 EP 01962878 A EP01962878 A EP 01962878A EP 01962878 A EP01962878 A EP 01962878A EP 1322764 A2 EP1322764 A2 EP 1322764A2
Authority
EP
European Patent Office
Prior art keywords
cyanophycin
synthetase
nucleotide sequence
production
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01962878A
Other languages
English (en)
French (fr)
Inventor
Winfried Joentgen
Alexander Steinbüchel
Fred Bernd Oppermann-Sanio
Elsayed Aboulmagd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Chemicals AG
Original Assignee
Bayer AG
Bayer Chemicals AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Bayer Chemicals AG filed Critical Bayer AG
Publication of EP1322764A2 publication Critical patent/EP1322764A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to thermostable cyanophycin synthetases, transformed organisms containing such an enzyme and a process for the improved production of cyanophycin and / or its secondary products, for example polyaspartic acid or arginine.
  • Multi-L-Arginyl-Poly-L-aspartate is a branched polypeptide that contains aspartic acid and arginine in an approximately equimolar ratio.
  • the chemical structure corresponds to a poly- ⁇ -aspartate backbone with arginine side residues, which are linked to almost all ⁇ -carboxyl groups of the backbone via peptide bonds.
  • a disadvantage of the production of cyanophycin according to the processes known hitherto is that a relatively narrow temperature range, generally below 35 ° C., must not be exceeded for optimum product yield. This represents a considerable restriction of the degrees of freedom within the process control for the production of cyanophycin and / or its secondary products.
  • the present invention relates to cyanophycin synthetases with increased stability and activity in the temperature range of> 35 ° C., characterized in that they
  • the cyanophycin synthetases according to the invention have an optimum temperature in the range from 35 ° C. to 55 ° C., preferably in the range from 35 ° C. to 50 ° C.
  • the cyanophycin synthetases according to the invention are thermostable enzymes.
  • the present invention also relates to isoenzymes of the invention
  • Cyanophycin synthetases This includes enzymes with the same or comparable substrate and activity specificity, but which have a different primary structure.
  • the present invention also includes modified forms of the cyanophycin synthetases. According to the invention, this includes enzymes in which there are changes in the sequence, for example at the N- and / or C-terminus of the polypeptide or in the region of conserved amino acids, but without impairing the function of the enzymes. These changes can be made by exchanging one or more amino acids according to known methods.
  • a special embodiment variant of the present invention comprises variants of the cyanophycin synthetases according to the invention, the substrate specificity of which is weakened or enhanced, for example by amino acid exchange, compared to the respective starting protein.
  • the present invention furthermore relates to polypeptides with the function of a cyanopyhcin synthetase, the amino acid sequence of which has been modified in such a way that they are resistant to compounds having a regulatory action, for example those which they contain their activity-regulating metabolic end products are desensitive (feedback-desensitive).
  • an isolated nucleotide sequence or an isolated nucleic acid fragment is to be understood as a polymer from RNA or DNA which can be single or double-stranded and optionally can contain natural, chemically synthesized, modified or artificial nucleotides.
  • DNA polymer also includes genomic DNA, cDNA or mixtures thereof.
  • alleles are functionally equivalent, i.e. H. to understand essentially equivalent nucleotide sequences.
  • Function-equivalent sequences are those sequences which, despite a different nucleotide sequence, for example due to the degeneracy of the genetic code, still have the desired functions.
  • Functional equivalents thus include naturally occurring variants of the sequences described here, as well as artificial, e.g. B. obtained by chemical synthesis and possibly adapted to the codon use of the host organism nucleotide sequences.
  • functionally equivalent sequences include those which have a modified nucleotide sequence which, for example, imparts a desensitivity or resistance to inhibitors to the enzyme.
  • a functional equivalent is also understood to mean, in particular, natural or artificial mutations in an originally isolated sequence which continue to show the desired function. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • sense mutations which can lead to the exchange of conserved amino acids at the protein level, but which do not lead to a fundamental change in the activity of the protein and are therefore function-neutral.
  • This also includes changes in the nucleotide sequence that are at the protein level the N- or C-terminus of a protein affect, but without significantly affecting the function of the protein. These changes can even have a stabilizing influence on the protein structure.
  • nucleotide sequences are also, for example, by the present invention.
  • artificial DNA sequences are the subject of the present invention, as long as they impart the desired properties as described above and can be incorporated or appended into the gene of the cyanophycin synthetase according to the invention.
  • Such artificial DNA sequences can be determined, for example, by back-translating proteins created using computer-aided programs (molecular modeling) or by in-vitro selection. Coding DNA sequences are particularly suitable which are obtained by back-translating a polypeptide sequence in accordance with the codon sequence specific for the host organism.
  • the specific codon usage can easily be determined by a person familiar with molecular genetic methods by computer evaluations of other, already known genes of the organism to be transformed.
  • homologous sequences are to be understood as those which are complementary to and / or hybridize with the nucleotide sequences according to the invention.
  • the term hybridizing sequences includes substantially similar nucleotide sequences from the group of DNA or RNA which, under known stringent conditions, enter into a specific interaction (binding) with the aforementioned nucleotide sequences. This also includes short nucleotide sequences with a length of, for example, 10 to 30, before moves 12 to 15 nucleotides. According to the invention, this also includes so-called nucleotide primers or probes.
  • the preceding (5'- or upstream) and / or subsequent (3'- or downstream) coding regions are also also present.
  • the present invention furthermore relates to a gene structure comprising at least one of the previously described nucleotide sequences coding for a cyanophycin synthetase and to regulatory sequences which are operatively linked thereto and which control the expression of the coding sequences in the host cell.
  • An operational link is understood to mean the sequential arrangement of, for example, the promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements is its own
  • These regulatory nucleotide sequences can be of natural origin or can be obtained by chemical synthesis.
  • any promoter which can control gene expression in the corresponding host organism is suitable as the promoter.
  • this can also be a chemically inducible promoter by means of which the expression of the genes underlying it in the host cell can be controlled at a specific point in time.
  • a promoter that can be induced by IPTG (isopropyl- ⁇ -thiogalactopyranoside) is mentioned here as an example.
  • a gene structure is produced by fusing a suitable promoter with the nucleotide sequence according to the invention using common recombination and cloning techniques as are known in the literature. To connect the DNA fragments to one another, adapters or linkers can be attached to the fragments.
  • the present invention relates to a vector containing at least one nucleotide sequence of the type described above coding for a cyanophycin synthetase specific for the production of cyanophycin, regulative nucleotide sequences operatively linked thereto and additional nucleotide sequences for selecting transformed host cells, for replication within the host cell or for Integration into the corresponding host cell genome.
  • the vector according to the invention can contain a gene structure of the aforementioned type.
  • vectors are those that are in microorganisms, such as. B. bacteria,
  • Mushrooms and / or plants are replicated.
  • Known vectors are, for example, pBluescript (Stratagene, 11099 North Torney Pines Red., La Jolla, CA 92 037, USA) or pEKO (Eikmanns, BJ. Et al., Gene, 1991, 102: 93-98).
  • pBluescript Stratagene, 11099 North Torney Pines Red., La Jolla, CA 92 037, USA
  • pEKO Eikmanns, BJ. Et al., Gene, 1991, 102: 93-98.
  • this list is not limiting for the present invention.
  • probes or nucleotide primers can be synthesized and used to amplify and isolate, for example, genes from other single or multicellular organisms, preferably bacteria, fungi, algae or plants, using the PCR technique.
  • the present invention thus also relates to a probe for identifying and / or isolating genes coding for proteins involved in the biosynthesis of cyanophycin, preferably further thermostable cyanophycin synthetases, this probe being produced on the basis of the nucleic acid sequences of the type described above and one for detection suitable Contains marker.
  • the probe can be a partial section of the sequence according to the invention, for example from a conserved area which, for. B. has a length of 10 to 30 or preferably 12 to 15 nucleotides and can hybridize specifically with homologous nucleotide sequences under stringent conditions. Suitable markings are well known from the literature.
  • the present invention further relates to the transfer of the nucleic acid sequence according to the invention or a part thereof coding for a cyanophycin synthetase, an allele, homolog or derivative thereof or a nucleotide sequence hybridizing with these sequences into a heterologous host system.
  • This also includes the transfer of a gene construct or vector according to the invention into a heterologous host system.
  • a heterologous host system is a single-cell or multi-cell system
  • bacteria are preferred, particularly preferred the enterobacterium genus and in particular the Escherichia coli species or coryneform bacteria, in particular the genus Corynebacterium or Brevibacterium, especially Corynebacterium glutamicum.
  • the nucleotide sequence coding for a thermostable cyanophycin synthetase according to the invention is transferred into one of the host systems mentioned above by known methods. Examples of methods for DNA transfer into suitable host systems are transformation, electroporation, conjugation or agrobacterial-mediated DNA transfer or “particle bombardment”. These lists are only used to explain the present invention and are not limiting.
  • a transformed single or multicellular organism resulting from a successfully carried out nucleic acid transfer thus differs from that corresponding non-transformed organism in that it contains additional nucleic acids of the type according to the invention and can express them accordingly.
  • the present invention thus also relates to a transformed single or multicellular organism containing a cyanophycin synthase according to the invention and / or a vector containing a cyanophycin synthetase of the type described above.
  • the present invention further relates to a method for providing a cyanophycin synthetase according to the invention of the type described above, the nucleotide sequence coding for the enzyme being isolated from a single- or multicellular organism, optionally operatively linked to regulatory structures and or in one for heterologous expression suitable vector is cloned, possibly transferred to a heterologous host system, expressed there and then isolated from this host system and, if necessary, purified and / or enriched.
  • the enzymes of the cyanophycin synthetases of the type described above can then be used, for example, in an in vitro system for the synthesis of cyanophycin and / or its secondary products.
  • polyaspartic acids can be modified with the aid of a cyanophycin synthetase of the type described above in such a way that graft copolymers are formed when the polyaspartic acids are used as primers in the enzymatic polymerization reaction (Table 1, Table 2).
  • a cyanophycin synthetase of the type described above in such a way that graft copolymers are formed when the polyaspartic acids are used as primers in the enzymatic polymerization reaction (Table 1, Table 2).
  • the amount of arginine incorporated is determined after overnight incubation using the method described below (cyanophycin synthetase enzyme test, see below).
  • the polymeric primers are added to the reaction mixture at a final concentration of 0.87 mg / ml.
  • the polyaspartic acids are produced by chemical synthesis from maleic acid and ammonia or from aspartic acid.
  • Table 2 Influence of aspartic acid-containing polymers and N-acetylglucosamine on the incorporation of arginine by the purified cyanophycin synthetase from Synechococcus sp. MA 19.
  • the amount of arginine incorporated is determined after overnight incubation using the method described below (cyanophycin synthetase enzyme test).
  • the substances used as primers are used in a final concentration of 1.0 mg / ml.
  • the present invention also relates to a process for the preparation of cyanophycin and / or its secondary products, a cyanophycin synthetase and / or a vector and / or a transformed single or multicellular organism of the type described above being used.
  • the present invention includes not only the production of cyanophycin and / or its secondary products in a living host system, but also the in vitro synthesis of cyanophycin using an isolated cyanophycin synthetase of the type described above.
  • the process according to the invention for the production of cyanophycin is characterized in that the enzyme-catalyzed synthesis takes place in a temperature range from 20 ° C. to 60 ° C., preferably in a range from 35 ° C. to 55 ° C.
  • the influence of temperature on the activity and stability of the enzymes Synechocystis sp. PCC 6308 and from Synechococcus sp. MA 19 is shown in FIGS. 2 to 5. As can be seen in FIG. 5, the stability of the enzyme from Synechococcus sp. MA 19 can also be increased.
  • the process according to the invention is advantageously characterized in that the process is less susceptible to faults due to the wide temperature range, in particular above 28 ° C., allows greater variability in the process control and thus delivers an improved product yield.
  • the production of cyanophycin and / or its secondary products according to the invention is thus substantially more reproducible and more economical than the previously known processes.
  • the cyanophycin synthetase according to the invention catalyzes an ATP-dependent chain extension reaction (elongation). This requires both monomers, ATP, Mg 2+ , K + , a sulfhydryl reagent and small amounts of cyanophycin as a primer.
  • the dependence of the cyanophycin synthetases according to the invention on their substrates, cosubstrates, arginine-analogous compounds and other substances of the different enzyme preparations are shown in Table 3, Table 4 and Table 5.
  • FIG. 7 shows in particular the influence of arginine and aspartic acid-like compounds on the by the purified cyanophycin synthetase from Synechocystis sp.
  • PCC 6308 catalyzed incorporation of arginine and aspartic acid into
  • Cyanophycin shown This clearly shows that on the one hand canavanine and lysine instead of arginine and on the other hand aspartic acid- ⁇ -methyl ester and asparagine instead of aspartic acid can be incorporated into the polymer.
  • Table 3 Dependence of the cyanophycin synthetase activity in the soluble cell fraction on substrates, cosubstrates and the arginine analogue canavanine d .
  • the activities were determined as the rate of incorporation of the amino acid monomers in cyanophycin within 15 min after the start of the reaction in the soluble cell fraction of Synechocystis PCC6308 and of IPTG-induced E. coli TOP 10 ⁇ pSK :: cphA co ).
  • the activities which corresponded to 100% in each case, were 9.1 nmol arginine min "1 (g protein) _1 for Synechocystis PCC6308 and 26.6 nmol arginine min " 1 (g protein) _1 for E. coli.
  • the soluble cell fraction was incubated at 95 ° C for 2 min. f.
  • the activity was determined using 0.1 mM L [U- 1 C] aspartic acid as substrate.
  • the activity was determined using 0.01 mM L [U- 1 C] glutamic acid as substrate.
  • the final concentrations of the radiolabeled compounds are as follows: L- [U- 14 C] arginine, 0.5 mM; L- [U- 14 C] aspartic acid; 5 mM; L- [U- 3 H] - canavanine, 1 mM; L- [4,5- 3 H] lysine, IMM; L- [U- 14 C] -glutamic acid, 0.5 mM (if used instead of L-arginine), 5 mM (used instead of L-aspartic acid).
  • the present invention further relates to an improved cyanophycin synthetase enzyme test combined with an improved separation of the enzymatically formed cyanophycin from the reaction mixture.
  • the cyanophycin formed is first washed after its precipitation from the reaction mixture and the precipitate (pellet) is then resuspended in an acidic aqueous medium.
  • the cyanophycin goes into solution and can be removed from the supernatant and used directly for determining the concentration in a scintillation counter.
  • This procedure is distinguished from the known methods in that a large number of washing steps are dispensed with, no transfer of insoluble cyanophycin is required, the amount of radioactive waste is drastically reduced, and the cyanophycin by solubilization under acidic conditions of others Impurities in the precipitate are cleaned and a homogeneous cyanophycin solution is available, from which a much more precise and reproducible determination can be made by means of scintillation counting than from a dispersion, as was previously customary.
  • a Comparative comparison of the isolation of cyanophycin from the reaction mixture is shown in flow diagrams in FIG. 6.
  • the present invention further relates to the use of a vector containing a cyanophycin synthetase according to the invention of the aforementioned type for producing a transformed single or multicellular organism as described above.
  • a transformed single- or multi-cell organism for the production of a cyanophycin synthetase according to the invention and / or for the production of cyanophycin and / or its secondary products is also included in the present invention.
  • a cyanophycin synthetase isolated according to the invention can also be used for the in vitro production of cyanophycin and / or its secondary products.
  • cyanophycin for the production of food supplements and / or agents in the field of agriculture and / or crop protection is covered in the present invention. Further areas of application of cyanophycin and / or its secondary products can be seen in the paper, textile, pigment, lacquer, ceramic, building material or detergent industry and in the areas of water and wastewater treatment.
  • Areas of application of the secondary products of cyanophycin are agents in the field of agriculture and / or crop protection, in the paper, textile, pigment, varnish, ceramic, building material or detergent industry as well as in the areas of water and waste water treatment.
  • PCC6308 cphB gene and primer P6 (5-TGGCGGCGGTGTATGAAAAC-3 '), the sequence of which part of the Synechocystis sp. PCC6308 represents cphA gene.
  • primer P6 5-TGGCGGCGGTGTATGAAAAC-3 '
  • PCC6308 represents cphA gene.
  • a genomic region comprising the 3 'end of cphB, the intergenic region between cphB and cphA and the complete cphA gene was created using primer P3 (see above) and primer P7 (5'-
  • TTCAGAATTCACTACTCACTATTC-3 ' the sequence of which is complementary to the 3' end of cphA, amplified.
  • the primers were obtained from MWG-Biotech AG (Ebersberg). Vent DNA polymerase (New England Biolabs, Schwalbach, Taunus) was used for the PCR according to the information in the PCR application manual (Biochemica 1995, Boehringer Mannheim). After electrophoretic separation, the PCR products were isolated from agarose gels, ligated with EcoRV-linearized vector pBluescript SK- (Stratagene Cloning Systems, San Diego, Calif, USA) and according to E. coli TOP 10 (Invitrogen, San Diego, Calif, USA) transferred.
  • the method is a modification of the method described by Ziegler et al. in Eur. J. Biochem. 254, 154 (1998).
  • the reaction mixture contained in a total volume of 0.125 ml 50 mM Tris, 20 mM MgCl 2 , 20 mM KC1, 4 mM ATP,
  • the insoluble cyanophycin under these conditions was separated by centrifugation (15 min, 14000 x g) and washed twice with 1 ml each of 50 mM Tris-HCl, 2 mM EDTA (pH 8.2). The pellet was resuspended in 1.0 ml of 1.5 M HC1. The suspension was centrifuged again.
  • SEQUENCE PROTOCOL 1 of the amino acid sequence of the thermostable cyanophycin synthetase according to the invention derived from the corresponding cyanophycin synthetase gene of the Synechocystis PCC 6308.
  • Fig. 1 Time course of the incorporation of the amino acid monomers in cyanophycin.
  • the built-in content of L-arginine was determined at certain times (min) in a reaction mixture totaling 125 ⁇ l, which contains the following components: 1.25 nmol radioactive L [U- 14 C] arginine, 12.5 nmol unlabeled L-aspartate, 500 nmol ATP, 0.38 mg soluble cell protein of the in
  • Fig. 3b Time course of the incorporation of arginine in cyanophycin at 28 ° C (-D-) and at 50 ° C (- • -). The amount of arginine incorporated was determined at the times indicated in 125 ⁇ l reaction mixture.
  • Fig. 4 Temperature profile (- • -) and heat stability (- ⁇ -) of the purified cyanophycin synthetase from Synechococcus sp. MA 19. For the temperature profile, the enzyme activities were determined at a time interval of 15 min after the start of the reaction at the specified temperature. The heat stability of the enzyme was determined as the activity (measured at 28 ° C.) after every 30 min incubation of the enzyme solution at the temperatures indicated.
  • Fig. 6 Flow diagrams of the isolation of cyanophycin from the reaction mixture in comparison (A) according to Simon, R.D. (Biochim Biophys Acta, 1976, 422: 407-418), (B) according to Ziegler, K. et al. (Eur. J. Biochem., 1998, 254: 154-159) and (C) by the method according to the invention.
  • the insoluble cyanophycing granules are shown as spheres; Transfer steps are shown by curved arrows.
  • Fig. 7a incorporation of aspartic acid (Hatched columns) and arginine (shaded columns) after adding 5 mM of the specified compound to the otherwise complete reaction mixture.
  • Fig. 7b Influence of the specified compounds when these in a concentration of 5 mM instead of aspartic acid (hatched columns) or in a concentration of 0.5 mM instead of arginine in the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft thermostabile Cyanophycinsynthetasen sowie ein Verfahren zur verbesserten Herstellung von Cyanophycin und/oder dessen Folgeprodukten.

Description

Verfahren zur verbesserten Herstellung von Cyanophycin und dessen Folgeprodukte
Die vorliegende Erfindung bezieht sich auf thermostabile Cyanophycin-Synthetasen, transformierte Organismen enthaltend ein solches Enzym sowie ein Verfahren zur verbesserten Herstellung von Cyanophycin und/oder dessen Folgeprodukten, beispielsweise Polyasparaginsäure oder Arginin.
Multi-L-Arginyl-Poly-L-Aspartat (Cyanophycin) ist ein verzweigtes Polypeptid, welches Asparaginsäure und Arginin in einem annähernd äquimolaren Verhältnis enthält. Die chemische Struktur entspricht einem Poly-α-Aspartat-Grundgerüst mit Arginin-Seitenresten, welche über Peptidbindungen an nahezu alle ß-Carboxyl- gruppen des Grundgerüsts angeknüpft sind.
In der DE-A 198 25 509 ist die Identifizierung, Klonierung und heterologe Expression des Gens für die Cyanophycin-Synthetase aus Synechocystis sp. PCC 6803 beschrieben. Die Bestimmung der Enzymaktivität erfolgt hier mittels eines radioaktiven Tests bei dem L-fU-1 C]-Arginin in als „Primer" (Vorstufe) vorgelegtes Cyanophycin aus Synechocystis sp. PCC 6308 eingebaut wird. Das Temperaturoptimum des Enzyms liegt hier bei 28°C.
Aus der DE-A 197 09 024 ist die Extraktion und Reinigung von Cyanophycin aus Synechocystis sp. PCC 6308 bekannt, wobei die Synthese bei 20°C durchgeführt wird.
Die DE-A 198 13 692 offenbart lediglich die Isolierung des Cyanophycinsynthe- tasegens aus Synechocystis sp. PCC 6803 oder Anabaena variahilis sp. ATCC 29413. Verfahrenstechnische Merkmale zur Herstellung von Cyanophycin sind hier jedoch nicht beschrieben. Aus FEMS Microbiology Letters 181 (1999) 229-236 ist die Herstellung von Cyanophycin mit Synechococcus sp. MA 19 bekannt. Das Syntheseenzym wird jedoch dazu nicht beschrieben.
Nachteilig bei der Herstellung von Cyanophycin gemäß den bisher bekannten Verfahren ist, dass für eine optimale Produktausbeute ein relativ enger Temperaturbereich, in der Regel unterhalb von 35°C, nicht überschritten werden darf. Dies stellt eine erhebliche Einschränkung der Freiheitsgrade innerhalb der Prozessführung zur Herstellung von Cyanophycin und/oder dessen Folgeprodukten dar.
Daher ist eine Herstellung von Cyanophycin und/oder dessen Folgeprodukten auch bei wesentlich höheren Temperaturen als bislang beschrieben, verbunden mit einer höheren Flexibilität bei der Prozesssteuerung und erheblich verbesserten Produktausbeuten, wünschenswert.
Diese Aufgabe wird durch die vorliegende Erfindung gelöst.
Gegenstand der vorliegenden Erfindung sind Cyanophycin-Synthetasen mit einer erhöhten Stabilität und Aktivität im Temperaturbereich von > 35°C, dadurch gekenn- zeichnet, dass sie
a) eine Aminosäuresequenz gemäß SEQUENZPROTOKOLL 1 kodiert durch eine isolierte Nukleotidsequenz gemäß SEQUENZPROTOKOLL 2, ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder eine mit dieser hybridisierende Nukleotidsequenz aufweisen und aus Synechocystis sp. PCC
6308 stammen, oder
b) dass sie eine Aminosäuresequenz gemäß SEQUENZPROTOKOLL 3 kodiert durch eine isolierte Nukleotidsequenz gemäß SEQUENZPROTOKOLL 4 ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder eine mit dieser hybridisierende Nukleotidsequenz aufweisen und aus Synechococcus sp. MA 19 stammen.
In einer bevorzugten Variante der vorliegenden Erfindung weisen die erfindungs- gemäßen Cyanophycin-Synthetasen ein Temperaturoptimum im Bereich von 35°C bis 55°C, bevorzugt im Bereich von 35°C bis 50°C auf.
Die erfindungsgemäßen Cyanophycin-Synthetasen stellen thermostabile Enzyme dar.
Gegenstand der vorliegenden Erfindung sind auch Isoenzyme der erfindungsgemäßen
Cyanophycin-Synthetasen. Hierunter sind Enzyme mit gleicher oder vergleichbarer Substrat- und Wirkungsspezifität zu verstehen, die jedoch eine unterschiedliche Primärstruktur aufweisen. Darüber hinaus umfasst die vorliegende Erfindung auch modifizierte Formen der Cyanophycin-Synthetasen. Hierunter sind erfindungsgemäß Enzyme zu verstehen, bei denen Änderungen in der Sequenz, beispielsweise am N- und/oder C-Teminus des Polypeptids oder im Bereich konservierter Aminosäuren vorliegen, ohne jedoch die Funktion der Enzyme zu beeinträchtigen. Diese Veränderungen können durch den Austausch einer oder mehrerer Aminosäuren nach bekannten Methoden vorgenommen werden.
Eine besondere Ausführungsvariante der vorliegenden Erfindung umfasst Varianten der erfindungsgemäßen Cyanophycin-Synthetasen, deren Substratspezifität beispielsweise durch Aminosäureaustausch, verglichen mit dem jeweiligen Ausgangsprotein, abgeschwächt oder verstärkt ist. Gleiches gilt für die Stabilität der erfindungsge- mäßen Enzyme in den Zellen, die beispielsweise gegenüber dem Abbau durch Pro- teasen verstärkt oder vermindert anfällig sind.
Ferner sind Polypeptide mit der Funktion einer Cyanopyhcin-Synthetase Gegenstand der vorliegenden Erfindung, die in ihrer Aminosäuresequenz derart verändert sind, dass sie gegenüber regulatorisch wirkenden Verbindungen, beispielsweise die sie in ihrer Aktivität regulierenden Stoffwechsel-Endprodukte desensitiv sind (feedback- desensitiv).
Unter einer isolierten Nukleotidsequenz oder einem isolierten Nukleinsäurefragment ist erfindungsgemäß ein Polymer aus RNA oder DNA zu verstehen, das einzel- oder doppelsträngig sein kann und optional natürliche, chemisch synthetisierte, modifizierte oder artifizielle Nukleotide enthalten kann. Der Begriff DNA-Polymer schließt hierbei auch genomische DNA, cDNA oder Mischungen davon ein.
Unter Allelen sind erfindungsgemäß mnktionell äquivalente, d. h. im wesentlichen gleichwirkende Nukleotidsequenzen zu verstehen. Funktionen äquivalente Sequenzen sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz, beispielsweise durch die Degeneriertheit des genetischen Codes noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z. B. durch chemische Synthese erhaltene und gegebenenfalls an den Kodon-Gebrauch des Wirtsorganismus angepasste Nukleotid-Sequenzen. Darüber hinaus umfassen funktioneil äquivalente Sequenzen solche, die eine veränderte Nukleotidsequenz aufweisen, welche dem Enzym beispielsweise eine Desensitivität oder Resistenz gegen- über Inhibitoren verleiht.
Unter einem funktioneilen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste.
Inbegriffen sind hier auch sogenannte Sinnmutationen (sense mutations), die auf Proteinebene beispielsweise zum Austausch konservierter Aminosäuren führen können, welche aber zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen und somit funktionsneutral sind. Dies beinhaltet auch Veränderungen der Nukleotidsequenz, die auf Proteinebene den N- oder C-Terminus eines Proteins betreffen, ohne jedoch die Funktion des Proteins wesentlich zu beeinträchtigen. Diese Veränderungen können sogar stabilisierenden Einfluss auf die Proteinstruktur ausüben.
Ferner werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende
Erfindung mit umfasst, welche man durch Modifikation der Nukleotidsequenz, resultierend in entsprechenden Derivaten, erhält. Ziel einer solchen Modifikation kann z. B. die weitere Eingrenzung der darin enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Erkennungsstellen für Restriktionsenzyme sein. Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt oder verstärkt ist.
Außerdem sind artifizielle DNA-Sequenzen Gegenstand der vorliegenden Erfindung, solange sie, wie oben beschrieben, die gewünschten Eigenschaften vermitteln und in das Gen der erfindungsgemäßen Cyanophycin-Synthetase eingebaut oder angehängt werden können. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung von mittels computergestützten Programmen (molecular modelling) erstellten Proteinen oder durch in-vitro-Selektion ermittelt werden. Besonders geeignet sind kodierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für den Wirtsorganismus spezifischen Kodon-
Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit molekulargenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bereits bekannter Gene des zu transformierenden Organismus leicht ermitteln.
Unter homologen Sequenzen sind erfindungsgemäß solche zu verstehen, die zu den erfindungsgemäßen Nukleotidsequenzen komplementär sind und/oder mit diesen hybridisieren. Der Begriff hybridisierende Sequenzen schließt erfindungsgemäß substanziell ähnliche Nukleotidsequenzen aus der Gruppe von DNA oder RNA ein, die unter bekannten stringenten Bedingungen eine spezifische Wechselwirkung (Bindung) mit den zuvor genannten Nukleotidsequenzen eingehen. Hierzu zählen auch kurze Nukleotidsequenzen mit einer Länge von beispielsweise 10 bis 30, bevor- zugt 12 bis 15 Nukleotiden. Dies umfasst erfindungsgemäß u. a. auch sogenannte Nukleotid-Primer oder Sonden.
Erfindungsgemäß sind auch die den kodierenden Bereichen (Strukturgenen) voraus- gehenden (5'- oder upstream) und/oder nachfolgenden (3'- oder downstream)
Sequenzbereiche eingeschlossen. Insbesondere sind hierin Sequenzbereiche mit regulatorischer Funktion inbegriffen. Sie können die Transkription, die RNA- Stabilität oder das RNA processing sowie die Translation beeinflussen. Beispiele für regulatorische Sequenzen sind u. a. Promotoren, Enhancer, Operatoren, Terminatoren oder Translationsverstärker.
Gegenstand der vorliegenden Erfindung ist ferner eine Genstruktur enthaltend wenigstens eine der zuvor beschriebenen Nukleotidsequenzen kodierend für eine Cyanophycinsynthetase sowie mit diesen operativ verknüpfte regulatorische Sequenzen, welche die Expression der kodierenden Sequenzen in der Wirtszelle steuern.
Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung beispielsweise von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulatorischer Elemente derart, dass jedes der regulatorischen Elemente seine
Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Diese regulatorischen Nukleotidsequenzen können natürlichen Ursprungs sein oder durch chemische Synthese erhalten werden. Als Promotor ist grundsätzlich jeder Promotor geeignet, der die Genexpression in dem entsprechenden Wirtsorganismus steuern kann. Hierbei kann es sich erfindungsgemäß auch um einen chemisch induzierbaren Promotor handeln, durch den die Expression der ihm unterliegenden Gene in der Wirtszelle zu einem bestimmten Zeitpunkt gesteuert werden kann. Beispielhaft sei hier ein durch IPTG (Isopropyl-ß-thiogalactopyranosid) induzierbarer Promotor genannt. Die Herstellung einer Genstruktur erfolgt durch Fusion eines geeigneten Promotors mit der erfindungsgemäßen Nukleotidsequenz nach gängigen Rekombinations- und Klonierungstechniken, wie sie literatur bekannt sind. Für die Verbindung der DNA- Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Darüber hinaus betrifft die vorliegende Erfindung einen Vektor enthaltend wenigstens eine Nukleotidsequenz der zuvor beschriebenen Art kodierend für eine zur Herstellung von Cyanophycin spezifische Cyanophycin-Synthetase, mit dieser operativ verknüpfte regulative Nukleotidsequenzen sowie zusätzliche Nukleotidsequenzen zur Selektion transformierter Wirtszellen, für die Replikation innerhalb der Wirtszelle oder zur Integration in das entsprechende Wirtszell-Genom. Ferner kann der erfindungsgemäße Vektor eine Genstruktur der vorgenannten Art enthalten.
Als Vektoren eignen sich solche, die in Mikroorganismen, wie z. B. Bakterien,
Pilzen und/oder Pflanzen repliziert werden. Bekannte Vektoren sind beispielsweise pBluescript (Stratagene, 11099 North Torney Pines Red., La Jolla, CA 92 037, USA) oder pEKO (Eikmanns, BJ. et al., Gene, 1991, 102: 93-98). Diese Aufzählung ist für die vorliegende Erfindung jedoch nicht limitierend.
Unter Ausnutzung der erfindungsgemäßen Nukleinsäuresequenzen können entsprechende Sonden oder auch Nukleotid-Primer synthetisiert und dazu verwendet werden, beispielsweise mit Hilfe der PCR-Technik analoge Gene aus anderen ein- oder mehrzelligen Organismen, bevorzugt Bakterien, Pilzen, Algen oder Pflanzen zu amplifizieren und isolieren.
Gegenstand der vorliegenden Erfindung ist somit auch eine Sonde zur Identifizierung und/oder Isolierung von Genen kodierend für an der Biosynthese von Cyanophycin beteiligten Proteinen, bevorzugt weiteren thermostabilen Cyanophycinsynthetasen, wobei diese Sonde ausgehend von den erfindungsgemäßen Nukleinsäuresequenzen der zuvor beschriebenen Art hergestellt wird und eine zur Detektion geeignete Markierung enthält. Bei der Sonde kann es sich um einen Teilausschnitt der erfindungsgemäßen Sequenz, beispielsweise aus einem konservierten Bereich handeln, der z. B. eine Länge von 10 bis 30 oder bevorzugt 12 bis 15 Nukleotiden aufweist und unter stringenten Bedingungen spezifisch mit homologen Nukleotid- Sequenzen hybridisieren kann. Geeignete Markierungen sind aus der Literatur zahlreich bekannt.
Die vorliegende Erfindung betrifft ferner die Übertragung der erfindungsgemäßen Nukleinsäuresequenz oder eines Teils davon kodierend für eine Cyanophycin- Synthetase, ein Allel, Homolog oder Derivat davon oder eine mit diesen Sequenzen hybridisierende Nukleotidsequenz in ein heterologes Wirtssystem. Dies schließt auch die Übertragung eines erfindungsgemäßen Genkonstrukts oder Vektors in ein heterologes Wirtssystem ein.
Unter einem heterologen Wirtssystem ist erfindungsgemäß ein ein- oder mehrzelliger
Organismus zu verstehen. Beispiele hierfür sind Mikroorganismen, Pilze, niedere oder höhere Pflanzen, Gewebe oder Zellen davon. Erfindungsgemäß bevorzugt sind Bakterien, besonders bevorzugt der Gattung der Enterobakterien und insbesondere der Art Escherichia coli oder coryneforme Bakterien, insbesondere der Gattung Corynebacterium oder Brevibacterium, speziell Corynebacterium glutamicum.
Die Übertragung der erfindungsgemäßen Nukleotidsequenz kodierend für eine erfindungsgemäß thermostabile Cyanophycin-Synthetase in eine der zuvor genannten Wirtssysteme erfolgt nach bekannten Methoden. Als Beispiele für Verfahren zur DNA-Übertragung in geeignete Wirtssysteme sind die Transformation, Elektro- poration, Konjugation oder eine Agrobakterien-vermittelte DNA-Übertragung oder „particle bombardment" zu nennen. Diese Aufzählungen dienen nur der Erläuterung der vorliegenden Erfindung und sind nicht limitierend.
Ein aus einer erfolgreich durchgeführten Nukleinsäureübertragung resultierender transformierter ein- oder mehrzelliger Organismus unterscheidet sich somit von dem entsprechenden nicht transformierten Organismus dadurch, dass er zusätzliche Nukleinsäuren der erfindungsgemäßen Art enthält und entsprechend zur Ausprägung bringen kann.
Gegenstand der vorliegenden Erfindung ist somit auch ein transformierter ein- oder mehrzelliger Organismus enthaltend eine erfindungsgemäße Cyanophycin-Synthe- tase und/oder einen Vektor enthaltend eine Cyanophycinsynfhetase der zuvor beschriebenen Art.
Femer betrifft die vorliegende Erfindung ein Verfahren zur Bereitstellung einer erfindungsgemäßen Cyanophycin-Synthetase der zuvor beschriebenen Art, wobei die für das Enzym kodierende Nukleotidsequenz aus einem ein- oder mehrzelligen Organismus isoliert wird, ggf. mit regulatorischen Strukturen operativ verknüpft und oder in einen zur heterologen Expression geeigneten Vektor Moniert wird, ggf. in ein heterologes Wirtssystem übertragen, dort exprimiert und anschließend aus diesem Wirtssystem isoliert und ggf. aufgereinigt und/oder angereichert wird.
Denkbar ist auch die direkte Isolierung einer für die Synthese von Cyanophycin ausreichenden Menge an Cyanophycin-Synthetasen der zuvor beschriebenen Art aus einem Organismus, ohne die vorhergehende Anreicherung in einem heterologen
System.
Im weiteren können dann die erfindungsgemäßen Enzyme der Cyanophycin-Synthetasen der zuvor beschriebenen Art beispielsweise in einem in-vitro System zur Synthese von Cyanophycin und/oder dessen Folgeprodukte eingesetzt werden.
Insbesondere können Polyasparaginsäuren mit Hilfe einer Cyanophycin-Synthetase der zuvor beschriebenen Art in einer Weise modifiziert werden, dass Propfcopoly- mere entstehen, wenn man die Polyasparaginsäuren als Primer in die enzymatische Polymerisationsreaktion einsetzt (Tabelle 1, Tabelle 2). In Vitro Synthese von Pfropfcopolymeren des Cyanophycins
Tabelle 1: Einfluss von Asparaginsäure haltigen Polymeren auf den Einbau von Arginin durch die Cyanophycin-Synthetase aus Synerhocystis sp. PCC 6308
Als Primer verwendete Verbindung Einbau von Arginin [% des Maximalwertes]
Cyanophycin 100
Ohne Primer 0,2
Poly-α,ß-D,L- Asparaginsäure 97
Mw: -3500
Poly-α,ß-D,L- Asparaginsäure 49
Mw: -7500
Poly-α,ß-D,L- Asparaginsäure 25
Mw: -19000
Die Menge eingebauten Arginins wird nach Inkubation über Nacht nach der weiter unten beschriebenen Methode (Cyanophycin-Synthetase-Enzymtest, siehe unten) bestimmt. Die polymeren Primer werden in einer Endkonzentration von 0,87 mg/ ml der Reaktionsmischung zugesetzt.
Die Polyasparaginsäuren werden durch chemische Synthese aus Maleinsäure und Ammoniak bzw. aus Asparaginsäure hergestellt. Tabelle 2: Emfluss von Asparaginsäure-haltigen Polymeren und N-Acetylglu- cosamin auf den Einbau von Arginin durch die gereinigte Cyanophycin-Synthetase aus Synechococcus sp. MA 19.
c. Die Menge eingebauten Arginins wird nach Inkubation über Nacht nach der weiter unten beschriebenen Methode (Cyanophycin-Synthetase-Enzymtest) bestimmt. Die als Primer verwendeten Substanzen werden in einer Endkonzentration von 1.0 mg/ml eingesetzt.
Gegenstand der vorliegenden Erfindung ist außerdem ein Verfahren zur Herstellung von Cyanophycin und/oder dessen Folgeprodukte, wobei eine Cyanophycin-Synthetase und/oder ein Vektor und/oder ein transformierter ein- oder mehrzelliger Organismus der zuvor beschriebenen Art eingesetzt wird. Die vorliegende Erfindung umfasst jedoch nicht nur die Herstellung von Cyanophycin und/oder dessen Folgeprodukte in einem lebenden Wirtssystem, sondern auch die in-vitro Synthese von Cyanophycin mit Hilfe einer isolierten Cyanophycin-Synthetase der zuvor beschriebenen Art.
Das erfindungsgemäße Verfahren zur Herstellung von Cyanophycin zeichnet sich dabei dadurch aus, dass die Enzym-katalysierte Synthese in einem Temperaturbereich von 20°C bis 60°C, bevorzugt in einem Bereich von 35°C bis 55°C, erfolgt. Der Emfluss der Temperatur auf die Aktivität und Stabilität der Enzyme aus Synechocystis sp. PCC 6308 und aus Synechococcus sp. MA 19 ist in Fig. 2 bis 5 dargestellt. Wie in Fig. 5 ersichtlich, kann durch den Zusatz von Ectoin die Stabilität des Enzyms aus Synechococcus sp. MA 19 zusätzlich erhöht werden. Umg"1 bedeutet die Einheit der spezifischen Aktivität in Einheiten (Units) pro mg Protein; im Falle der Cyanophycin-Synthetase ist 1 U = 1 nmol Arginin eingebaut in Cyanophycin pro
Minute d.h. Umg"1 = nmol min"1 • mg"1.
Das erfindungsgemäße Verfahren zeichnet sich in vorteilhafter Weise dadurch aus, dass der Prozess aufgrund des weiten Temperaturbereichs, insbesondere oberhalb von 28°C weniger störanfällig ist, größere Variabilität bei der Prozessführung erlaubt und so eine verbesserte Produktausbeute liefert. Somit ist die erfindungsgemäße Herstellung von Cyanophycin und/oder dessen Folgeprodukte wesentlich reproduzierbarer und wirtschaftlicher als die bisher bekannten Verfahren.
Auf molekularer Ebene katalysiert die erfindungsgemäße Cyanophycin-Synthetase eine ATP-abhängige Kettenverlängerungsreaktion (Elongation). Hierzu sind beide Monomere, ATP, Mg2+, K+, ein Sulfhydrylreagenz sowie geringe Mengen an Cyanophycin als Primer erforderlich. Die Abhängigkeit der erfindungsgemäßen Cyanophycin-Synthetasen von ihren Substraten, Cosubstraten, Arginin-analogon Verbindungen und anderen Substanzen der unterschiedlichen Enzympräparationen sind in Tabelle 3, Tabelle 4 und Tabelle 5 dargestellt.
In Fig. 7 ist im besonderen der Einfluss von Arginin- und Asparaginsäure-ähnlichen Verbindungen auf den durch die gereinigte Cyanophycin-Synthetase aus Synechocystis sp. PCC 6308 katalysierten Einbau von Arginin und Asparaginsäure in
Cyanophycin dargestellt. Hieraus ist klar ersichtlich, dass einerseits Canavanin und Lysin anstelle von Arginin und andererseits Asparaginsäure-ß-Methylester und Asparagin anstelle von Asparaginsäure in das Polymer eingebaut werden können. Tabelle 3: Abhängigkeit der Cyanophycin-Synthetase- Aktivität in der löslichen Zellfraktion von Substraten, Cosubstraten und dem Argininanalogon Canavanin d.
Bedingung Enzymaktivität von Synechocystis sp. PCC6308 rekombinantem E. coli [% des Maximalwertes]
Komplett 00 100 Ohne Enzym <0.2 <0.2
Hitze-inaktivierter Extrakt3 <0.2 <0.2 Ohne ATP <0.2 <0.2 Ohne Cyanophycin 2.5 0.9 Ohne L- Asparaginsäure 26.0 15.5 Ohne L-Argininf 77.0 55.2 L-Glutaminsäure statt L-ArgininS 60.0 <0.2 L-Glutaminsäure statt L-Asparaginsäureh 36.0 1.6 L-Glutaminsäure als einziges Aminosäure- Substrat 27.0 0.9
Plus 1 μM Canavanin n. b. 40.0 Plus 10 μM Canavanin n. b. 28.4 Plus 100 μM Canavanin n. b. 12.1
Die Aktivitäten wurden bestimmt als Einbaurate der Aminosäure-Monomere in Cyanophycin innerhalb von 15 min nach Start der Reaktion in der löslichenZellfraktion von Synechocystis PCC6308 und von IPTG-induzierten E. coli TOP 10 {pSK::cphAco). Die Aktivitäten, die jeweils 100% entsprachen, betrugen 9.1 nmol Arginin min"1 (g Protein) _1 für Synechocystis PCC6308 bzw. 26.6 nmol Arginin min"1 (g Protein) _1 für E. coli.
Die lösliche Zellfraktion wurde 2 min bei 95°C inkubiert. f. Die Aktivität wurde bestimmt mit 0.1 mM L[U-1 C] Asparaginsäure als Substrat.
g. Die Aktivität wurde bestimmt mit 0.01 mM L[U-1 C] Glutaminsäure als Substrat.
h. Die Aktivität wurde bestimmt mit 0.1 mM L[U-14C] Glutaminsäure als Substrat.
n. b., nicht bestimmt.
Tabelle 4: Einbau unterschiedlicher radiomarkierter Aminosäuren in Cyanophycin durch gereinigte Cyanophycin-Synthetase aus Synechocystis sp. PCC 6308.
i. Das komplette Reaktionsgemisch ist im weiter unten beschriebenen
Cyanophycin-Synthetase-Enzymtest aufgeführt. k. Die Endkonzentrationen der radiomarkierten Verbindungen sind wie folgt: L- [U-14C]-Arginin, 0.5 mM; L-[U-14C]-Asparaginsäure; 5 mM; L-[U-3H]- Canavanin, 1 mM; L-[4,5-3H]-Lysin, ImM; L-[U-14C]-Glutaminsäure, 0.5 mM (wenn anstelle von L- Arginin eingesetzt), 5 mM (anstelle von L- Asparaginsäure eingesetzt).
Tabelle 5: Einbau unterschiedlicher radiomarkierter Aminosäuren in Cyanophycin durch gereinigte Cyanophycin-Synthetase aus Synechococcus sp. MA 19.
1. Das komplette Reaktionsgemisch ist im weiter unten beschriebenen
Cyanophycin-Synthetase-Enzymtest aufgeführt. m. Die Endkonzentrationen der radiomarkierten Verbindungen waren wie folgt: L-[U-14C]-Asparaginsäure, 10 μM; alle anderen 5 μM.
n. n. d., nicht detektierbar.
Ohne die Zugabe von L-Aspartat zum Reaktionsansatz nimmt die anfängliche Rate der Cyanophycinsynthese in Extrakten von Synechocystis sp. PCC6308 drastisch ab. Ein Fehlen von L-Arginin führt lediglich zu einer moderaten Abnahme der Cyano- phycinsynthese. Der zeitliche Verlauf des Einbaus dieser Aminosäure-Monomeren in das Cyanophycin ist in Fig. 1 dargestellt.
Hieraus ergibt sich, dass L-Aspartat nur am Polymerende angefügt wird. Für die weitere Elongation ist die Anwesenheit beider Monomere erforderlich.
Gegenstand der vorliegenden Erfindung ist ferner ein verbesserter Cyanophycin- synthetase-Enzymtest verbunden mit einer verbesserten Abtrennung des enzymatisch gebildeten Cyanophycins aus dem Reaktionsansatz. Hierbei wird das gebildete Cyanophycin nach seiner Präzipitation aus dem Reaktionsansatz zunächst gewaschen und der Niederschlag (pellet) danach in einem sauren wässrigen Medium resuspendiert. Dabei geht das Cyanophycin in Lösung und kann aus dem Überstand entnommen und direkt zur Konzentrationsbestimmung in einem Scintillationszähler eingesetzt werden. Diese Vorgehensweise zeichnet sich gegenüber den bekannten Methoden in vorteilhafter Weise dadurch aus, dass eine Vielzahl von Waschschritten entfällt, kein Transfer von unlöslichem Cyanophycin erforderlich ist, die Menge an radioaktivem Abfall drastisch reduziert wird, das Cyanophycin durch die Solubi- lisierung unter sauren Bedingungen von weiteren Verunreinigungen im Präzipitat gereinigt wird und eine homogene Cyanophycinlösung zur Verfügung steht, aus der eine wesentlich exaktere und reproduzierbarere Bestimmung mittels Scintillations- Zählung erfolgen kann, als aus einer Dispersion, wie es bisher üblich war. Eine vergleichende Gegenüberstellung der Isolierung von Cyanophycin aus dem Reaktionsansatz ist in Flussdiagrammen in Fig. 6 dargestellt.
Die vorliegende Erfindung betrifft ferner die Verwendung eine Vektors enthaltend eine erfindungsgemäße Cyanophycin-Synthetase der zuvor genannten Art zur Herstellung eines transformierten ein- oder mehrzelligen Organismus wie zuvor beschrieben. Ebenso ist die Verwendung eines solchen transformierten ein- oder mehrzelligen Organismus zur Herstellung einer erfindungsgemäßen Cyanophycin- Synthetase und/oder zur Herstellung von Cyanophycin und/oder dessen Folge- produkte in der vorliegenden Erfindung umfasst. Darüber hinaus kann auch eine erfindungsgemäß isolierte Cyanophycin-Synthetase zur in-vitro-Herstellung von Cyanophycin und/oder dessen Folgeprodukten Verwendung finden. Außerdem ist die Verwendung von Cyanophycin zur Herstellung von Nahrungsergänzungsmitteln und/oder Mitteln im Bereich der Agrarwirtschaft und/oder des Pflanzenschutzes in der vorliegenden Erfindung erfasst. Weitere Anwendungsbereiche des Cyanophycins und/oder dessen Folgeprodukte sind in der Papier-, Textil-, Pigment-, Lack-, Keramik-, Baustoff- oder Waschmittelindustrie zu sehen sowie in den Bereichen Wasser- und Abwasserbehandlung.
Anwendungsbereiche der Folgeprodukte des Cyanophycins sind Mittel im Bereich der Agrarwirtschaft und/oder des Pflanzenschutzes, in der Papier-, Textil-, Pigment-, Lack-, Keramik-, Baustoff- oder Waschmittelindustrie sowie in den Bereichen Wasser- und Abwasserbehandlung.
Die vorliegende Erfindung wird durch die nachfolgenden Beispiele näher charakterisiert, die jedoch nicht limitierend für die Erfindung sind: Allgemeine Methoden:
Die Kultivierung von Mikroorganismen, wie z.B. Escherichia coli oder Corynebacterium glutamicum sowie die Herstellung von Zellextrakten erfolgte nach Standardmethoden beschrieben in Sambrook, J. et al. (1998, Molecular Cloning: A laboratory Manual; 2nd Edition, Cold Spring Habor Laboratory Press, NY.) oder gemäß den Herstellerangaben. Als Bakterienstämme werden u.a. E. coli TOP 10 (Invitrogen, San Diege, USA) und C. glutamicum-Wildtyp DSM 20 300 verwendet. Die Kultivierung von Blaualgen, wie z. B. Synechocystis PCC 6308 erfolgte nach Beschreibungen in Rippka R. et al. (J. Gen. Microbiol, 1979, 111: 1-61). Für die Isolierung, Manipulation und den Transfer von DNA, die Polymerasekettenreaktion
(PCR) sowie die Vorgehensweisen zur Analyse von Proteinen mittels SDS-Poly- acrylamidgelelektrophorese (SDS-PAGE) sei ebenfalls auf Sambrook, J. et al. (1998, Molecular Cloning: A laboratory Manual; 2nd Edition, Cold Spring Habor Laboratory Press, NY.) verwiesen.
Klonierung der Gene cph A und cph B aus Synechocystis PCC 6308
Die Gene cphA, kodierend für die Cyanophycin-Synthetase, und cphB, kodierend für die Cyanophycinase, wurden schrittweise aus der Gesamt-DNA von Synechocystis PCC6308 durch drei Polymerasekettemeaktionen (PCR) mit Hilfe der folgenden
Oligonucleotide (Primer) amplifiziert: Primer Pl [5'-
ATGGG(AGCT)CA(CT)AT(ACT)GT(ACT)GA(AG)CA(CT)GT-3'] und Primer P2 [5'-A(AG)(AGCT)GC(AG)TT(AGCT)GC(AGT)ATCAT(AG)AA-3 ], die beide abgeleitet worden waren aus der konservierten Aminosäuresequenz MGHTVΕHV und PFMIANA der Cyanophycin-Synthetasen aus Anabaena variabilis (Ziegler et al.
1998, Eur. J. Biochem. 254,154, 1998) und Synechocystis PCC6803 (Translationsprodukt des Offenen Leserahmens slr 2002 aus der Genbank CyanoBase, Kaneko et al. 1996, DNA Res. 3,109; www.kazusa.or.jp/cyano); Primer P3 [5'- ATGGG(AGCT)CA(CT)CA(CT)GATAT(CT)GC(AGCT)GG-3'], der abgeleitet worden war von der konservierten Aminosäuresequenz MGHHMIAG der
Cyanophycinasen aus A. variabilis (Ziegler et al. 1998, Eur. J. Biochem. 254,154, 1998) und Synechocystis PCC6803 (Translationsprodukt des Offenen Leserahmens slr 2001, CyanoBase); Primer P4 (5'-TTGGCGATCATAAAAGGCGC-3'), dessen Sequenz komplementär ist zu der zentralen Region des Synechocystis sp. PCC6308 cphA-Gens; Primer P5 (5'-GCGCAAGTATCTTCATCGATACCAA-3'), dessen Sequenz komplementär ist zu der zentralen Region des Synechocystis sp. PCC6308 cphB-Gens und Primer P6 (5-TGGCGGCGGTGTATGAAAAC-3'), dessen Sequenz einen Teil des Synechocystis sp. PCC6308 cphA-Gens darstellt. Für die heterologe Expression von cphA in E. coli wurde eine genomische Region , die das 3 '-Ende von cphB, den intergenischen Bereich zwischen cphB und cphA und das komplette cphA- Gen umfasst, mit Hilfe von Primer P3 (siehe oben) und Primer P7 (5'-
TTCAGAATTCACTACTCACTATTC-3'), dessen Sequenz komplementär ist zum 3 '-Ende von cphA, amplifiziert. Die Primer wurden bezogen von MWG-Biotech AG (Ebersberg). Für die PCR wurde Vent DNA Polymerase (New England Biolabs, Schwalbach, Taunus) nach den Angaben des PCR application manual (Biochemica 1995, Boehringer Mannheim) verwendet. Die PCR-Produkte wurden nach elektrophoretischer Auftrennung aus Agarosegelen isoliert, mit EcoRV-linearisiertem Vektor pBluescript SK- (Stratagene Cloning Systems, San Diego, Calif, USA) ligiert und nach E. coli TOP 10 (Invitrogen, San Diego, Calif, USA) überführt.
Cyanophycin-Synthetase-Enzymtest
Die Methode stellt eine Modifizierung der von Ziegler et al. in Eur. J. Biochem. 254, 154 (1998) beschriebenen Methode dar. Das Reaktionsgemisch enthielt in einem Gesamtvolumen von 0.125 ml 50 mM Tris, 20 mM MgCl2, 20 mM KC1, 4 mM ATP,
10 mM 2-Mercaptoethanol, 0.1 mM L- Asparaginsäure, 0.034 mM Chloramphemcol, 0.01 mM L-[U-14C]-Arginin (Amersham Pharmacia Biotech, Freiburg; spezifische Radioaktivität: 10.3 Gbq/mrnol), 0.87 mg Cyanophycin pro ml (isoliert aus Synechocystis sp. PCC6308) und 0.2 bis 0.5 mg Protein aus der löslichen Zellfraktion. Nach einer Inkubation von gewöhnlich 15 min bei einer Temperatur von gewöhnlich 28°C wurde das Reaktionsgemisch zum Abstoppen der Reaktion mit 1 ml eiskaltem Wasser versetzt. Das unter diesen Bedingungen unlösliche Cyanophycin wurde durch Zentrifugation (15 min, 14000 x g) abgetrennt und zweimal mit je 1 ml 50 mM Tris-HCl, 2 mM EDTA (pH 8.2) gewaschen. Das Pellet wurde in 1.0 ml 1.5 M HC1 resuspendiert. Die Suspension wurde erneut zentrifugiert.
Vom Überstand, der das unter diesen Bedingungne lösliche Cyanophycin enthielt, wurden 0.5 ml entnommen und mit 5 ml LSC Szintillationscocktail HYDROLUMA (J. T. Baker, Deventer, Niederlande) vermischt. Die Radiaoktivität wurde mit einem Szintillationsmessgerät Modell LS 6500 (Beckman Instruments GmbH, München) gemessen.
Reinigung und Bestimmung von Cyanophycin
Die Isolierung von Cyanophycin aus lebenden Zellen von Synechocystis PCC 6308 oder heterologen Systemen erfolgt nach der Methode von Simon, R.D. (Biochim
Biophys Acta, 1976, 422:407-418). Eine colorimetrische Quantifizierung des Cyanophycins erfolgt mit Sakagushi-Reagenz nach einer Methode beschrieben bei Allen, M.M. (Methods Enzymol., 1988, 167: 207-213). Die Bestimmung der Aminosäurezusammensetzung des Cyanophycins erfolgt mittels Hochdruckflüssig- keitschromatographie (HPLC). Legende zu den Figuren und Tabellen:
Fig. 1 : SEQUENZPROTOKOLL 2 der Nukleotidsequenz des erfindungsgemäßen Cyanophycin-Synthetase-Gens kodierend für die erfϊndungsgemäße Cyanophycin-Synthetase aus Synechocystis PCC 6308.
Fig. 2: SEQUENZPROTOKOLL 1 der Aminosäuresequenz der erfmdungsge- mäßen thermostabilen Cyanophycin-Synthetase abgeleitet von dem entsprechenden Cyanophycin-Synthetase-Gen des Synechocystis PCC 6308.
Fig. 1 : Zeitlicher Verlauf des Einbaus der Aminosäure-Monomere in Cyanophycin. Der eingebaute Gehalt an L-Arginin wurde zu bestimmten Zeiten (min) in einem Reaktionsansatz von insgesamt 125 μl bestimmt, der folgende Komponenten enthält: 1,25 nmol radioaktives L[U-14C] -Arginin, 12,5 nmol un- markiertes L-Aspartat, 500 nmol ATP, 0,38 mg lösliches Zellprotein des in
Anwesenheit von IPTG kultivierten, transformierten E. coli Stammes TOP 10 sowie 0,11 mg Cyanophycin als Primer (Δ). Der Gehalt an L[U-14C]- Asparagin, welches in Abwesenheit von L-Arginin eingebaut wird, wurde in Anwesenheit von 0,11 mg (D) oder 0,05 mg () Cyanophycin gemessen.
Fig. 2 und 3 : Einfluß der Temperatur auf den durch die gereinigte Cyanophycin- Synthetase aus Synechocystis sp. PCC 6308 katalysierten Einbau von Arginin in Cyanophycin. Fig. 3 a) Cyanophycin-Synthetase- Aktivität als Funktion der Inkubationstemperatur. Die Enzymaktivität wurde in einem Zeitintervall von 4 min nach Start der Reaktion bei der angegebenen
Temperatur bestimmt. Fig. 3b) Zeitlicher Verlauf des Einbaus von Arginin in Cyanophycin bei 28°C (-D-) und bei 50°C (-•-). Die eingebaute Menge an Arginin wurde zu den angegebenen Zeitpunkten in jeweils 125 μl Reaktionsgemisch bestimmt. Fig. 4: Temperaturprofil (-•-) und Hitzestabilität (-♦-) der gereinigten Cyanophycin-Synthetase aus Synechococcus sp. MA 19. Für das Temperaturprofil wurden die Enzymaktivitäten jeweils in einem Zeitintervall von 15 min nach Start der Reaktion bei der angegebenen Tempeeratur bestimmt. Die Hitze- Stabilität des Enzyms wurde ermittelt als Aktivität (gemessen bei 28°C) nach jeweils 30 min Inkubation der Enzymlösung bei den angegebenen Temperaturen.
Fig. 5: Stabilität der gereinigten Cyanophycin-Synthetase aus Synechococcus sp. MA 19 bei 50°C als Funktion der Inkubationszeit in Abwesenheit (-♦-) und
Gegenwart (-■-) von 1 M Ectoin. Das Enzympräparat wurde bei 50°C inkubiert, und zu den angegebenen Zeitpunkten wurde die Aktivität bestimmt (bei 28°C).
Fig. 6: Flussdiagramme der Isolierungen von Cyanophycin aus dem Reaktionsansatz im Vergleich (A) nach Simon, R.D. (Biochim Biophys Acta, 1976, 422:407-418), (B) nach Ziegler, K. et al. (Eur. J. Biochem., 1998, 254: 154-159) und (C) nach dem erfindungsgemäßen Verfahren. Die unlöslichen Cyanophycingranulae sind als Kugeln dargestellt; Transferschritte sind durch gebogene Pfeile dargestellt.
SEQUENZPROTOKOLL 4 der Nukleotidsequenz des erfmdungsgemäßen Cyanophycin-Synthetase-Gens kodierend für die erfindungsgemäße Cyanophycin-Synthetase aus Synechococcus sp MA 19.
SEQUENZPROTOKOLL 3der Nukleotidsequenz der erfindungsgemäßen thermostabilen Cyanophycin-Synthetase abgeleitet vom entsprechenden Cyanophycin-Synthetase-Gen des Synechococcus sp MA 19.
Fig. 7a und 7b: Einfluss von Verbindungen, die strukturelle Ähnlichkeit zu
Asparaginsäure und Arginin aufweisen. Fig. 7a) Einbau von Asparaginsäure (Schraffierte Säulen) und Arginin (schattierte Säulen) nach Zusatz von 5 mM der angegebene Verbindung zum ansonsten kompletten Reaktionsgemisch. Fig. 7b) Einfluss der angegebenen Verbindungen, wenn diese in einer Konzentration von 5 mM anstelle von Asparaginsäure (schraffierte Säulen) bzw. in einer Konzentration von 0.5 mM anstelle von Arginin in das
Reaktionsgemisch gegeben wurden.
Die Abkürzungen der Aminosäuren werden nach der Standard Ein-Buchstaben- Methode festgelegt.

Claims

Patentansprüche:
1. Cyanophycin-Synthetasen mit einer Aktivität innerhalb eines Temperaturbereichs von 35°C bis 55°C, dadurch gekennzeichnet, dass sie
a) eine Aminosäuresequenz gemäß SEQUENZPROTOKOLL 1 kodiert durch eine isolierte Nukleotidsequenz gemäß SEQUENZPROTOKOLL 2 ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder eine mit dieser hybridisierende Nukleotidsequenz aufweisen und aus Synechocystis PCC 6308 stammen oder
b) dass sie eine Aminosäuresequenz gemäß SEQUENZPROTOKOLL 3 kodiert durch eine isolierte Nukleotidsequenz gemäß SEQUENZPROTOKOLL 4, ein Allel, Homolog oder Derivat dieser Nukleotid- sequenz oder eine mit dieser hybridisierende Nukleotid-Sequenz aufweisen und aus Synechococcus sp. MA 19 stammen.
2. Vektor enthaltend wenigstens eine Nukleotidsequenz kodierend für eine zur Herstellung von Cyanophycin spezifische Cyanophycin-Synthetase gemäß Anspruch 1.
3. Transformierter ein- oder mehrzelliger Organismus enthaltend eine Cyanophycin-Synthetase gemäß Anspruch 1 und/oder einen Vektor gemäß Anspruch 2.
Transformierter ein- oder mehrzelliger Organismus gemäß Anspruch 3, dadurch gekennzeichnet, dass er ein Mikroorganismus, ein Pilz, eine niedere oder höhere Pflanze, Gewebe oder eine Zelle davon ist.
5. Transformierter Organismus gemäß Anspruch 4, dadurch gekennzeichnet, dass er ein Bakterium der Gattung der Enterobakterien oder der coryneformen Bakterien ist.
6. Verfahren zur Bereitstellung einer Cyanophycin-Synthetase gemäß Anspruch 1, dadurch gekennzeichnet, dass die für das Enzym kodierende Nukleotidsequenz mit regulatorischen Strukturen operativ verknüpft und/oder in einen zur heterologen Expression geeigneten Vektor kloniert wird, in ein heterologes Wirtssystem übertragen, exprimiert und aus diesem Wirtssystem isoliert und aufgereinigt und/oder angereichert wird.
7. Verfahren zur Herstellung von Cyanophycin und den daraus herzustellenden Folgeprodukten, dadurch gekennzeichnet, dass eine Cyanophycin-Synthetase gemäß Anspruch 1 und/oder ein Vektor gemäß Anspruch 2 und/oder ein transformierter ein- oder mehrzelliger Organismus gemäß einem der Ansprüche 3 bis 5 eingesetzt wird.
8. Verwendung eines Vektors gemäß Anspruch 2 zur Herstellung eines transformierten ein- oder mehrzelligen Organismus gemäß einem der Ansprüche 3 bis 5.
9. Verwendung eines transformierten ein- oder mehrzelligen Organismus gemäß einem der Ansprüche 3 bis 5 zur Herstellung einer Cyanophycin-Synthetase gemäß Anspruch 1 und/oder zur Herstellung von Cyanophycin.
10. Verwendung einer Cyanophycin-Synthetase gemäß Anspruch 1 zur Herstellung von Cyanophycin.
11. Isoenzyme und modifizierte Formen der Cyanophycin-Synthetase, dadurch gekennzeichnet, dass diese durch Modifikation der Cyanophycin-Synthetase von Synechocystis PCC 6308 erhalten werden.
12. Isoenzyme und modifizierte Formen der Cyanophycin-Synthetase gemäß Anspruch 11, dadurch gekennzeichnet, dass diese durch Aminosäureaustausch erhalten werden.
13. Isoenzyme und modifizierte Formen der Cyanophycin-Synthetase gemäß Anspruch 12, dadurch gekennzeichnet, dass der Aminosäureaustausch durch Modifikation der Nukleotidsequenz des zugrundeliegenden Gens erfolgt.
14. Artifizielle DNA-Sequenzen, dadurch gekennzeichnet, dass diese in das Gen der Cyanophycin-Synthetase gemäß Anspruch 1 eingebaut oder angehängt werden.
15. Heterologe Wirtssysteme enthaltend eine Nukleinsäuresequenz oder einen Teil davon kodierend für eine Cyanophycin-Synthetase, ein Isoenzym oder eine modifizierte Form davon gemäß der Ansprüche 1 und 11.
16. Verwendung von Cyanophycin hergestellt nach Anspruch 10 zur Synthese von Polyasparaginsäure oder Arginin.
17. Verwendung der Cyanophycin-Synthetase in vitro zur Erzeugung von Poly- asparaginsäure-Cyanophycin Pfropfpolymeren.
18. Verwendung von Cyanophycin zur Herstellung von Nahrungsergänzungs- mittein und/oder Mitteln im Bereich der Agrarwirtschaft und/oder des
Pflanzenschutzes und/oder in der Papier-, Textil-, Pigment-, Lack-, Keramik-, Baustoff- oder Waschmittelindustrie sowie in den Bereichen Wasser- und Abwasserbehandlung.
19. Verwendung von Folgeprodukten des Cyanophycins zur Herstellung von
Mitteln im Bereich der Agrarwirtschaft und/oder des Pflanzenschutzes und/oder in der Papier-, Textil-, Pigment-, Lack-, Keramik-, Baustoff- oder Waschmittelindustrie sowie in den Bereichen Wasser- und Abwasserbehandlung.
EP01962878A 2000-08-09 2001-07-27 Verfahren zur verbesserten herstellung von cyanophycin und dessen folgeprodukte Withdrawn EP1322764A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038776 2000-08-09
DE10038776 2000-08-09
PCT/EP2001/008687 WO2002012508A2 (de) 2000-08-09 2001-07-27 Verfahren zur verbesserten herstellung von cyanophycin und dessen folgeprodukte

Publications (1)

Publication Number Publication Date
EP1322764A2 true EP1322764A2 (de) 2003-07-02

Family

ID=7651792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962878A Withdrawn EP1322764A2 (de) 2000-08-09 2001-07-27 Verfahren zur verbesserten herstellung von cyanophycin und dessen folgeprodukte

Country Status (3)

Country Link
EP (1) EP1322764A2 (de)
AU (1) AU2001283962A1 (de)
WO (1) WO2002012508A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2133419T3 (en) * 2008-06-13 2019-01-14 Univ Muenster Westfaelische Wilhelms USE OF CYANOPHYCIN BETA-DIPEPTIDES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0212508A3 *

Also Published As

Publication number Publication date
WO2002012508A3 (de) 2003-04-17
WO2002012508A2 (de) 2002-02-14
AU2001283962A1 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
EP2598646B1 (de) Zellen und verfahren zur herstellung von rhamnolipiden
DE69534801T2 (de) Neues lysin decarboxylasegen und verfahren zur herstellung von l-lysin
EP0334841B1 (de) Microorganismen and plasmide für die 2,4-dichlorphenoxyessigsäure (2,4-d)-monooxigenase - bildung und verfahren zur herstellung dieser plasmide und stämme
DE69730926T2 (de) Modifizierte thermostabile DNA Polymerase
DE60301031T2 (de) Verfahren zur Herstellung von L-Aminosäuren
WO1999047649A9 (de) Polymerasenchimären
EP1700864A1 (de) Verfahren zur fermentativen Herstellung von S-Adenosylmethionin
KR20110093847A (ko) 리보플라빈의 개선된 생산
CN113667682B (zh) Yh66-rs11190基因突变体及其在制备l-缬氨酸中的应用
EP2788494A1 (de) Biotechnologische herstellung von 3-hydroxyisobuttersäure
EP2267007B1 (de) Neue, Polyaminosäuren bildende oder abbauende Genprodukte von Bacillus licheniformis und darauf aufbauende verbesserte biotechnologische Produktionsverfahren
CN116368233A (zh) 通过发酵生产4-氨基苯乙胺的工程化生物合成途径
EP2089525B1 (de) Allele des oxyr-gens aus coryneformen bakterien
DE3931716A1 (de) Verbesserte rekombinante dna, eine sie enthaltende transformante und ein verfahren zur herstellung von waermestabiler glucosedehydrogenase und ihre verwendung
EP2358893A2 (de) Verfahren zur herstellung von riboflavin
DE60123334T2 (de) Methode für die Produktion von Nukleotiden durch Fermentierung
DE60118401T2 (de) Gen, das für das gumd polypeptid aus methylomonas sp. kodiert und das an der herstellung von exopolysacchariden beteiligt ist
DE60203419T2 (de) Gen einer thermostabilen Glukokinase, dieses Gen enthaltender rekombinanter Vektor, diesen Vektor enthaltende Transformante und Verfahren zur Herstellung der thermostabilen Glukokinase mit dieser Transformante
EP1322764A2 (de) Verfahren zur verbesserten herstellung von cyanophycin und dessen folgeprodukte
EP1244776B1 (de) Tetrahydropyrimidin-dioxygenase-gen, dadurch kodierte polypeptide und verfahren zur deren herstellung
EP1074628B1 (de) N-Acetylaminosäureracemase
DE4024158A1 (de) Klonierung und ueberexpression von glucose-6-phosphat-dehydrogenase aus leuconostoc dextranicus
DE69920470T2 (de) Neuartiges gen und transformant, welcher dieses beinhaltet
DE69923127T2 (de) Methanoldehydrogenase-Aktivator und dafür kodierendes Gen
DE69434246T2 (de) Ectoin - synthetasegen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031017

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER CHEMICALS AG

RBV Designated contracting states (corrected)

Designated state(s): DE

17Q First examination report despatched

Effective date: 20050209

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050621