EP1320142B1 - Dichtungsanordnung für Brennstoffzellen - Google Patents

Dichtungsanordnung für Brennstoffzellen Download PDF

Info

Publication number
EP1320142B1
EP1320142B1 EP02014912A EP02014912A EP1320142B1 EP 1320142 B1 EP1320142 B1 EP 1320142B1 EP 02014912 A EP02014912 A EP 02014912A EP 02014912 A EP02014912 A EP 02014912A EP 1320142 B1 EP1320142 B1 EP 1320142B1
Authority
EP
European Patent Office
Prior art keywords
sealing
plates
composite
cell
side surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02014912A
Other languages
English (en)
French (fr)
Other versions
EP1320142A3 (de
EP1320142A2 (de
Inventor
Jens Pflästerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7708854&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1320142(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP1320142A2 publication Critical patent/EP1320142A2/de
Publication of EP1320142A3 publication Critical patent/EP1320142A3/de
Application granted granted Critical
Publication of EP1320142B1 publication Critical patent/EP1320142B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a sealing arrangement for fuel cells, comprising at least one composite formed from two cell separator plates with an interposed, deformable membrane electrode assembly consisting of two porous, gas-permeable plates or layers and an interposed ion exchange membrane, wherein the side surfaces of the membrane Jump back electrode unit against the side surfaces of the cell separator plates to release a sealing gap, and an elastic sealing element of a first polymer which surrounds the composite in the manner of a circumferential sealing strip, the sealing element having a circumferential sealing strip which projects into the sealing gap, in order to seal the sealing gap gastight by pressing between the cell separating plates.
  • Fuel cells are electrochemical energy converters and have long been known. They generate electrical energy by oxidation of a fuel. They consist in the simplest case of planar, electrically conductive electrodes which are gas-permeable and which are separated by an ion-conducting membrane are separated. The supply of reaction media via distribution plates with integrated gas or diesstechniksleitkanälen. These distribution networks must be sealed against each other as well as to the outside.
  • stack In order to produce a technically applicable order of magnitude of an electrical voltage or an electrical current, several large-area, thin plates or layers in the form of a stack, also referred to as "stack", are usually arranged one above the other and the individual cells are connected in a series or parallel circuit , The electrical energy generated by the transducer is taken from electrically conductive electrodes of the stack.
  • such an electrochemical fuel cell consists of two electrodes, designed as a planar gas diffusion layer, also referred to in the literature as "gas diffusion layer”, hereinafter abbreviated GDL, between which an ion-conducting layer is arranged, with a gas space adjoining each electrode in which in each case a reaction medium is supplied through distribution channels. Seals between the individual cell elements prevent the escape of the reaction medium.
  • GDL gas diffusion layer
  • the ion-conducting membrane is a polymer.
  • the present invention relates to the sealing of such a polymer electrolyte membrane fuel cell, hereinafter referred to as PEM cells.
  • PEM cells polymer electrolyte membrane fuel cell
  • MEA Membrane Electrode Assembly
  • plastically deformable and electrically conductive material for example graphite foils or nonwoven materials, is suitable for the anode or cathode.
  • the voltage applied to the polymer electrolyte membrane surface of the electrodes is coated with a catalyst, such as a platinum material.
  • Cell separator plates in the interior of the stack are in one of their surfaces in electrical contact with the anode of one cell of the stack, while its opposite surface is in contact with the cathode of another adjacent cell. According to this function, these cell separator plates inside the stack are also referred to as so-called bipolar plates, hereafter BPP.
  • BPP bipolar plates
  • hydrogen is usually used as the reaction gas, and oxygen or air is typically used as the oxidant.
  • Hydrogen is supplied to the anode space formed by the distributor structure on the anode, while the oxygen or the air is supplied to the cathode space.
  • the reactants pass through the catalyst layer to the proton-conductive ion exchange membrane.
  • the electrical energy is supplied to a consumer, while the heat energy in the stack must be dissipated by suitable cooling channels between the cell separator plates.
  • PEM fuel cells which are intended for the power supply of a motor vehicle, are exposed to harsh environmental conditions.
  • the seal must withstand strong shocks, humidity fluctuations and temperature fluctuations. Due to the different material expansion, leaks can occur.
  • a gas- and liquid-tight adhesive composite of the membrane-electrode assembly with the adjacent cell separator plates in the manner of a circumferential seal is proposed.
  • the adhesive composite material is realized by an adhesive, which connects the cell elements in a peripheral area in a modular manner and gas-tight seals.
  • the side surfaces of the membrane-electrode assembly are recessed against the side surfaces of the cell separator plates and thereby form a sealing gap which is filled by the adhesive composite material and protects the polymer electrolyte membrane from drying out.
  • a disadvantage is the handling of the adhesive in the production, which must be applied precisely in the edge region.
  • Another disadvantage is the non-detachable connection in a stack of fuel cells, which has the consequence that in case of a defect of a cell, the entire stack must be discarded.
  • a fuel cell stack comprising a plurality of units consisting of two cell separator plates and a membrane-electrode assembly sandwiched therebetween (MEA).
  • the two cell separator plates each project beyond the edge of the MEA, so that a sealing gap exists in the edge region of this arrangement.
  • the entire fuel cell stack is integrated into a sealing element that surrounds the cell separator plates and the MEA like a circumferential sealing strip and also fills the sealing gap between the two cell separator plates with a circumferential sealing strip.
  • the European patent application EP-A-0 951 086 deals with the construction of fuel cells that work at room temperature.
  • a sealing element in the form of a circumferential sealing strip is described, which encloses the composite of two cell separator plates and an interposed MEA.
  • all layers of the fuel cell structure should terminate as flush as possible with each other, so that the edge region is closed and has no sealing gap. Accordingly, the sealing tape is not equipped with a circumferential sealing strip with a stepped profile.
  • the elastic sealing element which is the composite in the manner of a circumferential Sealing tape encloses and has a sealing strip, which is pressed in a sealing gap between cell-separating plates and thereby seals the sealing gap gas-tight.
  • the invention is based on an arrangement of the plates or layers, in which the peripheral side surfaces of the membrane-electrode assembly jump back relative to the peripheral side surfaces of the cell separator plates. In this way, a sealing gap is left on the peripheral side surface of the composite. In these projects a projecting approach of the elastic sealing element, the sealing strip. Due to the deformability of the electrodes of the membrane-electrode assembly, the sealing gap becomes narrower as soon as a pressing force is exerted on the end plates on the face side. Exposed edge surfaces of the cell separator plates in the sealing gap become pressing surfaces and cause a compression of the intermediate elastic sealing strip.
  • the compressed between the pressing surfaces of the cell separator plates, gas-tight, elastic sealing material forms an effective barrier and prevents the escape of the reaction gases in the press nip.
  • the compression in the sealing gap also causes a lateral deflection of the elastic sealing material and thereby increases laterally the contact pressure on the peripheral side surfaces of the membrane electrode assembly. In this way, a reliable sealing effect is achieved even if the individual plates or layers of the composite deform or stretch due to mechanical stress during assembly or due to vibration or thermal expansion during operation.
  • the ion exchange membrane is particularly sensitive. Since the elastic sealing material according to the embodiment of the invention contacts only the peripheral side surface of the membrane, but not its surface, damage to the PEM due to deformation or expansion of the plates is almost eliminated.
  • the surrounding sealing tape also prevents the polymer electrolyte membrane from drying out. Even if the elastic sealing material on the side surfaces not or very poorly adhered - this is the case, for example, when the cell separator plates off Graphite consist - is gas-tight by the mechanical compression of the circumferential sealing strip of the sealing gap. In a stack - depending on their location in the middle or end of the stack - each cell can be formed with different sized pressing surfaces. In this way it is achieved that the inhomogeneous in the stack seal pressure distribution along the stack is compensated.
  • the sealing element formed according to the invention also makes it possible to combine several cells into groups. A simple, modular change of defective cells is possible. Manufacturing costs for the seal are relatively low. As a result of the sealing gap which projects in the composite on the peripheral side surface, the surface dimensions of the polymer electrolyte membrane and thus the material costs of the fuel cell are reduced.
  • the sealing arrangement according to the invention only very slightly increases the total weight of the electrochemical energy converter, which is advantageous for a mobile application. For the sealing element no recesses in the cell separator plates are required, which is favorable for the production.
  • a particularly reliable sealing effect is achieved according to the invention in that the porous, gas-permeable plates of the GDLs are impregnated in one end region at the edge of the surfaces with a second polymer on one or both sides and / or coated and the side surfaces of the ion exchange membrane against the side surfaces of the porous plates springing back are arranged and thereby release a second sealing gap, in which a second sealing strip protrudes, in order by compression between the cell separating plates to complete the second sealing gap gas-tight.
  • the compression of the first sealing gap is preceded by the compression of a second sealing gap.
  • the sealing strip and the sealing strip is formed as an injection-molded part in one piece and of the same material from a polymer.
  • the elastic sealing material penetrates into the smallest areas of the sealing gap and fills it completely.
  • manufacture and attachment of the seal assembly done in one operation.
  • the sealing element is formed so as to extend over an outer edge of an end face of an outer first cell separator plate and over an outer edge of an end face of an outer second cell separator plate to hold the composite or composites in a staple shape.
  • modules are formed. With regard to repair and maintenance in a fuel cell stack, this is of particular advantage, as it allows defective modules to be replaced in a simple manner.
  • the sealing element in the region of a first clip edge with a circumferential sealing profile and in the region of second clip edge is formed as a flat surface. In this way, a cooling medium circulating between modules can be easily sealed by the sealing profile.
  • the polymer is an elastomer. Elastomers are widely used in sealing technology. The materials EPDM (ethylene-propylene-diene rubber), FPM (fluoro rubber), TPE (thermoplastic elastomer) are particularly easy to process by injection molding. The use of silicone or other plastics such as epoxy resin is conceivable.
  • porous plates are completely saturated in an end region of a second polymer.
  • Suitable materials for the second polymer are materials made of silicone or FPM (fluoro rubber), epoxy resin or PTFE (polytetrafluorethylene).
  • the polymer and the second polymer is the same material. In this way, there is a chemical bond between the material of the sealing element and the second polymer, with which the porous plates are impregnated. The result is a very reliable and durable sealing effect that withstands strong shocks in mobile operation.
  • the sealing gap has a width of about 50 microns to 4 mm and the elastic sealing element is formed by a material having a Shore hardness of about 20 to 100 Shore A.
  • the sealing arrangement according to the invention is particularly suitable for an electrochemical energy converter which contains a fuel cell or a plurality of fuel cells arranged as a stack.
  • the invention makes it possible that the sealing arrangement not only gas-tightly seals the plates of the fuel cell, but also holds them together.
  • the invention makes it possible to combine multiple fuel cells into modules, which facilitates maintenance and repair.
  • Injection molding of the polymeric gasket material is critical to the economical manufacture of fuel cells.
  • the vulcanization tool is conventionally demoldable and therefore simple.
  • the manufacture and attachment of the seal assembly according to the invention takes place in a production section.
  • a module, formed from groups of several cells, can be generated together with the coolant seal in an injection molding process.
  • the process time is shortened, since not the porous plates, but a membrane-electrode assembly is coated with the first polymeric sealing material in a peripheral region or partially impregnated or impregnated.
  • the coating with polymeric sealing material is preferably carried out by screen printing, more preferably by rotary screen printing.
  • the polymeric sealing material can be applied very simply by stamp printing become.
  • the soaking can be done easily by dipping or by injection molding.
  • FPM fluorine rubber
  • EPDM ethylene-propylene-diene rubber
  • silicone silicone
  • PTFE polytetrafluoroethylene
  • epoxy resin thermoplastic elastomer
  • a very reliable and very durable seal can be created when the materials for coating and bonding form a chemical bond. This is the case when the same material is used.
  • FIG. 1 shows a peripheral zone of a fuel cell with a sealing arrangement according to a first embodiment of the invention.
  • the circumferential sealing element 17 encloses the composite formed from plates 40 in the manner of a circumferential sealing strip 28.
  • the composite of the plates is formed from two outer cell separator plates 1, 4 with an interposed membrane electrode assembly 18. This in turn consists of a further three plates , a first porous plate 2, an ion exchange membrane 5 and a second porous plate 3.
  • the GDL plates 2, 3 are gas permeable to the reaction gases supplied in the manifold structure 13, 14.
  • the distributor structure 13 or 14 is in FIG. 1 shown schematically as a recess on the membrane-electrode unit 18 facing surface of the cell dividing plates 1 and 4, respectively.
  • the peripheral side surface 8 of the ion exchange membrane is set back in relation to the peripheral side surfaces 7, 9 of the porous plates 2, 3. All three peripheral side surfaces 7, 8, 9 jump back relative to the peripheral side surfaces 6, 10 of the cell dividing plates 1, 4. In this way, a sealing gap 19, which continues in a central region in a second sealing gap 21.
  • the sealing element 17 according to the invention is formed so that a peripheral sealing strip 20 projects into the sealing gap.
  • the outer cell separator plates 1, 4 by in FIG. 1 not shown end plates and connecting screws pressed together. The consequence of this is that the sealing strip 20 is pressed in the sealing gap 19 by the pressing surfaces 29, 30.
  • the material of the elastic sealing element is itself gas impermeable and the contact pressure in the sealing gap prevents escape of the reaction gases from the distribution channels 13 or 14 or the porous plates 2, 3 in the surrounding outer space 37.
  • the by the staggered arrangement of the peripheral side surfaces of the membrane electrode Unit 18 created second sealing gap 21 is also eye-filled with the elastic material of the sealing element 17.
  • These too second sealing strip 31 experiences a plastic deformation, since the contact pressure of the outer cell separating plates is transferred to the porous plates 2, 3 and these plates transmit the contact pressure to the second sealing gap 21.
  • the contact pressure in the second sealing gap 21 prevents an overflow of the reaction gases between the anode and cathode.
  • the deformability of the porous plates 2, 3 essentially determines the forwarding of the contact forces in the second sealing gap 21.
  • the impregnation is in FIG. 1 characterized by hatching of the surfaces 15, 16.
  • the gas diffusion layers 2, 3 can also be impregnated or coated with a polymeric material on the surface lying in each case opposite the cell-separating plate. Due to the coating on both sides or impregnation of the end regions 35, 36, the sealing effect in the edge zone improves. Also, the coating or the impregnation lying to the cell-separating plate is in FIG. 1 characterized by the hatched areas 15 'and 16'.
  • the clamp-shaped sealing element is in FIG. 1 easy to recognize.
  • the clip edge 23 differs from the clip edge 24 by an integrally formed sealing profile 25, whereby at a stacking of fuel cells in a simple manner at the end face 12 of the Cell separation plate 1 can be sealed by passing cooling medium.
  • the lower bracket edge 24 has no Sealing profile, but is designed as a flat sealing surface 27. At this is sealing the sealing profile 25 of an underlying unit, which in FIG. 2 is shown.
  • FIG. 2 a second preferred embodiment of the invention is shown in which a plurality of fuel cells are arranged in a stack.
  • the modular structure of the energy converter is in FIG. 2 very recognizable.
  • the elastic element 17 not only holds the composite 40 of plates of individual fuel cells together, but it module-like composites 40 'are formed, which holds the sealing element 17 together.
  • the clip edge 23 is formed differently with respect to the clip edge 24.
  • the guided in the coolant passage 34 cooling medium is sealed by conditioning the clamp edges 24, 23 relative to the outer space 37.
  • the formation and arrangement of the peripheral side surfaces relative to each other of the cell separator plates 1, 4, the porous plates 2, 3 and the ion exchange membrane 8 is the same as in FIG FIG.
  • the edge regions 35 and 36 of the porous plates 2 and 3 are impregnated with a polymeric sealing material, which in FIG. 2 also indicated by hatched sections.
  • the impregnation prevents the reaction gas guided in the pores of the plate 2 or 3 from exiting laterally.
  • the elastic sealing material in the sealing gap is pressed between the respective pressing surfaces 29 and 30, but also the polymer-impregnated end regions 35, 36. The effectiveness of the sealing arrangement is thereby further improved.
  • the production of a sealing element 17, which, as in FIG. 2 shown composites 40 of fuel cells summarized, can be advantageously prepared by injection molding.
  • the invention makes it possible that the elastic sealing element 17 is manufactured and mounted in one step.
  • the membrane electrode assembly 18 is sealed gas-tight in the sealing gap and at the same time a clip edge 23 and 24 is formed, which holds the module 40 'together and prevented by a sealing profile 25, the escape of the cooling medium in the outer space 37.
  • the series production is a simple and inexpensive manufacturing process available.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

  • Die Erfindung betrifft eine Dichtungsanordnung für Brennstoffzellen, enthaltend zumindest einen Verbund, gebildet aus zwei Zell-Trennplatten mit einer dazwischengelegten, verformbaren Membran-Elektroden-Einheit, bestehend aus zwei porösen, gasdurchlässigen Platten oder Lagen und einer dazwischengelegten lonenaustauschmembran, wobei die Seitenflächen der Membran-Elektroden-Einheit gegenüber den Seitenflächen der Zell-Trennplatten zurückspringen, um einen Dichtspalt freizulassen, und ein elastisches Dichtelement aus einem ersten Polymer, welches den Verbund nach Art eines umlaufenden Dichtbandes umschließt, wobei das Dichtelement eine umlaufende Dichtleiste aufweist, die in den Dichtspalt ragt, um durch Verpressung zwischen den Zell-Trennplatten den Dichtspalt gasdicht abzuschließen.
  • Stand der Technik
  • Brennstoffzellen sind elektrochemische Energiewandler und seit langem bekannt. Sie erzeugen elektrische Energie durch Oxidation eines Brennstoffes. Sie bestehen im einfachsten Fall aus planaren, elektrisch leitenden Elektroden, die gasdurchlässig sind und die durch eine ionenleitende Membran voneinander getrennt sind. Die Zufuhr der Reaktionsmedien erfolgt über Verteilerplatten mit integrierten Gas- bzw. Flüssigkeitsleitkanälen. Diese Verteilungsnetze müssen sowohl gegeneinander als auch nach außen hin abgedichtet sein. Um eine technisch anwendbare Größenordnung einer elektrischen Spannung bzw. eines elektrischen Stromes zu erzeugen, sind meist mehrere großflächige, dünne Platten oder Lagen in Form eines Stapels, auch als "stack" bezeichnet, übereinander angeordnet und die einzelnen Zellen in einer Serien- oder Parallelschaltung verschaltet. Die vom Wandler erzeugte elektrische Energie wird an elektrisch leitenden Elektroden des Stapels abgenommen.
  • Eine derartige elektrochemische Brennstoffzelle besteht im einfachsten Fall aus zwei Elektroden, augebildet als eine planare Gasdiffusionsschicht, in der Literatur auch als "Gas Diffusion Layer", im Folgenden abgekürzt GDL, zwischen denen eine ionenleitende Schicht angeordnet ist, wobei sich an jede Elektrode ein Gasraum anschließt, in welchem jeweils ein Reaktionsmedium durch Verteilerkanäle zugeführt wird. Dichtungen zwischen den einzelnen Zellelementen verhindern das Austreten des Reaktionsmediums.
  • Bei bestimmten Brennstoffzellen ist die ionenleitende Membran ein Polymer. Die vorliegende Erfindung betrifft die Abdichtung einer derartigen Polymer-Elektrolyt-Membran-Brennstoffzelle, im Folgenden kurz PEM-Zellen genannt. Diese Art der chemischen Brennstoffzellen gewinnt zunehmend an Bedeutung als zukünftige Energiequelle für den Antrieb von Kraftfahrzeugen. Gefordert wird für diese Anwendung ein möglichst günstiges Massen-LeistungsVerhältnis und eine über eine Gebrauchsdauer von mehreren Jahren hinweg zuverlässige Abdichtung der Verteilungsnetze.
  • Üblicherweise werden bei Polymer-Elektrolyt-Membran-Brennstoffzellen die beiden porösen, gasdurchlässigen Elektroden und die dazwischengelegte, sehr dünne, protonenleitende Polymer-Elektrolyt-Membran zu einer sogenannten Membran-Elektroden-Einheit, im Folgenden abgekürzt MEA (Membrane-Electrode-Assembly), zusammengefasst. Im Stapel angeordnet sind diese Einheiten durch sogenannte Zell-Trennplatten getrennt. Letztere weisen in der Oberfläche die o.g. Verteilerstrukturen für die Reaktionsgase auf. Der Stapel wird stirnseitig jeweils durch Endplatten abgeschlossen und durch Verbindungsschrauben unter Anpressung der Lagen zusammengehalten. Für die elektronenleitenden Zell-Trennplatten werden häufig Nicht-Metalle wie beispielsweise Graphit, aber auch Metalle wie Edelstahl oder Titan verwendet. Als Elektrodenwerkstoff eignet sich für die Anode bzw. Katode plastisch verformbares und elektrisch leitfähiges Material, beispielsweise Graphitfolien oder Vlieswerkstoffe. Die an der Polymer-Elektrolyt-Membran anliegende Oberfläche der Elektroden ist mit einem Katalysator, beispielsweise einem Platin-Material, beschichtet. Zell-Trennplatten im Inneren des Stapels stehen mit einer ihrer Oberflächen in elektrischem Kontakt mit der Anode einer Zelle des Stapels, ihre gegenüberliegende Oberfläche hingegen mit der Katode einer anderen benachbarten Zelle. Gemäß dieser Funktion werden diese Zell-Trennplatten im Inneren des Stapels auch als sogenannte Bipolar-Platten, im Folgenden kurz BPP, bezeichnet. Neben ihrer Funktion, den elektrischen Strom im Stapel zu leiten, haben sie die Funktion, die Reaktionsgase zu trennen.
  • Für eine PEM-Brennstoffzelle wird üblicherweise als Reaktionsgas Wasserstoff und als Oxidationsmittel typischerweise Sauerstoff oder Luft verwendet. Wasserstoff wird dem durch die Verteilerstruktur auf der Anode gebildeten Anodenraum zugeführt, während der Sauerstoff bzw. die Luft dem Katodenraum zugeleitet wird. Durch die gasdurchlässigen Elektroden gelangen die Reaktionspartner über die Katalysatorschicht an die protonenleitfähige lonenaustauschmembran. Kationen, die sich an der Katalysatorschicht der Anode bilden, durchwandern die lonenaustauschmembran und bilden mit dem an der Katodenseite zugeführten Oxidationsmittel einerseits als Reaktionsprodukt Wasser, andererseits elektrische Energie und Wärmeenergie. Durch einen äußeren Stromkreis ist die elektrische Energie einem Verbraucher zuführbar, während die Wärmeenergie im Stapel durch geeignete Kühlkanäle zwischen den Zell-Trennplatten abgeführt werden muss.
  • An die Dichtungen zwischen den einzelnen Zellelementen werden hohe Anforderungen gestellt. PEM-Brennstoffzellen, die für die Energieversorgung eines Kraftfahrzeuges vorgesehen sind, sind rauen Umgebungsbedingungen ausgesetzt. Die Dichtung muß starken Erschütterungen, Feuchteschwankungen und Temperaturschwankungen standhalten. Aufgrund der unterschiedlichen Materialausdehnung kann es zu Undichtigkeiten kommen.
  • In DE 197 13 250 wird zur Abdichtung der Gasräume sowie der Fluidsammelkanäle ein gas- und flüssigkeitsdichter adhäsiver Verbund der Membran-Elektroden-Einheit mit den angrenzenden Zell-Trennplatten nach Art einer umlaufenden Dichtung vorgeschlagen. Das adhäsive Verbundmaterial wird durch einen Kleber realisiert, der in einem Randbereich die Zellelemente modulartig miteinander verbindet und gasdicht abdichtet. Die Seitenflächen der Membran-Elektroden-Einheit sind gegenüber den Seitenflächen der Zell-Trennplatten zurückspringend angeordnet und bilden dadurch einen Dichtspalt, der vom adhäsiven Verbundmaterial ausgefüllt wird und die Polymer-Elektrolyt-Membran vor dem Austrocknen schützt. Durch eine Beschichtung der Stirnseiten des Stapels mit adhäsivern Verbundmaterial lassen sich mehrere derartige Module verbinden. Von Nachteil ist die Handhabung des Klebers bei der Herstellung, der präzise im Randbereich aufgetragen werden muß. Ein weiterer Nachteil ist die nichtlösbare Verbindung in einem Stapel von Brennstoffzellen, was zur Folge hat, dass bei einem Defekt einer Zelle der gesamte Stapel verworfen werden muss.
  • Aus der US-A-4 774 154 ist ein Brennstoffzellen-Stack bekannt, der mehrere Einheiten bestehend aus zwei Zell-Trennplatten und einer sandwichartig dazwischen angeordneten Membran-Elektroden-Einheit (MEA) umfasst. Die beiden Zell-Trennplatten ragen jeweils über den Rand der MEA hinaus, so dass im Randbereich dieser Anordnung ein Dichtspalt besteht. Der gesamte Brennstoffzellen-Stack ist in ein Dichtelement eingebunden, das die Zell-Trennplatten und die MEA wie ein umlaufendes Dichtband umschließt und auch den Dichtspalt zwischen den beiden Zell-Trennplatten mit einer umlaufenden Dichtleiste ausfüllt.
  • Die europäische Patentanmeldung EP-A-0 951 086 beschäftigt sich mit dem Aufbau von Brennstoffzellen, die bei Zimmertemperatur arbeiten. Hier wird ebenfalls ein Dichtelement in Form eines umlaufenden Dichtbandes beschrieben, das den Verbund aus zwei Zell-Trennplatten und einer dazwischen angeordneten MEA umschließt. Jedoch sollen hier alle Lagen des Brennstoffzellenaufbaus möglichst bündig miteinander abschließen, so dass der Randbereich geschlossen ist und keinen Dichtspalt aufweist. Dementsprechend ist das Dichtband auch nicht mit einer umlaufenden Dichtleiste mit gestuftem Profil ausgestattet.
  • Darstellung der Erfindung
  • Es ist Aufgabe der Erfindung, die Dichtwirkung der bekannten Dichtungsanordnungen für Brennstoffzellen zu verbessern.
  • Es ist eine weitere Aufgabe der Erfindung, ein Verfahren zur Herstellung anzugeben, welches eine Serienfertigung mit geringen Herstellungskosten erlaubt. Ferner ist es das Ziel der Erfindung, einen elektrochemischen Energiewandler zu schaffen, der für die mobile Anwendung geeignet ist und bei dem Wartung und Reparatur einfach möglich sind.
  • Diese Aufgabe wird erfindungsgemäß mit Hilfe des elastischen Dichtelements gelöst, das den Verbund nach Art eines umlaufenden Dichtbandes umschließt und eine Dichtleiste aufweist, welche in einem Dichtspalt zwischen Zell-Trennplatten verpresst wird und dadurch den Dichtspalt gasdicht abschließt.
  • Die Erfindung geht dabei von einer Anordnung der Platten oder Lagen aus, bei der die Umfangsseitenflächen der Membran-Elektroden-Einheit gegenüber den Umfangsseitenflächen der Zell-Trennplatten zurückspringen. Auf diese Weise wird an der Umfangsseitenfläche des Verbundes ein Dichtspalt freigelassen. In diesen ragt ein vorspringender Ansatz des elastischen Dichtelementes, die Dichtleiste. Aufgrund der Verformbarkeit der Elektroden der Membran-Elektroden-Einheit wird der Dichtspalt enger, sobald stirnseitig auf die Endplatten eine Presskraft ausgeübt wird. Freiliegende Randflächen der Zell-Trennplatten im Dichtspalt werden zu Pressflächen und bewirken eine Verpressung der dazwischenliegenden elastischen Dichtleiste. Das zwischen den Pressflächen der Zell-Trennplatten verpresste, gasdichte, elastische Dichtmaterial bildet eine wirksame Barriere und verhindert das Austreten der Reaktionsgase im Pressspalt. Die Verpressung im Dichtspalt bewirkt auch ein laterales Ausweichen des elastischen Dichtmaterials und erhöht dadurch auch lateral die Anpresskraft auf die Umfangsseitenflächen der Membran-Elektroden-Einheit. Auf diese Weise wird eine zuverlässige Dichtwirkung auch dann erreicht, wenn sich die einzelnen Platten oder Lagen des Verbundes aufgrund mechanischer Belastung während der Montage oder aufgrund von Erschütterungen oder thermischer Ausdehnung während des Betriebes verformen bzw. dehnen. Hinsichtlich einer Dehnung ist besonders die lonenaustauschmembran empfindlich. Da das elastische Dichtmaterial gemäß der erfindungsgemäßen Ausbildung nur die Umfangsseitenfläche der Membran kontaktiert, nicht aber deren Oberfläche, wird eine Beschädigung der PEM durch Verformung oder Ausdehnung der Platten nahezu ausgeschlossen. Das umschließende Dichtband verhindert auch ein Austrocknen der Polymer-Elektrolyt-Membran. Auch dann, wenn das elastische Dichtmaterial an den Seitenflächen nicht oder sehr schlecht haftet - dies ist beispielsweise der Fall, wenn die Zell-Trennplatten aus Graphit bestehen - ist durch die mechanische Verpressung der umlaufenden Dichtleiste der Dichtspalt gasdicht. In einem Stapel kann - je nach ihrer Lage im Mittel- oder Endbereich des Stapels - jede Zelle mit unterschiedlich großen Pressflächen ausgebildet werden. Auf diese Weise erreicht man, dass die im Stapel inhomogene Dichtungspresskraftverteilung längs des Stapels ausgeglichen wird. Bei einem Plattenverbund, der im Endbereich des Stapels liegt und mit einem erhöhten Anpressdruck belastet wird, kann durch entsprechend groß dimensionierte Pressflächen im Dichtspalt eine unzulässig hohe Verpressung des Dichtmaterials verhindert werden. Durch geeignete Bemessung der jeweiligen Pressflächen lässt sich erreichen, dass die Dichtfunktion im Mittel- und Endbereich des Stapels trotz unterschiedlich großer Presskräfte etwa gleich groß ist. Das erfindungsgemäß ausgebildete Dichtelement ermöglicht ferner ein Zusammenfassen von mehreren Zellen zu Verbünden. Ein einfacher, modulartiger Wechsel defekter Zellen ist dadurch möglich. Herstellungskosten für die Dichtung sind vergleichsweise gering. Durch den im Verbund an der Umfangsseitenfläche einspringenden Dichtspalt verringern sich die Flächenabmessungen der Polymer-Elektrolyt-Membran und damit die Materialkosten der Brennstoffzelle. Die erfindungsgemäße Dichtungsanordnung erhöht nur sehr geringfügig das Gesamtgewicht des elektrochemischen Energiewandlers, was für eine mobile Anwendung vorteilhaft ist. Für das Dichtelement sind keine Eintiefungen in den Zell-Trennplatten erforderlich, was für die Herstellung günstig ist.
  • Eine besonders zuverlässige Dichtwirkung wird erfindungsgemäß dadurch erzielen, dass die porösen, gasdurchlässigen Platten der GDLs jeweils in einem Endbereich am Rand der Oberflächen mit einem zweiten Polymer einseitig oder zweiseitig imprägniert und/oder beschichtet sind und die Seitenflächen der lonenaustauschmembran gegenüber den Seitenflächen der porösen Platten zurückspringend angeordnet sind und dadurch einen zweiten Dichtspalt freilassen, in welchen eine zweite Dichtleiste ragt, um durch Verpressung zwischen den Zell-Trennplatten den zweiten Dichtspalt gasdicht abzuschließen. Der Verpressung des ersten Dichtspalts wird die Verpressung eines zweiten Dichtspalts vorgeschaltet. Durch diese Maßnahme erzielt man eine zuverlässige Abschottung der Reaktionsgase zwischen den Lagen der GDL einer MEA. Insgesamt verbessert sich die Dichtwirkung. Auch hier tritt die Polymer-Elektrolyt-Membran nur an ihrer Umfangsseitenfläche mit dem elastischen Dichtmaterial in Kontakt. Gegenüber dem vorbekannten Stand der Technik wird die Dichtungsfläche der Polymer-Elektrolyt-Membran dadurch weiter reduziert und Materialkosten gespart.
  • Im Hinblick auf eine einfache und kostengünstige Herstellung ist von ausschlaggebender Bedeutung, dass das Dichtband und die Dichtleiste als Spritzgießteil einstückig und materialeinheitlich aus einem Polymer gebildet wird. Durch das Spritzgießen dringt das elastische Dichtmaterial in kleinste Bereiche des Dichtspaltes ein und füllt diesen vollständig aus.
    Im Hinblick auf die Herstellungskosten ist von Vorteil, dass Herstellung und Anbringung der Dichtungsanordnung in einem Arbeitsgang erfolgen. Durch das an den Seitenflächen und den Pressflächen fest anhaftende Dichtungsmaterial werden die einzelnen Lagen nicht nur abgedichtet, sondern auch zusammengehalten.
  • Mit Vorteil wird das Dichtelement so ausgebildet, dass es sich über einen äußeren Rand einer Stirnfläche einer äußeren ersten Zelltrennplatte und über einen äußeren Rand einer Stirnfläche einer äußeren zweiten Zelltrennplatte erstreckt, um den Verbund oder die Verbünde klammerförmig zusammenzuhalten. Dadurch werden Module gebildet. Hinsichtlich Reparatur und Wartung in einem Brennstoffzellen-Stapel ist dies von besonderem Vorteil, da dadurch defekte Module auf einfache Weise gewechselt werden können.
  • Hierbei ist von Vorteil, wenn das Dichtelement im Bereich eines ersten Klammerrandes mit einem umlaufenden Dichtprofil und im Bereich eines zweiten Klammerrandes als eine ebene Fläche ausgebildet ist. Auf diese Weise läßt sich ein Kühlmedium, das zwischen Modulen zirkuliert, durch das Dichtprofil einfach abdichten.
    Von Vorteil ist, wenn das Polymer ein Elastomer ist. Elastomere sind in der Dichtungstechnik weit verbreitet. Die Werkstoffe EPDM (Ethylen-Propylen-Dien-Kautschuk), FPM (Fluor-Kautschuk), TPE (Thermoplastisches Elastomer) sind durch Spritzgießen besonders einfach zu verarbeiten. Auch die Verwendung von Silikon oder anderen Kunststoffen wie beispielsweise Epoxyd-Harz ist denkbar.
  • Für eine besonders gute Dichtwirkung ist es ferner vorteilhaft, wenn die porösen Platten in einem Endbereich von einem zweiten Polymer vollständig durchtränkt sind. Dadurch verlagert sich die Abdichtung der Reaktionsgase nicht ausschließlich auf den Dichtspalt, sondern findet zumindest teilweise bereits in der porösen Platte statt. Geeignet für das zweite Polymer sind Werkstoffe aus Silikon oder FPM (Fluor-Kautschuk), Epoxyd-Harz oder PTFE (Polytetrafluortethylen).
  • Mit besonderem Vorteil ist das Polymer und das zweite Polymer gleiches Material. Auf diese Weise kommt es zu einer chemischen Verbindung zwischen dem Material des Dichtelementes und dem zweiten Polymer, mit dem die porösen Platten durchtränkt sind. Folge davon ist eine sehr zuverlässige und langlebige Dichtwirkung, die auch starken Erschütterungen im mobilen Betrieb standhält.
  • Günstig ist, wenn der Dichtspalt eine Breite von etwa 50 µm bis 4 mm aufweist und das elastische Dichtelement durch einen Werkstoff mit einer Shore-Härte von etwa 20 bis 100 Shore A gebildet wird.
  • Die erfindungsgemäße Dichtungsanordnung ist besonders geeignet für einen elektrochemischen Energiewandler, der eine Brennstoffzelle oder mehrere als Stapel angeordnete Brennstoffzellen enthält. Im seltenen Fall, dass der Energiewandler durch eine Brennstoffzelle gebildet wird, ermöglicht die Erfindung, dass die Dichtungsanordnung die Platten der Brennstoffzelle nicht nur gasdicht abdichtet, sondern auch zusammenhält. Im weitaus wichtigeren Fall, bei dem der Energiewandler mehrere übereinander angeordnete, zu einer Serien- oder Parallelschaltung verschaltete Brennstoffzellen umfasst, ermöglicht die Erfindung das Zusammenfassen mehrerer Brennstoffzellen zu Modulen, was Wartung und Reparatur erleichtert.
  • Für eine Serienfertigung mit geringen Herstellungskosten schlägt die Erfindung ein Verfahren vor, bei dem:
    1. a) der Randbereich von zwei porösen Platten mit einem ersten polymeren Dichtungsmaterial beschichtet oder teilimprägniert oder durchtränkt wird,
    2. b) zwischen die beiden porösen Platten eine lonenaustausch-Membran gelegt wird, um eine Membran-Elektroden-Einheit zu bilden,
    3. c) eine Einheit gebildet wird, indem zwischen zwei Zell-Trennplatten die in b) gebildete Membran-Elektroden-Einheit gelegt wird,
    4. d) diese Einheit oder mehrere dieser Einheiten in Form eines Stapels in die Kavität eines Spritzgußwerkzeugs eingelegt wird,
    5. e) die eingelegte Einheit oder Einheiten in der Kavität stirnseitig mit einem Anpressdruck beaufschlagt werden, der so groß ist, dass das polymere Dichtungsmaterial einem Einspritzdruck mit einem zweiten polymeren Material standhält,
    6. f) ein Verbund oder Verbünde gebildet werden, indem eine Schmelze eines zweiten polymeren Dichtungsmaterials in die Kavität des Spritzgußwerkzeugs eingespritzt wird,
    7. g) Erstarren lassen der Schmelze,
    8. h) Entformen und Entnahme des in f) gebildeten Verbundes oder der Verbünde von Brennstoffzellen,
    9. i) erforderlichenfalls weiteres Ausheizen der Dichtungsanordnung.
  • Das Spritzgießen des polymeren Dichtungsmaterials ist für eine wirtschaftliche Fertigung von Brennstoffzellen von entscheidender Bedeutung. Das Vulkanisationswerkzeug ist konventionell entformbar und daher einfach aufgebaut. Die Herstellung und Anbringung der erfindungsgemäßen Dichtungsanordnung erfolgt in einem Produktionsabschnitt. Ein Modul, gebildet aus Verbünden mehrerer Zellen, kann samt Kühlmitteldichtung in einem Spritzgießvorgang erzeugt werden.
  • Bei einer Gestaltung des Herstellungsverfahrens gemäß Anspruch 14 verkürzt sich die Verfahrenszeit, da nicht die porösen Platten, sondern eine Membran-Elektroden-Einheit mit dem ersten polymeren Dichtungsmaterial in einem Randbereich beschichtet oder teilimprägniert oder durchtränkt wird.
  • Das Beschichten mit polymerem Dichtungsmaterial erfolgt bevorzugt durch Siebdrucken, besonders bevorzugt durch Rotationssiebdrucken. Ganz besonders einfach kann das polymere Dichtungsmaterial durch Stempeldrucken aufgetragen werden. Das Durchtränken kann auf einfache Weise durch Tauchen oder durch Spritzgießen erfolgen.
    Als Werkstoff sind für die Beschichtung oder für den Verbund FPM (Fluor-Kautschuk), EPDM (Ethylen-Propylen-Dien-Kautschuk), Silikon, PTFE (Polytetrafluorethylen), Epoxyd-Harz oder TPE (Thermoplastisches Elastomer) geeignet.
  • Eine sehr zuverlässige und sehr langlebige Dichtung lässt sich dadurch erzeugen, wenn die Werkstoffe für Beschichtung und Verbund eine chemische Verbindung eingehen. Dies ist dann der Fall, wenn derselbe Werkstoff verwendet wird.
  • Kurzbeschreibung der Zeichnung
  • Zur weiteren Erläuterung der Erfindung wird auf die Zeichnungen Bezug genommen, in deren Figuren verschiedene Ausführungsformen gemäß der Erfindung schematisch dargestellt sind. Anhand dieser schematischen Zeichnungen wird die Erfindung näher erläutert.
  • Es zeigen:
  • Figur 1
    einen Schnitt durch die Randzone einer Brennstoffzelle mit einem Ausführungsbeispiel der erfindungsgemäßen Dichtungsanordnung,
    Figur 2
    die Randzone von mehreren in einem Stapel angeordneten Brennstoffzellen mit einem zweiten Ausführungsbeispiel der erfindungsgemäßen Dichtungsanordnung.
    Ausführung der Erfindung
  • Figur 1 zeigt eine Randzone einer Brennstoffzelle mit einer Dichtungsanordnung gemäß einem ersten Ausführungsbeispiel der Erfindung. Das umlaufende Dichtelement 17 umschließt den aus Platten gebildeten Verbund 40 nach Art eines umlaufenden Dichtbandes 28. Der Verbund der Platten wird gebildet aus zwei außenliegenden Zell-Trennplatten 1, 4 mit einer dazwischengelegten Membran-Elektroden-Einheit 18. Diese besteht ihrerseits aus weiteren drei Platten, einer ersten porösen Platte 2, einer lonen-Austausch-Membran 5 und einer zweiten porösen Platte 3. Die GDL-Platten 2, 3 sind gasdurchlässig für die in der Verteilerstruktur 13, 14 zugeführten Reaktionsgase. Die Verteilerstruktur 13 bzw. 14 ist in Figur 1 schematisch als eine Ausnehmung an der zur Membran-Elektroden-Einheit 18 weisenden Oberfläche der Zell-Trennplatten 1 bzw. 4 dargestellt. Die Umfangsseitenfläche 8 der lonenaustauschmembran ist gegenüber den Umfangsseitenflächen 7, 9 der porösen Platten 2, 3 zurückversetzt angeordnet. Alle drei Umfangsseitenflächen 7, 8, 9 springen gegenüber den Umfangsseitenflächen 6, 10 der Zell-Trennplatten 1, 4 zurück. Auf diese Weise entsteht ein Dichtspalt 19, der sich in einem Mittelbereich in einem zweiten Dichtspalt 21 fortsetzt. Das Dichtelement 17 ist erfindungsgemäß so ausgebildet, dass eine umlaufende Dichtleiste 20 in den Dichtspalt ragt. In der bestimmungsgemäßen Verwendung der Brennstoffzelle werden die äußeren Zell-Trennplatten 1, 4 durch in Figur 1 nicht dargestellte Endplatten und Verbindungsschrauben aneinander gepresst. Folge davon ist, dass die Dichtleiste 20 im Dichtspalt 19 durch die Pressflächen 29, 30 verpresst wird. Das Material des elastischen Dichtelements ist selbst gasundurchlässig und die Anpressung im Dichtspalt verhindert ein Entweichen der Reaktionsgase aus den Verteilerkanälen 13 bzw. 14 oder der porösen Platten 2, 3 in den umgebenden Außenraum 37. Der durch die versetzte Anordnung der Umfangsseitenflächen der Membran-Elektroden-Einheit 18 geschaffene zweite Dichtspalt 21 ist ebenfalls mit dem elastischen Material des Dichtelementes 17 augefüllt. Auch diese zweite Dichtleiste 31 erfährt eine plastische Verformung, da die Anpressung der äußeren Zell-Trennplatten sich auf die porösen Platten 2, 3 überträgt und diese Platten die Anpresskraft auf den zweiten Dichtspalt 21 übertragen. In Verbindung mit den imprägnierten Endbereichen 15 bzw. 16 der porösen Platten 2 bzw. 3 verhindert die Anpressung im zweiten Dichtspalt 21 ein Überströmen der Reaktionsgase zwischen Anode und Katode. Die Verformbarkeit der porösen Platten 2, 3 bestimmt im Wesentlichen die Weiterleitung der Anpresskräfte in den zweiten Dichtspalt 21. Die Imprägnierung ist in Figur 1 durch Schraffur der Flächen 15, 16 gekennzeichnet. Die Gasdiffusionsschichten 2, 3 können aber auch an der jeweils zur Zell-Trennplatte liegenden Oberfläche mit einem polymeren Werkstoff durchtränkt oder beschichtet sein. Durch die beidseitige Beschichtung oder Durchtränkung der Endbereiche 35, 36 verbessert sich die Dichtwirkung in der Randzone. Auch die zur Zell-Trennplatte liegende Beschichtung bzw. die Durchtränkung ist in Figur 1 durch die schraffierten Flächen 15' bzw. 16' gekennzeichnet.
  • Insbesondere dann, wenn das elastische Dichtmaterial des Elementes 17 an den Umfangsseitenflächen 6, 10 und an den Pressflächen 29, 30 adhäsiv haftet und im Endbereich 35, 36 der porösen Platten 2, 3 eindringt, erhält man einen sehr dauerhaften und gasdichten Verbund der Platten der Brennstoffzelle. Durch die Dichtungsanordnung werden die Reaktanten nicht nur abgedichtet, sondern gleichzeitig der komplexe Zellenaufbau zusammengehalten. Da zusätzliche mechanische Klammern entfallen, verringern sich das Gewicht und die Kosten des Energiewandlers. Das klammerförmig ausgebildete Dichtelement ist in Figur 1 einfach zu erkennen. Das elastische Dichtelement 17 umgreift die Randflächen 11 bzw. 26 der äußeren Zell-Trennplatten 1 bzw. 4. Der Klammerrand 23 unterscheidet sich vom Klammerrand 24 durch ein angeformtes Dichtprofil 25, wodurch bei einer Stapelung von Brennstoffzellen auf einfache Weise das an der Stirnfläche 12 der Zell-Trennplatte 1 vorbeigeführte Kühlmedium abgedichtet werden kann. Der untere Klammerrand 24 weist kein Dichtprofil auf, sondern ist als ebene Dichtfläche 27 ausgebildet. An dieser liegt dichtend das Dichtprofil 25 einer darunter angeordneten Einheit, was in Figur 2 dargestellt ist.
  • In Figur 2 ist eine zweite bevorzugte Ausführungsform der Erfindung gezeigt, bei der mehrere Brennstoffzellen zu einem Stapel angeordnet sind. Der modulartige Aufbau des Energiewandlers ist in Figur 2 sehr gut erkennbar. Das elastische Element 17 hält nicht nur den Verbund 40 von Platten einzelner Brennstoffzellen zusammen, sondern es werden modulartige Verbünde 40' gebildet, die das Dichtelement 17 zusammenhält. Wie in der Beschreibung der Figur 1 bereits hervorgehoben, ist der Klammerrand 23 gegenüber dem Klammerrand 24 unterschiedlich ausgebildet. Das im Kühlmittelkanal 34 geführte Kühlmedium wird durch Anlage der Klammerränder 24, 23 gegenüber dem Außenraum 37 abgedichtet. Die Ausbildung und die Anordnung der Umfangsseitenflächen relativ zueinander der Zell-Trennplatten 1, 4, der porösen Platten 2, 3 sowie der lonenaustauschmembran 8 entspricht der in Figur 1. Zur besseren Übersichtlichkeit sind jedoch nicht alle Bezugszeichen in der Figur aufgeführt. Die Randbereiche 35 bzw. 36 der porösen Platten 2 bzw. 3 sind mit einem polymeren Dichtungsmaterial durchtränkt, was in Figur 2 ebenfalls durch schraffierte Abschnitte angedeutet ist. Die Imprägnierung verhindert, dass das in den Poren der Platte 2 bzw. 3 geführte Reaktionsgas seitlich austritt. Zwischen den jeweiligen Pressflächen 29 und 30 wird dadurch nicht nur das elastische Dichtungsmaterial im Dichtspalt verpresst, sondern auch die mit Polymer durchtränkten Endbereiche 35, 36. Die Wirksamkeit der Dichtungsanordnung wird dadurch weiter verbessert.
  • Der Übersichtlichkeit wegen sind weder in Figur 1 noch in Figur 2 Katalysatorschichten eingezeichnet, welche an der zur Polymer-Elektrolyt-Membran liegenden Oberfläche der Gasdiffusionsschicht 2 bzw. 3 angeordnet sind. Auch Endplatten und Verbindungsschrauben, die den Stapel bzw. die Brennstoffzelle zusammenhalten, sind in den Figuren nicht gezeigt.
  • Die Herstellung eines Dichtelements 17, das, wie in Figur 2 gezeigt, Verbünde 40 von Brennstoffzellen zusammenfasst, kann vorteilhaft in Spritzgußtechnik hergestellt werden. Die Erfindung ermöglicht es, dass das elastische Dichtelement 17 in einem Arbeitsschritt hergestellt und angebracht wird. Dabei wird im Dichtspalt die Membran-Elektroden-Einheit 18 gasdicht abgedichtet und gleichzeitig ein Klammerrand 23 bzw. 24 ausgebildet, welcher das Modul 40' zusammenhält und durch ein Dichtprofil 25 das Austreten des Kühlmediums in den Außenraum 37 verhindert. Damit steht der Serienproduktion ein einfaches und kostengünstiges Herstellungsverfahren zur Verfügung.

Claims (17)

  1. Dichtungsanordnung für Brennstoffzellen, enthaltend
    - zumindest einen Verbund (40) gebildet aus zwei Zell-Trennplatten (1, 4; BPP) mit einer dazwischengelegten, verformbaren Membran-Elektroden-Einheit (18; MEA), bestehend aus zwei porösen, gasdurchlässigen Platten oder Lagen (2, 3; GDL) und einer dazwischengelegten lonenaustauschmembran (5; PEM), wobei die Seitenflächen (7, 8, 9) der Membran-Elektroden-Einheit gegenüber den Seitenflächen (6, 10) der Zell-Trennplatten zurückspringen, um einen Dichtspalt (19) freizulassen,
    - ein elastisches Dichtelement (17) aus einem ersten Polymer, welches den Verbund nach Art eines umlaufenden Dichtbandes (28) umschließt, wobei das Dichtelement (17) eine umlaufende Dichtleiste (20) aufweist, die in den Dichtspalt (19) ragt, um durch Verpressung zwischen den Zell-Trennplatten (1, 4; BPP) den Dichtspalt (19) gasdicht abzuschließen,
    dadurch gekennzeichnet, dass die porösen, gasdurchlässigen Platten (2, 3) jeweils in einem Endbereich (35, 36) mit einem zweiten Polymer einseitig (15, 16) oder zweiseitig (15, 15' 16, 16') imprägniert und/oder beschichtet (Fig. 1) sind, die Seitenfläche (8) der lonenaustauschmembran (5) gegenüber den Seitenflächen (7, 9) der porösen Platten (2, 3) zurückspringt und einen zweiten Dichtspalt (21) freilässt, in welchen eine zweite Dichtleiste (31) ragt, um durch Verpressung zwischen den porösen Platten den zweiten Dichtspalt (21) gasdicht abzuschließen.
  2. Dichtungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass das Dichtband (28) und die Dichtleiste (20) als Spritzgießteil einstückig und materialeinheitlich gebildet sind und die Dichtleiste (20) den Dichtspalt (19) vollständig ausfüllt.
  3. Dichtungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dichtelement (17) sich über einen äußeren Rand (11) einer Stirnfläche (12) einer äußeren Zell-Trennplatte (1) und über einen äußeren Rand (26) einer Stirnfläche (22) einer äußeren Zell-Trennplatte (4) erstreckt, um den Verbund oder die Verbünde klammerförmig zusammenzuhalten.
  4. Dichtungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Dichtelement (17) im Bereich eines ersten Klammerrandes (23) mit einem umlaufenden Dichtprofil (25) und im Bereich eines zweiten Klammerrandes (24) als eine ebene Fläche (27) ausgebildet ist.
  5. Dichtungsanordnung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das erste Polymer aus einem Elastomer, besonders bevorzugt aus einem EPDM (Ethylen-Propylen-Dien-Kautschuk), FPM (Fluor-Kautschuk), TPE (Thermoplastisches Elastomer) oder aus Silikon oder aus einem Kunststoff, ganz besonders bevorzugt aus Epoxyd-Harz, besteht.
  6. Dichtungsanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die porösen Platten (2, 3) in einem Endbereich (35, 36) von dem zweiten Polymer vollständig durchtränkt sind.
  7. Dichtungsanordnung nach Anspruch 6, dadurch gekennzeichnet, dass das zweite Polymer durch Silikon oder FPM (Fluor-Kautschuk) oder Epoxyd-Harz oder PTFE (Polytetrafluorethylen) gebildet ist.
  8. Dichtungsanordnung nach einem der Ansprüche 2 bis 5 und 6 oder 7, dadurch gekennzeichnet, dass das erste Polymer und das zweite Polymer gleiches Material ist.
  9. Dichtungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Dichtungselement (17) mit den Seitenflächen (6, 7, 8, 9, 10) und den Pressflächen (29, 30) fest anhaftend verbunden ist, um den Verbund abzudichten und zusammenzuhalten.
  10. Dichtungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Dichtspalt (19) eine Breite von etwa 50 µm bis 4 mm aufweist und das elastische Dichtelement (17) durch einen Werkstoff mit einer Shore-Härte von etwa 20 bis 100 Shore A gebildet wird.
  11. Elektrochemischer Energiewandler enthaltend eine Brennstoffzelle oder mehrere als Stapel angeordnete Brennstoffzellen mit einer Dichtungsanordnung nach einem der Ansprüche 1 bis 10.
  12. Verfahren zur Herstellung einer Dichtungsanordnung für eine Brennstoffzelle oder für einen Stapel von Brennstoffzellen, gekennzeichnet durch die Schritte:
    a) Beschichten oder Teilimprägnieren oder Durchtränken eines Randbereiches von zwei porösen, gasdurchlässigen Platten (2, 3) mit einem ersten polymeren Dichtungsmaterial,
    b) Bilden einer Membran-Elektroden-Einheit (18) durch Zusammenfügen von zwei porösen Platten (2, 3) mit einer dazwischengelegten lonenaustauschmembran (5), wobei die Umfangsseitenflächen (8) der lonenaustauschmembran (5) gegenüber den Umfangsseitenflächen (7, 9) der porösen Platten (2,3) zurückspringend angeordnet sind,
    c) Bilden einer Einheit durch Zusammenfügen von zwei Zell-Trennplatten (1, 4) mit dazwischengelegter in b) gebildeter Membran-Elektroden-Einheit (18), wobei die Umfangsseitenflächen (7, 8, 9) der Membran-Elektroden-Einheit gegenüber den Umfangsseitenflächen (6, 10) der Zell-Trennplatten zurückspringend angeordnet sind,
    d) Einlegen der Einheit oder eines Stapels, gebildet aus mehreren dieser Einheiten, in die Kavität eines Spritzgusswerkzeuges,
    e) Pressen der Einheit oder der Einheiten in der Kavität mit einem Anpressdruck, bis das polymere Dichtungsmaterial einem Einspritzdruck mit einem zweiten polymeren Dichtungsmaterial standhält,
    f) Bilden eines Verbundes (40) oder von Verbünden (40') durch Einspritzen einer Schmelze eines zweiten polymeren Dichtungsmaterials in die Kavität des Spritzgusswerkzeuges,
    g) Erstarren lassen der Schmelze, wobei ein Dichtelement (17) entsteht, das den Verbund (40) oder die Verbünde (40') umlaufend umschließt, wobei die Umfangsseitenflächen (7, 8, 9) der Membran-Elektroden-Einheit gegenüber den Umfangsseitenflächen (6, 10) der Zell-Trennplatten zurückspringend angeordnet sind,
    h) Entformen und Entnahme des in f) gebildeten Verbundes (40) oder der Verbünde (40') von Brennstoffzellen.
    i) Erforderlichenfalls weiteres Ausheizen der Dichtungsanordnung.
  13. Verfahren zur Herstellung einer Dichtungsanordnung für eine Brennstoffzelle oder für einen Stapel von Brennstoffzellen, gekennzeichnet durch die Schritte:
    a) Mit einem ersten polymeren Dichtungsmaterial Beschichten oder Teilimprägnieren oder Durchtränken eines Randbereiches von einer Membran-Elektroden-Einheit (18), wobei die Umfangsseitenflächen (8) der Ionenaustauschmembran (5) gegenüber den Umfangsseitenflächen (7, 9) der porösen Platten (2, 3) zurückspringend angeordnet sind,
    b) Bilden einer zweiten Einheit durch Zusammenfügen von zwei Zell-Trennplatten (1, 4) mit dazwischengelegter in a) gebildeter Membran-Elektroden-Einheit (18), wobei die Umfangsseitenflächen (7, 8, 9) der Membran-Elektroden-Einheit gegenüber den Umfangsseitenflächen (6, 10) der Zell-Trennplatten zurückspringend angeordnet sind,
    c) Einlegen der zweiten Einheit oder eines Stapels, gebildet aus mehreren dieser zweiten Einheiten in die Kavität eines Spritzgusswerkzeuges,
    d) Pressen der Einheit oder der Einheiten in der Kavität mit einem Anpressdruck, bis das polymere Dichtungsmaterial einem Einspritzdruck mit einem zweiten polymeren Dichtungsmaterial standhält,
    e) Bilden eines Verbundes (40) oder von Verbünden (40') durch Einspritzen einer Schmelze eines zweiten polymeren Dichtungsmaterials in die Kavität des Spritzgusswerkzeug,
    f) Erstarren lassen der Schmelze, wobei ein Dichtelement (17) entsteht, das den Verbund (40) oder die Verbünde (40') umlaufend umschließt,
    g) Entformen und Entnahme des in f) gebildeten Verbundes (40) oder der Verbünde (40') von Brennstoffzellen,
    h) Erforderlichenfalls weiteres Ausheizen der Dichtungsanordnung.
  14. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Beschichten im jeweiligen Verfahrensschritt a) durch Siebdrucken, besonders bevorzugt durch Rotationssiebdrucken, ganz besonders bevorzugt durch ein Hochdruckverfahren oder durch ein Stempeldruckverfahren erfolgt.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Durchtränken im jeweiligen Verfahrensschritt a) durch Tauchen oder durch Spritzgießen erfolgt.
  16. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass jeweils für in a) hergestellte Beschichtung oder in f) gebildeten Verbund (40) oder Verbünde (40') der Werkstoff FPM (Fluor-Kautschuk), EPDM (Ethylen-Propylen-Dien-Kautschuk), Silikon, PTFE (Polytetrafluorethylen), Epoxyd-Harz oder TPE (Thermoplastisches Elastomer) verwendet wird.
  17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass für Beschichtung und Verbund bzw. Verbünde gleicher Werkstoff verwendet wird.
EP02014912A 2001-12-12 2002-07-05 Dichtungsanordnung für Brennstoffzellen Expired - Lifetime EP1320142B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10160905 2001-12-12
DE10160905A DE10160905B4 (de) 2001-12-12 2001-12-12 Dichtungsanordnung für Brennstoffzellen, Verfahren zur Herstellung und Verwendung einer solchen Dichtungsanordnung

Publications (3)

Publication Number Publication Date
EP1320142A2 EP1320142A2 (de) 2003-06-18
EP1320142A3 EP1320142A3 (de) 2004-06-30
EP1320142B1 true EP1320142B1 (de) 2008-05-07

Family

ID=7708854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02014912A Expired - Lifetime EP1320142B1 (de) 2001-12-12 2002-07-05 Dichtungsanordnung für Brennstoffzellen

Country Status (3)

Country Link
US (2) US7226684B2 (de)
EP (1) EP1320142B1 (de)
DE (2) DE10160905B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131523A1 (de) 2021-08-03 2023-02-08 Carl Freudenberg KG Gasdiffusionseinheit für eine brennstoffzelle, membran-elektroden-einheit für eine brennstoffzelle und anordnung für eine brennstoffzelle

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203612C1 (de) * 2002-01-23 2003-06-26 Reinz Dichtungs Gmbh & Co Kg Brennstoffzellenpaket sowie dafür geeignete bipolare Platte
CA2417213C (en) 2002-01-25 2010-09-14 Toyota Jidosha Kabushiki Kaisha Seal arrangement for fuel cells
JP3951841B2 (ja) * 2002-07-19 2007-08-01 トヨタ自動車株式会社 燃料電池のシール構造とその製造方法
DE10250434A1 (de) 2002-10-30 2004-05-13 Ab Skf Modul für eine Brennstoffzellenanordnung
AU2003294573A1 (en) * 2002-12-04 2004-06-23 Lynntech Power Systems, Ltd. Reinforced components for electrochemical cells
US7405019B2 (en) * 2003-03-14 2008-07-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
GB0319780D0 (en) * 2003-08-22 2003-09-24 Johnson Matthey Plc Membrane electrode assembly
US20050048349A1 (en) * 2003-08-28 2005-03-03 Fannon Megan A. Method of manufacturing a fuel cell array and a related array
JP4862243B2 (ja) 2003-12-24 2012-01-25 トヨタ自動車株式会社 燃料電池スタック
JP4564273B2 (ja) * 2004-03-29 2010-10-20 本田技研工業株式会社 燃料電池スタック
US20050249998A1 (en) * 2004-05-07 2005-11-10 Constantinos Minas Fuel cell with pre-shaped current collectors
US20050260481A1 (en) * 2004-05-20 2005-11-24 Gennadi Finkelshtain Disposable fuel cell with and without cartridge and method of making and using the fuel cell and cartridge
JP4645092B2 (ja) * 2004-07-27 2011-03-09 日産自動車株式会社 燃料電池装置
EP1653538A1 (de) * 2004-10-29 2006-05-03 Sgl Carbon Ag Kühlplattenmodul mit integralem Dichtungselement für einen Brennstoffzellenstack
JP4936095B2 (ja) * 2005-03-01 2012-05-23 トヨタ自動車株式会社 燃料電池スタック
US8021795B2 (en) * 2005-04-07 2011-09-20 General Electric Company Method for manufacturing solid oxide electrochemical devices
US20060228613A1 (en) * 2005-04-07 2006-10-12 Bourgeois Richard S System and method for manufacturing fuel cell stacks
KR100622247B1 (ko) * 2005-06-24 2006-09-08 삼성에스디아이 주식회사 연료전지 시스템용 몰딩 스택
FR2889888B1 (fr) * 2005-08-16 2014-05-09 Commissariat Energie Atomique Membrane polymere composite a conduction ionique/electronique, ses procedes de fabrication et coeur de pile a combustible planaire la comprenant
US20070269698A1 (en) * 2005-12-13 2007-11-22 Horizon Fuel Cell Technologies Pte. Ltd Membrane electrode assembly and its manufacturing method
US7368200B2 (en) * 2005-12-30 2008-05-06 Tekion, Inc. Composite polymer electrolyte membranes and electrode assemblies for reducing fuel crossover in direct liquid feed fuel cells
JP2007250351A (ja) * 2006-03-16 2007-09-27 Toyota Motor Corp 燃料電池
FR2914111B1 (fr) * 2007-03-20 2009-05-15 Conception Dev Michelin S A Pile a combustible a electrolyte polymere
FR2923086B1 (fr) * 2007-10-24 2010-12-10 Commissariat Energie Atomique Architecture de pile a combustible integre sans joint.
JP4526093B2 (ja) * 2008-04-04 2010-08-18 東海ゴム工業株式会社 燃料電池モジュール
EP2131433A1 (de) * 2008-06-05 2009-12-09 Reinz-Dichtungs-Gmbh Elektrochemische Zelle und Verfahren zur ihrer Herstellung
WO2010082934A1 (en) * 2009-01-19 2010-07-22 Utc Power Corporation Fuel cell seal
JP5097159B2 (ja) 2009-04-01 2012-12-12 東海ゴム工業株式会社 燃料電池モジュールの製造方法、および燃料電池の製造方法
US20110229790A1 (en) * 2010-03-19 2011-09-22 Kenji Sato Fuel cell module and fuel cell stack
EP2579375B1 (de) * 2010-05-26 2016-01-06 Toyota Jidosha Kabushiki Kaisha Brennstoffzellenstapel, verfahren zur herstellung eines brennstoffzellenstapels und verfahren zum austausch von modulen mit dem brennstoffzellenstapel
DE102010024316A1 (de) 2010-06-18 2011-12-22 Carl Freudenberg Kg Dichtung für eine Bipolarplatte einer Brennstoffzelle
WO2012125153A1 (en) 2011-03-15 2012-09-20 Utc Power Corporation Fuel cell plate bonding method and arrangement
DE102011051309B4 (de) * 2011-06-24 2013-01-17 Eisenhuth Gmbh & Co. Kg Membranelektrodeneinheit für eine Brennstoffzelle, Gießform und Verfahren zum Herstellen der Membranelektrodeneinheit
WO2015048900A1 (en) * 2013-10-02 2015-04-09 Hydrogenics Corporation Fuel cell sub-assembly and method of making it
JP6268362B2 (ja) * 2013-12-11 2018-01-31 パナソニックIpマネジメント株式会社 燃料電池用部材の製造方法
DE102017215507A1 (de) 2017-09-05 2019-03-07 Volkswagen Ag Verfahren zur Herstellung eines Verbunds aus einer Bipolarplatte und einer Membran-Elektroden-Einheit sowie verfahrensgemäß hergestellter Verbund
DE102018218076A1 (de) 2018-10-23 2020-04-23 Audi Ag Membran-Elektroden-Anordnung für eine Brennstoffzelle, Brennstoffzellenstapel sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102019209583A1 (de) * 2019-07-01 2021-01-07 Robert Bosch Gmbh Elektrochemische Systemeinheit mit Dichtelementen
DE102020200058A1 (de) 2020-01-07 2021-07-08 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellenanordnung mit Dichtungselement
DE102022119198A1 (de) 2022-08-01 2024-02-01 Schaeffler Technologies AG & Co. KG Platte eines Zellenstapels und Verfahren zur Anbringung einer Dichtung an einer Platte

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1902392C3 (de) * 1969-01-18 1975-07-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung von mit Kunststoff vergossenen Brennstoffelementen
US4774154A (en) * 1986-09-22 1988-09-27 International Fuel Cells Expanded high-temperature stable chemical resistant seal material
DE4442285C1 (de) * 1994-11-28 1996-02-08 Siemens Ag Brennstoffzellen und daraus bestehende Brennstoffzellenbatterien
GB9526577D0 (en) * 1995-12-28 1996-02-28 Nat Power Plc Method for the fabrication of electrochemical cells
DE19713250C2 (de) * 1997-03-29 2002-04-18 Ballard Power Systems Elektrochemischer Energiewandler mit Polymerelektrolytmembran
EP1018177B1 (de) * 1997-07-16 2002-04-10 Ballard Power Systems Inc. Elastische dichtung für eine membranelektrodenanordnung in einer elektrochemischen brennstoffzelle und herstellungsverfahren dafür
CN1122322C (zh) * 1998-04-17 2003-09-24 松下电器产业株式会社 固体高分子电解质型燃料电池及其制造方法
US6165634A (en) * 1998-10-21 2000-12-26 International Fuel Cells Llc Fuel cell with improved sealing between individual membrane assemblies and plate assemblies
US6399234B2 (en) * 1998-12-23 2002-06-04 Utc Fuel Cells, Llc Fuel cell stack assembly with edge seal
JP2001146971A (ja) * 1999-10-01 2001-05-29 Nok Corp ガスケット
JP3400415B2 (ja) * 2000-07-25 2003-04-28 本田技研工業株式会社 燃料電池のシール構造
US6596427B1 (en) * 2000-11-06 2003-07-22 Ballard Power Systems Inc. Encapsulating seals for electrochemical cell stacks and methods of sealing electrochemical cell stacks
US6946210B2 (en) * 2000-11-27 2005-09-20 Protonex Technology Corporation Electrochemical polymer electrolyte membrane cell stacks and manufacturing methods thereof
US6852439B2 (en) * 2001-05-15 2005-02-08 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel cell stacks
US20020172852A1 (en) * 2001-05-15 2002-11-21 David Frank Flow field plate for a fuel cell and fuel cell assembly incorporating the flow field plate
US6761991B2 (en) * 2001-10-16 2004-07-13 Dow Corning Corporation Seals for fuel cells and fuel cell stacks
US6878486B2 (en) * 2001-12-20 2005-04-12 Eveready Battery Company, Inc. Seal for electrochemical cell
US7320845B2 (en) * 2002-05-24 2008-01-22 The Intertech Group, Inc. Printed battery
US6989214B2 (en) * 2002-11-15 2006-01-24 3M Innovative Properties Company Unitized fuel cell assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131523A1 (de) 2021-08-03 2023-02-08 Carl Freudenberg KG Gasdiffusionseinheit für eine brennstoffzelle, membran-elektroden-einheit für eine brennstoffzelle und anordnung für eine brennstoffzelle
DE102021120110A1 (de) 2021-08-03 2023-02-09 Carl Freudenberg Kg Gasdiffusionseinheit für eine Brennstoffzelle, Membran-Elektroden-Einheit für eine Brennstoffzelle und Anordnung für eine Brennstoffzelle

Also Published As

Publication number Publication date
US20030235744A1 (en) 2003-12-25
EP1320142A3 (de) 2004-06-30
DE50212216D1 (de) 2008-06-19
US20070210475A1 (en) 2007-09-13
EP1320142A2 (de) 2003-06-18
DE10160905A1 (de) 2003-07-03
US7226684B2 (en) 2007-06-05
DE10160905B4 (de) 2007-07-19

Similar Documents

Publication Publication Date Title
EP1320142B1 (de) Dichtungsanordnung für Brennstoffzellen
DE19983846B3 (de) Protonenaustauschmembran-Brennstoffzellenanordnung mit thermoplastischen Folien zur Bildung von Dichtungen und zur Verbindung von Zellenkomponenten
EP2912711B1 (de) Membran-elektroden-anordnung sowie brennstoffzelle mit einer solchen
DE19713250C2 (de) Elektrochemischer Energiewandler mit Polymerelektrolytmembran
EP0774794B1 (de) Brennstoffzelle mit Polymerelektrolyt und integrierte Dichtung
EP0966770B2 (de) Membran-elektrodeneinheit mit integriertem dichtrand und verfahren zu ihrer herstellung
EP2912712B1 (de) Membran-elektroden-anordnung, brennstoffzelle mit einer solchen und kraftfahrzeug mit der brennstoffzelle
DE102011105072B3 (de) Haltevorrichtung mit einer Membran einer Membran-Elektroden-Einheit für eine Brennstoffzelle und Verfahren zu deren Herstellung
DE60301036T2 (de) Membranelektrodeneinheit für Brennstoffzellen
DE10207743A1 (de) Elektrode für eine Polymerelektrolyt-Brennstoffzelle, Trennwand hierfür sowie Polymerelektrolyt-Brennstoffzelle und Elektrizitätserzeugungssystem unter Verwendung derselben
DE10151380A1 (de) Verfahren zum Befestigen von Dichtungen für eine Brennstoffzelle und Brennstoffzelle
EP2973809B1 (de) Bipolarplatte für eine brennstoffzelle, brennstoffzelle und verfahren zur herstellung der bipolarplatte
DE102008029628B4 (de) Brennstoffzellenstapel mit Bipolarplatten-Diffusionsmedienanordnung mit niedrigem elektrischen Widerstand und Verfahren zu seiner Herstellung
EP1653538A1 (de) Kühlplattenmodul mit integralem Dichtungselement für einen Brennstoffzellenstack
EP1653537A1 (de) Kühlplattenmodul für einen Brennstoffzellenstack
EP3679616B1 (de) Verfahren zur herstellung eines verbunds aus einer bipolarplatte und einer membran-elektroden-einheit mit hilfe einer magnetischen fixierung
DE102015002500A1 (de) Polymerelektrolyt-Brennstoffzelle
DE102007005589A1 (de) Dichtung für eine Brennstoffzelle und Herstellungsverfahren dafür
DE102014205551A1 (de) Verfahren zur Herstellung einer Bipolarplatte mit Dichtung sowie Bipolarplatte
WO2022084028A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE20122306U1 (de) Dichtungsanordnung für Brennstoffzellen
DE102021111842A1 (de) Brennstoffzellenstapel
DE102012023472B4 (de) Verfahren zum Herstellen einer Bipolarplatten-Dichtungs-Einheit sowie Werkzeug zur Durchführung des Verfahrens
DE112004001748B4 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung
DE102007061127B4 (de) Unipolarplatte und Verfahren zum Formen einer Komposit-Unipolarplatte für einen Brennstoffzellenstapel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020712

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040902

AKX Designation fees paid

Designated state(s): CH DE FR IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50212216

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: NL

Ref legal event code: BK

Free format text: T.N.V. CARL FREUDENBERG KG ONTERECHT VERVALLEN OP 15.10.2008 PUBLIKATIE VERVAL I.E. 01.12.2008 I.E. 2008/12

REG Reference to a national code

Ref country code: NL

Ref legal event code: RD2H

Effective date: 20111010

REG Reference to a national code

Ref country code: NL

Ref legal event code: CF

Effective date: 20100726

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200722

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200717

Year of fee payment: 19

Ref country code: DE

Payment date: 20200731

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200731

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212216

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705