EP1317758B1 - Transducteur magnetique a demi-periode avec noyau magnetique, utilisation de transducteurs magnetiques a demi-periode, ainsi que procede de fabrication de noyaux magnetiques pour transducteurs magnetiques a demi-periode - Google Patents

Transducteur magnetique a demi-periode avec noyau magnetique, utilisation de transducteurs magnetiques a demi-periode, ainsi que procede de fabrication de noyaux magnetiques pour transducteurs magnetiques a demi-periode Download PDF

Info

Publication number
EP1317758B1
EP1317758B1 EP01978352A EP01978352A EP1317758B1 EP 1317758 B1 EP1317758 B1 EP 1317758B1 EP 01978352 A EP01978352 A EP 01978352A EP 01978352 A EP01978352 A EP 01978352A EP 1317758 B1 EP1317758 B1 EP 1317758B1
Authority
EP
European Patent Office
Prior art keywords
magnetic core
cycle
alloy
temperature
transductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01978352A
Other languages
German (de)
English (en)
Other versions
EP1317758A1 (fr
Inventor
Günther Wulf
Roman Klinger
Werner Loges
Jörg PETZOLD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1317758A1 publication Critical patent/EP1317758A1/fr
Application granted granted Critical
Publication of EP1317758B1 publication Critical patent/EP1317758B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the invention relates to a transductor choke with magnetic core, use of transductor chokes and methods for producing magnetic cores for transductor chokes.
  • Switched power supplies with transducers with clock frequencies between 20 kHz and 300 kHz are used in ever more diverse applications, for example in applications that require very precisely regulated voltages or currents despite fast load changes. These are z. B. switched power supplies for PC's or printers.
  • the so-called induction stroke ⁇ B RS B S -B R from the remanence B R to the saturation B S should be as small as possible since the induction stroke ⁇ B RS means a voltage-time surface which is not controllable.
  • the voltage-time surface offered to the transductor for compensation is getting smaller and smaller, as a result of which a large voltage-time surface, due to ⁇ B RS, has an ever greater effect. This can be compensated by an increase in the core geometry or the core volume, which, however, at the same time can bring about an increase in the re-magnetization losses.
  • transductor cores with a rectangular hysteresis loop have particularly high remanence values, they are particularly well suited for transductor regulators with higher operating frequencies.
  • Such rectangular properties can arise when the transductor core material has a uniaxial anisotropy K u parallel to the direction of the magnetic field H generated by the winding.
  • transductor core materials with low core losses.
  • the demands on the permissible operating temperatures and the long-term stability of the transductor controllers are greatly increased. These requirements become particularly critical when transductor controllers are to be used at ambient temperatures above 100 ° C., which can occur, for example, in applications in the automobile or in industry. So far, the upper limit was about 130 ° C.
  • the magnetic cores used for this purpose should have a very high aging stability up to temperatures of at least 150 ° C. or more and are distinguished by a very small magnetic core volume.
  • transductor choke according to claim 1 or a method for producing a magnet core for a transductor choke according to one of claims 7 or 8 or a use of such a transductor choke according to claim 14.
  • Embodiments and developments of the inventive concept are the subject of dependent claims.
  • this alloy After a heat treatment which is to be tuned exactly to the respective composition, this alloy has a fine crystalline structure with a metallographic grain of average size D ⁇ 100 nm and a volume fulfillment of more than 30%, a rectangular possible hysteresis loop with low hysteresis losses as well as compared to the untempered condition greatly reduced magnetostriction of
  • . ⁇ 3 ppm addition is the saturation induction on a non-reachable with other magnetostriction alloys value of B s 1.1 ... 1.5 Tesla.
  • Another, in the context of here Deutscheng For the first time, the revealed advantages of this rectangular-loop alloy system have been found in Fig. 9 Exemplarily shown extremely weak and almost linear temperature responses of residual stroke and magnetic reversal losses particularly favorable.
  • the alloy selection according to the invention is based on the finding that, for a specific alloy composition, a hyperbolic relationship exists between the magnetization losses P fe and the residual dynamic range ⁇ B RS .
  • This hyperbolic relationship is in the FIG. 1 represented by the alloy Fe 73.5 Cu 1 Nb 3 Si 15.7 8 6.8 .
  • the interaction of the magnetic reversal losses P fe on the one side and the dynamic residual stroke ⁇ B RS on the other side is set by means of a heat treatment in a longitudinal magnetic field.
  • the so-called longitudinal anisotropy K U is set, and as the K u ⁇ B RS increases, the losses increase.
  • the Indian FIG. 1 The relationship shown is disturbed by the influence of disturbance anisotropies. The influence The lower the longitudinal anisotropy, the greater the perturbation anisotropy. This is from the FIG. 2 clearly showing the influence of mechanical stresses on magnetic cores with unbalanced magnetostriction.
  • a compromise between these two opposing sizes can only be achieved by means of a heat treatment (tempering) according to the invention which is adapted to the properties of the alloy in a magnetic field which is longitudinal to the direction of the wound strip runs, so a so-called longitudinal field, set specifically.
  • a strongly rectangular hysteresis loop a so-called Z-loop, can be induced.
  • this alloy sub-selection which is an alloy sub-selection of the abovementioned nanocrystalline alloy selection, is distinguished by the fact that it is already at lowest levels of uniaxial longitudinal anisotropy due to the greatest possible elimination from the crystal anisotropy K 1 and the saturation magnetostriction ⁇ S typically in the range K u ⁇ 10 J / m 3 , with an optimized heat treatment a pronounced rectangular hysteresis loop can be realized.
  • Particularly good residual stroke values ⁇ B RS which are in the range of less than 0.025 ⁇ B S , can be achieved, provided that the alloy strips used have effective roughness depths which lie in the ranges indicated below.
  • the roughness depths of the surfaces as well as the strip thicknesses are significant influencing factors on the magnetic properties.
  • the effective roughness R a (eff) is a significant influencing factor.
  • the roughness depth R a (eff) is defined as the sum of the roughness depths measured transversely to the strip direction on the upper side of the strip and the lower side of the strip divided by the strip thickness. It is therefore stated in percent.
  • Particularly good residual strokes can be achieved with alloy strips consisting of the abovementioned alloys and having roughness depths in the range between 3% and 9%, preferably between 4% and 7%, which results from the FIG. 10 evident.
  • the alloy ribbons are then wound into magnetic cores, which are typically present as closed, air gapless toroidal cores, oval cores or rectangular cores.
  • magnetic cores typically present as closed, air gapless toroidal cores, oval cores or rectangular cores.
  • the alloy strip can first be wound round to form the toroidal core and are brought as required by means of suitable shaping tools during the heat treatment in the appropriate form.
  • suitable shaping tools By using suitable winding body, the corresponding shape can be achieved even during winding.
  • the tensile force of the alloy strip decreases continuously as the number of layers of tape increases. This ensures that the torque acting tangentially on the magnetic core remains constant over the entire radius of the magnetic core and does not increase with increasing radius.
  • the soft magnetic amorphous ribbon produced by means of rapid solidification technology typically has a thickness d ⁇ 30 ⁇ m, preferably ⁇ 20 ⁇ m, better ⁇ 17 ⁇ m.
  • a dipping, flow, spray or electrolysis method is used on the tape.
  • the same can also be achieved by immersion insulation of the wound or stacked magnetic core.
  • care must be taken that it not only adheres well to the surface of the strip but also does not cause any surface reactions that could damage the magnetic properties.
  • oxides, acrylates, Phosphates, silicates and chromates of the elements Ca, Mg, Al, Ti, Zr, Hf, Si have been found to be effective and compatible insulators.
  • Mg is applied as a liquid magnesium-containing precursor on the strip surface, and during a special, non-alloying heat treatment in a dense layer of MgO converts, whose thickness can be between 50 nm and 1 micron.
  • Magnetic cores made from alloys suitable for nanocrystallization are generally subjected to a precisely matched heat treatment to adjust the nanocrystalline structure, which is between 450 ° C and 690 ° C, depending on the alloy composition. Typical holding times are between 4 minutes and 8 hours.
  • this crystallization heat treatment is carried out in vacuo or in passive or reducing inert gas.
  • material-specific purity conditions are to be taken into account, which are occasionally brought about by appropriate aids such as element-specific absorber or getter materials.
  • either field-free or in the magnetic field is annealed along the direction of the wound strip ("longitudinal field") or transversely thereto ("transverse field”).
  • longitudinal field the direction of the wound strip
  • transverse field the direction of the wound strip
  • a combination of two or even three of these magnetic field constellations can also be applied in succession or in parallel.
  • the strong delay of the heating rate which is dependent on the core volume and is typically between approximately 0.1 and approximately 1 K / min, starting at 450 [deg.] C., serves to compensate for the temperature at which the nanocrystallization begins there. In addition, even a Parkerütige heating break can be inserted.
  • the nanocrystalline structure matures until the crystal grains reach a volume fraction in the amorphous residual phase at which the magnetostriction has a "zero crossing".
  • the ripening temperature must be moved to a temperature of about 580 ° C or even higher temperature, in which case, however, the formation of harmful iron boride phases, the coercive field strength and at the same time the residual dynamic range .DELTA.B Raise RS .
  • the holding time can be varied more or less widely. Typical intervals are 570 ° C between 15 minutes and 2 hours. At lower temperatures, they can be extended. At higher temperatures or very small magnetic cores to be treated even at shorter times, for example at a time of 5 minutes, a high degree of ripeness of the nanocrystalline two-phase structure is achieved.
  • the influence of the cooling rates is rather low, with constant, as high as possible cooling rates are preferred. Prerequisite, however, is a defined and always the same sequence of the cooling phase. For example, cooling rates between about 1 K / min and about 20 K / min have been found suitable. Possible influences can be compensated by a slight correction of the longitudinal field temperature. This is especially true when the crystallization heat treatment is not carried out in a field-free state but in an applied magnetic transverse field. When using an applied magnetic transverse field in the crystallization pretreatment, the longitudinal anisotropy K U can be set very accurately in the subsequent longitudinal field phase so that the dynamic residual lift ⁇ B RS and the magnetization losses P fe can be set very precisely. Furthermore, this significantly reduces the possibility of scattering during the annealing of the stacked magnetic cores.
  • the uniaxial longitudinal anisotropy K U is set in the longitudinal field plateau.
  • the size of the induced uniaxial longitudinal anisotropy can be adjusted by the height of the field temperature but also by the duration of the field heat treatment and the strength of the applied magnetic field.
  • a high longitudinal field temperature T LF leads to large K U , that is, leads to small residual dynamic strokes ⁇ B RS .
  • a low longitudinal field temperature causes the opposite. The exact connection goes from the beginning already mentioned FIG. 1 out.
  • the height of K U is influenced by the strength of the longitudinal field, where K U increases steadily with the longitudinal field strength.
  • the prerequisite for the production of a "good" rectangular Z-loop with a small coercive field strength and at the same time high remanence is that the magnetic core is magnetized at any point during the heat treatment until saturation induction is reached.
  • longitudinal field strengths of about 10 to about 20 A / cm are typical, with the field strength H necessary for achieving saturation being higher, the more inhomogeneous the geometric quality of the strip used is.
  • satisfactory Z-loops can be achieved even with a longitudinal field strength of 5 A / cm or even less.
  • FIG. 3b shows two successive heat treatments and is in effect analogous to the heat treatment shown in FIG. 3a.
  • the FIGS. 3a and 3b both refer to the same alloy.
  • the first heat treatment serves to form the actual nanocrystalline alloy with nanocrystalline grains ⁇ 100 nm and a volume filling of more than 30%.
  • the second heat treatment takes place in the "longitudinal field". This second heat treatment may be at a lower temperature than the first heat treatment and serves to form the anisotropy axis along the ribbon direction.
  • the nanocrystalline Alloy structure formed and then induced the anisotropy axis along the direction of the alloy strip. (see. FIG. 3a ).
  • the anisotropy range can also be expanded and fine-tuned with the aid of a well-defined sequence of field-free treatment and / or treatment in the field, which can be at times longitudinal and transverse to the direction of the controlled band, exactly adapted to the respective alloy composition.
  • the generation of the nanocrystalline phase and the formation of the anisotropy axis can also take place simultaneously.
  • the magnetic core is heated to the target temperature, held there until the formation of the nanocrystalline structure and then cooled back to room temperature.
  • the longitudinal field is either applied during the entire heat treatment or only switched on after reaching the target temperature or even later.
  • the heating to the target temperature is as fast as possible, ie, for example, at a rate between 1 ° C / min to 15 ° C / min.
  • a particularly fine and dense grain structure can be in and / or below the temperature range of the onset of crystallization, ie below the crystallization temperature, for. B. from 460 ° C, a delayed heating rate of less than 1 ° C / min or even a Tromenütiges "temperature plateau" are inserted.
  • the magnetic core is then kept at the target temperature around 550 ° C, for example, between 4 minutes and 8 hours in order to achieve the smallest possible grain with homogeneous particle size distribution and small intergranular distances.
  • the temperature is chosen to be higher, the lower the silicon content in the alloy.
  • the onset of formation of nonmagnetic iron-boron phases or the growth of surface crystallites on the strip surface is an upper limit to the target temperature.
  • the anisotropy axis and thus the rectangular as possible hysteresis loop of the magnetic core is then maintained between 0.1 and 8 hours below the Curie temperature T C , ie between 260 ° C and 590 ° C, for example, with activated longituginalem magnetic field.
  • the uniaxial anisotropy K u induced along the direction of the band is greater, the higher the temperature in the longitudinal field is chosen.
  • the residual stroke ⁇ B RS decreases continuously as the remanence increases, so that the greatest values occur at the lowest temperatures. Inversely, the reverse magnetization losses increase.
  • the magnetic core is cooled at 0.1 ° C / min to 20 ° C / min in the adjacent longitudinal field to room temperature near values of for example 25 ° C or 50 ° C.
  • this is advantageous for economic reasons, on the other hand, for reasons of stability of the hysteresis loop below the Curie temperature, it must not be cooled field-free.
  • the field strength of the magnetic field applied in the direction of the wound alloy strip, the longitudinal field is selected such that it is significantly greater than the field strength necessary to achieve the saturation induction B S in this direction of the magnetic core.
  • good results have already been achieved with magnetic fields H> 0.9 kA / m, it being known here that the induced anisotropy increases continuously with the longitudinal field.
  • the magnetic core is solidified.
  • thermal conditions or mechanical stress sensitivity would be provided, for example, by impregnation, coating or wrapping with suitable plastic materials such as hard epoxy or soft xylilene layers and then encapsulated.
  • suitable plastic materials such as hard epoxy or soft xylilene layers and then encapsulated.
  • Such completed transductor cores can then be provided with at least one winding.
  • the use of soft, volume-saving fixings is made possible despite the large wire thicknesses by the extensive magnetostriction freedom of the alloy regions specified as being preferred.
  • FIGS. 4a and 4b show the temperature / time profile of the applied heat treatments.
  • the magnetic cores were heated at a heating rate of 7 K / min to a temperature of about 450 ° C. A magnetic field was not created. Thereafter, the heating rate was retarded to about 0.15 K / min. To avoid undefined overheating of the magnetic core due to exothermic heat development in the onset of nanocrystallization. With this relatively low heating rate of 0.15 K / min was further heated to a temperature of about 500 ° C. Thereafter, with a heating rate of 1 K / min to a final temperature plateau of 565 ° C further heated. The magnetic core was held at this temperature of 565 ° C for about 1 hour.
  • the alloy structure matured until the crystalline grains reached a volume fraction in the amorphous alloy matrix where the magnetostriction had almost disappeared. Thereafter, it was cooled to a temperature of about 390 ° C at a cooling rate of about 5 K / min.
  • a longitudinal magnetic field H LF of about 15 A / cm was turned on.
  • the magnetic core was left for 5 hours at this temperature in this so-called longitudinal field plateau. This set the uniaxial longitudinal anisotropy K U.
  • the magnetic core was cooled to room temperature at a cooling rate of 5 K / min.
  • the FIG. 4b shows the just discussed heat treatment "modular", that is, the fieldless crystallization treatment and the heat treatment in the longitudinal magnetic field were separated in time, after the crystallization heat treatment, the magnetic core was cooled to room temperature.
  • T LF 390 ° C in a longitudinal field
  • P Fe 85 W / kg (measured at a Frequency of 50 kHz and a magnetic field of 0.4 T).
  • the magnetic values of the magnetic core did not deteriorate even after coating with a volume-saving and good heat-dissipating epoxy-spinel underlayer.
  • This magnetic core was wound with a copper wire of 4 x 0.8 mm with 6 turns.
  • One with 120 kHz switched power supply 275 Watt showed with this transducer element at the maximum power draw of 150 watts of the directly regulated 5 volt output a completely stable output voltage at the transductor controlled 3.3 volt output.
  • a slightly smaller, but otherwise identical magnetic core measuring 20 x 12.5 x 8 was installed in said switching power supply under a load of 20 watts at the 3.3-volt output. However, it turned out a strong overheating of the magnetic core in the transducer, since this was due to its smaller by a factor of 1.7 smaller iron cross section by the too high voltage / time area was too strong. As a result, the switching power supply was not fully functional.
  • a stress-free wound magnetic core having the same alloy composition and the same dimensions as in the first embodiment was used, but a lowered longitudinal field temperature of about 315 ° C. was selected for a reduction of the magnetic reversal losses P fe for a shorter time of 2 hours.
  • This heat treatment is in the FIG. 5a shown.
  • the FIG. 5b again shows the same heat treatment in a modular form, as discussed in the first embodiment in its basic features.
  • FIG. 6 shows a longitudinal field treatment to the highest possible value of K u .
  • FIG. 7 shows a heat treatment on a small K u value. This heat treatment could be analogous to FIG. 5b in 2 steps, with or without cross field.
  • FIG. 8 shows a heat treatment to set a small residual stroke despite incompletely balanced magnetostriction.
  • transducers with high longitudinal anisotropy and small residual stroke are well suited for use at frequencies just above the audibility range as z. B. in - often referred to as auxiliaries converter - decentralized on-board power supplies occur. Needed in multiple numbers, with transducers regulated power supplies that are derived from the main supply are such. B. for modern railway technology, but especially in aircraft conceivable. In these cases, the comparatively high saturation induction of nanocrystalline alloys of more than 1.1 T is of great advantage, since the high controllability allows a reduction in iron cross-section and thus in core weight. This advantage is further increased by the fact that the core can be provided with a good heat-dissipating epoxy coating.
  • the magnetic reversal losses P fe at 50 kHz / 0.4 T were comparatively low and were 55 watts / kg, which made the magnetic core usable even at a high clock frequency of 200 kHz or more .
  • the small uniaxial anisotropy K U led to a certain strain sensitivity, which required a protection trough in the housing, which was associated with geometric and thermal disadvantages.
  • the saturation magnetostriction ⁇ S present after the crystallization heat treatment at 556 ° C. was about 3.7 ppm and was therefore adjusted incompletely.
  • the magnetic core for setting a maximum uniaxial anisotropy K U value was also at this temperature in the longitudinal field annealed. The result was a very low residual lift of ⁇ B RS of 23 mT and magnetization losses P fe at 50 kHz / 0.4 T of 220 watts / kg.
  • Magnet cores made of the alloy Fe 74.5 Cu 1 Nb 3 Si 14.5 B 7 were produced in a manner analogous to that in the first exemplary embodiment and in the fifth exemplary embodiment.
  • the saturation magnetostriction ⁇ S here was about 1.8 ppm.
  • the magnetic cores were coated with hard-hardening plastic, so that a mechanical stress was induced. At frequencies of ⁇ 100 kHz, this led to an increase in the residual dynamic range ⁇ B RS . At a frequency of about 10 kHz, a residual swing of about 128 mT resulted. At frequencies above 100 kHz, the dynamic residual lift was only slightly increased compared to the magnetic core of the first embodiment. In particular, the same characteristic was obtained after installation in the switched power supply unit of embodiment 1.
  • a particularly innovative use of transducers according to the present invention is in power supplies for automotive electrical systems, in which the electrical system is switched to 42 volts. These electrical systems usually have different voltage levels. In one application, 12 volts / 500 watts from the 42 volt / 3 kilowatt supply were realized via a transductor-controlled circuit. The output was permanently short-circuit proof at a working frequency of 50 kHz and a Ambient temperature of 85 ° C in the engine of an internal combustion engine. A magnetic core with the dimensions of 40 x 25 x 20 mm 3 , which was provided in a plastic trough with 18 turns, was used. The design was open with a winding of 3 x 1.3 mm enameled copper wire.
  • New drive concepts use electric drives to generate electricity.
  • fuel cells have been under discussion for a long time.
  • These cooling systems can be used for the 12 volt / 42 volt supplies to reduce weight or build volume.
  • a magnetic core with the dimensions 38 ⁇ 28 ⁇ 15 mm 3 with good heat-dissipating Epoxidharzummantelung was used in a power supply with the aforementioned data.
  • the magnetic core was provided with 46 turns of 2 x 1.3 mm enameled copper wire and placed in a cast aluminum housing.
  • the magnetic core was again provided with a heat-dissipating epoxy casting in the cast aluminum housing.
  • Vergußkombination a very good heat sink connection was achieved, but this has been made possible only by the invention, used almost magnetostriction-free magnetic core.
  • the attached three tabular dimensioning examples represent typical dimensions of transducer transducers according to the invention of the alloy of the embodiments 1 and 2 for the application circuits discussed.
  • computer switched mode power supplies that is, PC switched mode power supplies as well as server switched mode power supplies, which in practice are commonly implemented as single ended power-on circuits at switching frequencies between 70 and 200 kHz.
  • a volume-optimized transductor choke which has low losses and a high saturation induction.
  • the magnetic core for a transductor according to the invention specifically cross-field and / or longitudinal field treatments in the context of heat treatment to adjust the functional relationship between core losses and dynamic residual stroke in one of the application optimally adapted dosage and combination used.
  • the focus is on a magnitude control of the unaxial longitudinal isotropy by means of the variation of the longitudinal field temperature and / or a clever combination of transverse field and longitudinal field treatment.
  • a magnetic core underlying alloy After a heat treatment, which is to be fine-tuned to the respective composition, a magnetic core underlying alloy has a fine crystalline structure with a metallographic grain, for example, the average size D ⁇ 100nm and a volume of, for example, more than 30%, a rectangular as possible hysteresis loop at the same time low magnetization losses as well as a greatly reduced magnetostriction of
  • FIG. 9 Exemplarily shown extremely weak and almost linear temperature responses of residual stroke and magnetic reversal losses in this alloy system.
  • the negative temperature coefficient of the magnetic reversal losses is particularly favorable.
  • transducers in general and in particular with transducers for use at high operating temperatures.
  • transducers can be realized, which are used in motor vehicles or industrial drives and are mounted, for example, in the context of a motor control directly on the engine.
  • the operating temperatures are there due to the immediate proximity to the engine and the complete encapsulation of the engine control usually far higher than the working limit temperatures allowed the previously known cores.
  • the winding of the transductor core is designed with an electrical conductor with a corresponding temperature index according to DIN 172.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Claims (14)

  1. Procédé de fabrication d'un noyau magnétique pour une bobine de transducteur,
    la bobine de transducteur ayant un noyau magnétique en un alliage nanocristallin et cet alliage a la composition suivante :
    FeaCobCucM'dSixByM"z, et M' est un élément du groupe V, Nb, Ta, Ti, Mo, W, Zr, Hf ou une combinaison de ces éléments et M" est un élément du groupe C, P, Ge, As, Sb, In, O, N ou une combinaison de ces éléments et en appliquant les conditions suivantes : a + b + c + d + x + y + z = 100 % , a = 100 % - b - c - d - x - y - z , 0 b 15 , 0 , 5 c 2 , 0 , 1 d 6 , 2 x 20 , 2 y 18 , 0 z 10 et x + y > 18 ,
    Figure imgb0009
    et le noyau magnétique a une boucle d'hystérésis aussi rectangulaire que possible et une magnétostriction saturée |λs| < 3 ppm, procédé comprenant les étapes suivantes :
    • Coulée d'une bande mince en un alliage amorphe ;
    • Enroulement sans tension de la bande mince pour former un noyau magnétique ;
    • Chauffage du noyau magnétique à une première température de consigne supérieure à la température de cristallisation de l'alliage amorphe, avec une vitesse de chauffage comprise entre 1 K/min et 20 K/min ;
    • Maintien du noyau magnétique à la première température de consigne pour une durée de 8 heures ou moins ;
    • Refroidissement du noyau magnétique à une seconde température de consigne en dessous de la température de Curie de l'alliage et en dessous de la température de cristallisation de l'alliage amorphe, avec une vitesse de refroidissement comprise entre 1 K/min et 20 K/min ;
    • Maintien du noyau magnétique à la seconde température de consigne pour une durée de 8 heures ou moins sous un champ magnétique longitudinal H > 0,5 kA/m ;
    • Refroidissement du noyau magnétique à la température ambiante.
  2. Procédé de fabrication d'un noyau magnétique pour une bobine de transducteur,
    la bobine de transducteur ayant un noyau magnétique en un alliage nanocristallin et cet alliage a la composition suivante :
    FeaCobCucM'dSixByM"z, et M' est un élément du groupe V, Nb, Ta, Ti, Mo, W, Zr, Hf ou une combinaison de ces éléments et M" est un élément du groupe C, P, Ge, As, Sb, In, O, N ou une combinaison de ces éléments et en appliquant les conditions suivantes : a + b + c + d + x + y + z = 100 % , a = 100 % - b - c - d - x - y - z , 0 b 15 , 0 , 5 c 2 , 0 , 1 d 6 , 2 x 20 , 2 y 18 , 0 z 10 et x + y > 18 ,
    Figure imgb0010
    et le noyau magnétique a une boucle d'hystérésis aussi rectangulaire que possible et une magnétostriction saturée |λs| < 3 ppm, procédé comprenant les étapes suivantes :
    • Coulée d'une bande mince en un alliage amorphe ;
    • Enroulement sans tension de la bande mince pour former un noyau magnétique ;
    • Chauffage du noyau magnétique à une première température de consigne supérieure à la température de cristallisation de l'alliage amorphe, avec une vitesse de chauffage comprise entre 1 K/min et 20 K/min ;
    • Maintien du noyau magnétique à la première température de consigne pour une durée de 8 heures ou moins ;
    • Refroidissement du noyau magnétique à la température ambiante ;
    • Chauffage du noyau magnétique à une seconde température de consigne en dessous de la température de Curie de l'alliage et en dessous de la température de cristallisation de l'alliage amorphe, avec une vitesse de chauffage comprise entre 1 K/min et 20 K/min ;
    • Maintien du noyau magnétique à la seconde température de consigne pour une durée de 8 heures ou moins sous un champ magnétique longitudinal H > 0,5 kA/m ;
    • Refroidissement du noyau magnétique à la température ambiante.
  3. Procédé de fabrication d'un noyau magnétique selon la revendication 1 ou 2,
    caractérisé en ce que
    la seconde température de consigne est comprise entre 290°C et 520°C.
  4. Procédé selon la revendication 1,
    caractérisé en ce que
    le traitement thermique global est exécuté en l'absence de champ.
  5. Procédé selon les revendications 1, 2 et 3,
    caractérisé en ce que
    le chauffage à la première température de consigne se fait dans un champ magnétique transversal.
  6. Procédé selon la revendication 5,
    caractérisé en ce que
    le plateau de maintien et/ou la phase de refroidissement suivante, se fait dans un champ magnétique transversal.
  7. Procédé selon l'une des revendications 1 à 5,
    caractérisé en ce que
    le chauffage à la première température de consigne se fait jusqu'à une température d'environ 450°C, à une vitesse de chauffage comprise entre 1 K/min et 20 K/min et ensuite à une vitesse de chauffage d'environ 0,15 K/min.
  8. Bobine de transducteur comportant un noyau magnétique en un alliage nanocristallin obtenu selon le procédé des revendications 1 ou 2, selon lequel l'alliage a la composition suivante :
    FeaCobCucM'dSixByM"z, et M' est un élément du groupe V, Nb, Ta, Ti, Mo, W, Zr, Hf ou une combinaison de ces éléments et M" est un élément du groupe C, P, Ge, As, Sb, In, O, N ou une combinaison de ces éléments et on applique les conditions suivantes : a + b + c + d + x + y + z = 100 % , a = 100 % - b - c - d - x - y - z , 0 b 15 , 0 , 5 c 2 , 0 , 1 d 6 , 2 x 20 , 2 y 18 , 0 z 10 et x + y > 18 ,
    Figure imgb0011
    et le noyau magnétique a une boucle d'hystérésis aussi rectangulaire que possible et une magnétostriction de saturation |λs| < 3 ppm.
  9. Bobine de transducteur selon la revendication 8,
    caractérisée en ce qu'
    on applique les conditions suivantes : 0 b 0 , 5 , 0 , 8 c 1 , 2 2 d 4 , 14 x 17 , 5 y 12 et 22 x + y 24.
    Figure imgb0012
  10. Bobine de transducteur selon la revendication 8 ou 9,
    caractérisée en ce que
    la magnétostriction de saturation est |λs| < 0,2 ppm.
  11. Bobine de transducteur selon l'une des revendications 8 à 10,
    caractérisée en ce que
    la profondeur de rugosité effective Ra (eff) est comprise entre 3 et 9 %.
  12. Bobine de transducteur selon la revendication 11,
    caractérisée en ce que
    la profondeur de rugosité effective Ra (eff) est comprise entre 4 et 7 %.
  13. Bobine de transducteur selon l'une des revendications 8 à 12,
    caractérisée par
    des pertes (Pfe) inférieures à 140 W/kg pour une fréquence d'environ 100 kHz et une amplitude d'induction d'environ 0,2 T.
  14. Utilisation d'une bobine de transducteur avec un noyau magnétique selon l'une des revendications 8 à 13, dans une partie de circuit commuté d'une alimentation électrique d'un véhicule automobile.
EP01978352A 2000-09-15 2001-09-07 Transducteur magnetique a demi-periode avec noyau magnetique, utilisation de transducteurs magnetiques a demi-periode, ainsi que procede de fabrication de noyaux magnetiques pour transducteurs magnetiques a demi-periode Expired - Lifetime EP1317758B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10045705 2000-09-15
DE10045705A DE10045705A1 (de) 2000-09-15 2000-09-15 Magnetkern für einen Transduktorregler und Verwendung von Transduktorreglern sowie Verfahren zur Herstellung von Magnetkernen für Transduktorregler
PCT/EP2001/010362 WO2002023560A1 (fr) 2000-09-15 2001-09-07 Transducteur magnetique a demi-periode avec noyau magnetique, utilisation de transducteurs magnetiques a demi-periode, ainsi que procede de fabrication de noyaux magnetiques pour transducteurs magnetiques a demi-periode

Publications (2)

Publication Number Publication Date
EP1317758A1 EP1317758A1 (fr) 2003-06-11
EP1317758B1 true EP1317758B1 (fr) 2010-04-21

Family

ID=7656340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01978352A Expired - Lifetime EP1317758B1 (fr) 2000-09-15 2001-09-07 Transducteur magnetique a demi-periode avec noyau magnetique, utilisation de transducteurs magnetiques a demi-periode, ainsi que procede de fabrication de noyaux magnetiques pour transducteurs magnetiques a demi-periode

Country Status (6)

Country Link
US (1) US7442263B2 (fr)
EP (1) EP1317758B1 (fr)
JP (1) JP2004509459A (fr)
CN (1) CN1258779C (fr)
DE (2) DE10045705A1 (fr)
WO (1) WO2002023560A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (de) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens
JP5342745B2 (ja) * 2003-04-02 2013-11-13 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 鉄心とその製造および使用方法
DE102004024337A1 (de) * 2004-05-17 2005-12-22 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung nanokristalliner Stromwandlerkerne, nach diesem Verfahren hergestellte Magnetkerne sowie Stromwandler mit denselben
CN1297994C (zh) * 2004-11-26 2007-01-31 中国兵器工业第五二研究所 无须磁场处理获取特殊矩形比纳米晶软磁材料的方法
CN100372033C (zh) * 2005-06-23 2008-02-27 安泰科技股份有限公司 漏电保护器用抗直流偏磁互感器磁芯及其制造方法
DE102005034486A1 (de) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie Generator mit einem derartigen Kern
JP5182601B2 (ja) * 2006-01-04 2013-04-17 日立金属株式会社 非晶質合金薄帯、ナノ結晶軟磁性合金ならびにナノ結晶軟磁性合金からなる磁心
DE102006019613B4 (de) * 2006-04-25 2014-01-30 Vacuumschmelze Gmbh & Co. Kg Magnetkern, Verfahren zu seiner Herstellung sowie seine Verwendung in einem Fehlerstromschutzschalter
JP2007305882A (ja) * 2006-05-12 2007-11-22 Sony Corp 記憶素子及びメモリ
US20070273467A1 (en) * 2006-05-23 2007-11-29 Jorg Petzold Magnet Core, Methods For Its Production And Residual Current Device
ATE418625T1 (de) * 2006-10-30 2009-01-15 Vacuumschmelze Gmbh & Co Kg Weichmagnetische legierung auf eisen-kobalt-basis sowie verfahren zu deren herstellung
JP5316920B2 (ja) * 2007-03-16 2013-10-16 日立金属株式会社 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
CN101250619B (zh) * 2008-04-11 2010-06-02 西安建筑科技大学 一种FeCoV系合金细晶半硬磁材料的制备方法
DE102010026084A1 (de) * 2010-07-05 2012-01-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Auftragen von Materialschichten auf einem Werkstück aus TiAI
EP2416329B1 (fr) * 2010-08-06 2016-04-06 Vaccumschmelze Gmbh & Co. KG Noyau magnétique pour des applications basse fréquence et procédé de fabrication d'un noyau magnétique pour des applications basse fréquence
DE102010060740A1 (de) * 2010-11-23 2012-05-24 Vacuumschmelze Gmbh & Co. Kg Weichmagnetisches Metallband für elektromechanische Bauelemente
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN102881396A (zh) * 2012-09-10 2013-01-16 虞雪君 磁性合金粉末材料
CN103117153B (zh) * 2013-03-06 2016-03-02 安泰科技股份有限公司 共模电感铁基纳米晶铁芯及其制备方法
CN103943308A (zh) * 2014-04-22 2014-07-23 安徽众恒复合材料科技有限公司 一种扼流圈
WO2016017578A1 (fr) * 2014-07-28 2016-02-04 日立金属株式会社 Noyau de transformateur de courant, son procédé de fabrication, et dispositif équipé dudit noyau
CN105702408B (zh) * 2016-03-15 2018-09-28 嘉兴欧祥通讯设备有限公司 一种纳米晶软磁材料的制备方法
EP3522186B1 (fr) * 2016-09-29 2022-11-02 Hitachi Metals, Ltd. Noyau magnétique en alliage nanocristallin, unité de noyau magnétique et procédé de fabrication de noyau magnétique en alliage nanocristallin
CN106952720B (zh) * 2017-02-28 2020-05-01 佛山市中研非晶科技股份有限公司 一种磁放大器用钴基非晶铁芯的制备方法
CN108231315A (zh) * 2017-12-28 2018-06-29 青岛云路先进材料技术有限公司 一种铁钴基纳米晶合金及其制备方法
JP2019145674A (ja) * 2018-02-21 2019-08-29 Tdk株式会社 希土類磁石の加工方法
CN109003772A (zh) * 2018-07-24 2018-12-14 江门市汇鼎科技有限公司 一种复合材料磁芯及其制备方法
DE102019105215A1 (de) * 2019-03-01 2020-09-03 Vacuumschmelze Gmbh & Co. Kg Legierung und Verfahren zur Herstellung eines Magnetkerns
GB2584107B (en) * 2019-05-21 2021-11-24 Vacuumschmelze Gmbh & Co Kg Sintered R2M17 magnet and method of fabricating a R2M17 magnet
DE102019133826A1 (de) * 2019-12-10 2021-06-10 Magnetec - Gesellschaft für Magnettechnologie mbH Band für ein magnetfeldempfindliches Bauelement
AR118827A1 (es) 2020-04-30 2021-11-03 Tecnovia S A Disposición clasificadora de tránsito por detección de la banda de rodadura metálica de los neumáticos

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002375B1 (ko) * 1987-07-14 1991-04-20 히다찌 긴조꾸 가부시끼가이샤 자성코어 및 그 제조방법
JP2698369B2 (ja) * 1988-03-23 1998-01-19 日立金属株式会社 低周波トランス用合金並びにこれを用いた低周波トランス
JP2710949B2 (ja) * 1988-03-30 1998-02-10 日立金属株式会社 超微結晶軟磁性合金の製造方法
US5622768A (en) * 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
JPH0737706A (ja) * 1993-07-19 1995-02-07 Murata Mfg Co Ltd 半導体セラミック素子
JP3233313B2 (ja) 1993-07-21 2001-11-26 日立金属株式会社 パルス減衰特性に優れたナノ結晶合金の製造方法
DE69408916T2 (de) * 1993-07-30 1998-11-12 Hitachi Metals Ltd Magnetkern für Impulsübertrager und Impulsübertrager
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
JP2713373B2 (ja) * 1995-03-13 1998-02-16 日立金属株式会社 磁 心
JPH11102827A (ja) * 1997-09-26 1999-04-13 Hitachi Metals Ltd 可飽和リアクトル用コア、およびこれを用いた磁気増幅器方式多出力スイッチングレギュレータ、並びにこれを用いたコンピュータ
ES2264277T3 (es) * 1998-11-13 2006-12-16 Vacuumschmelze Gmbh Nucleo magnetico adecuado para su uso en un transformador de intesidad, procedimiento para fabricar un nucleo magnetico y transformador de intensidad con un nucleo magnetico.

Also Published As

Publication number Publication date
US7442263B2 (en) 2008-10-28
DE10045705A1 (de) 2002-04-04
EP1317758A1 (fr) 2003-06-11
US20040027220A1 (en) 2004-02-12
DE50115446D1 (de) 2010-06-02
CN1475018A (zh) 2004-02-11
JP2004509459A (ja) 2004-03-25
CN1258779C (zh) 2006-06-07
WO2002023560A1 (fr) 2002-03-21

Similar Documents

Publication Publication Date Title
EP1317758B1 (fr) Transducteur magnetique a demi-periode avec noyau magnetique, utilisation de transducteurs magnetiques a demi-periode, ainsi que procede de fabrication de noyaux magnetiques pour transducteurs magnetiques a demi-periode
DE3909747C2 (fr)
DE60224313T2 (de) Magnetische Legierung auf Co-Basis und daraus hergestellte magnetische Teile
DE3884491T2 (de) Magnetkern und Verfahren zur Herstellung.
EP1131830B1 (fr) Noyau magnetique destine a etre utilise dans un transformateur d&#39;intensite, procede de fabrication d&#39;un noyau magnetique et transformateur d&#39;intensite equipe d&#39;un tel noyau
EP1747566B1 (fr) Noyau de transformateur de courant et procede de production d&#39;un noyau de transformateur de courant
DE3001889C2 (de) Verfahren zur Herstellung einer magnetischen glasartigen Legierungsfolie
EP2463869B2 (fr) Composant inductif doté de propriétés de noyau améliorées
DE3779481T2 (de) Dauermagnet und verfahren zu seiner herstellung.
DE69210017T2 (de) VERFAHREN ZUR HERSTELLUNG VON WEICHMAGNETISCHEN LEGIERUNGEN AUF Fe-Ni BASIS MIT NANOKRISTALLINER STRUKTUR
DE3835986C2 (fr)
EP1114429B1 (fr) Transformateur de courant a tolerance vis-a-vis du courant continu
DE102007004835A1 (de) Amorphe weichmagnetische Legierung und diese verwendendes Induktions-Bauteil
DE102012218657A1 (de) Magnetkern, Verfahren und Vorrichtung zu dessen Herstellung und Verwendung eines solchen Magnetkerns
DE2835389A1 (de) Magnetische legierung
EP2697399B1 (fr) Alliage, noyau magnétique et procédé pour fabriquer une bande d&#39;un alliage
DE10134056A1 (de) Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens
DE2824749A1 (de) Induktives bauelement und verfahren zu seiner herstellung
DE69922891T2 (de) Magnetkern für HF-beschleunigenden Hohlraum und der Hohlraum
DE69100720T2 (de) Magnetkerne durch verwendung von metallglasbändern und interlaminare isolierung mit mikapapier.
DE4209144A1 (de) Weichmagnetische legierung, verfahren zu ihrer herstellung und magnetkern
EP3401416A1 (fr) Alliage magnétique doux à base de fer, son procédé de fabrication et pièces magnétiques utilisant l&#39;alliage magnétique doux à base de fer
DE112014003755T5 (de) Transformator-Magnetkern auf amorpher Fe-Basis, Verfahren zu seiner Herstellung, und Transformator
DE68908769T2 (de) Weichmagnetische Legierung auf Eisenbasis.
KR101949171B1 (ko) Fe계 연자성 합금 및 이를 통한 자성부품

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030228

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50115446

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160930

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160928

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170907

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181130

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115446

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401