EP1303856B1 - Verfahren zur fehlerverschleierung von übertragungsfehlern in digitalen audiodaten - Google Patents

Verfahren zur fehlerverschleierung von übertragungsfehlern in digitalen audiodaten Download PDF

Info

Publication number
EP1303856B1
EP1303856B1 EP01953895A EP01953895A EP1303856B1 EP 1303856 B1 EP1303856 B1 EP 1303856B1 EP 01953895 A EP01953895 A EP 01953895A EP 01953895 A EP01953895 A EP 01953895A EP 1303856 B1 EP1303856 B1 EP 1303856B1
Authority
EP
European Patent Office
Prior art keywords
channel
error
digital audio
audio data
errors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01953895A
Other languages
English (en)
French (fr)
Other versions
EP1303856A1 (de
Inventor
Claus Kupferschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1303856A1 publication Critical patent/EP1303856A1/de
Application granted granted Critical
Publication of EP1303856B1 publication Critical patent/EP1303856B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm

Definitions

  • the Reception quality from the previously set audio channel for the initialization of the Error concealment is used with the currently set audio channel.
  • the previously set audio channel provides data on the transmission conditions required for Time is available and thus an estimate of which reception quality at the current audio channel set is expected to be expected.
  • the channel error protection level of the currently and previously set audio channel the starting values can be adjusted. Has the currently set audio channel higher channel error protection than the previously set, then there is less Error concealment necessary than was previously required.
  • the start values are either from the current Number of transmission errors of the set digital Audio channel or from a transmission error number of one previously set digital audio channel. In the The number of transmission errors, the bit error rate and / or flow the number of scale factor errors and / or the number of Checksum error on. By comparing the Channel error protection levels of the first and second audio channels the start values are adjusted accordingly.
  • the Channel error protection level indicates how much data the User data can be added to the receiving end Recognize transmission errors or to correct.
  • the radio receiver is a digital receiver in which Is able to receive both DAB and FM. Then the Error concealment if initially an FM audio channel was selected and then a DAB channel, through a Sniffer function prepared. That in short The radio receiver checks the time periods Number of transmission errors with equivalent digital Audio channels to in case of deterioration Switch the reception quality of the FM channel automatically. This also applies in the opposite case, if at a poor reception situation with DAB to an equivalent FM audio channel is switched. Here then during of a frame the reception quality of equivalent FM channels determined. Such equivalent channels are called Accompanying information with or are in the Broadcast receiver already saved.
  • the reception quality can vary from the reception field strength (Signal field strength), the synchronization attempts, the Baseband energy and other parameters can be determined.
  • This reception quality is specified with a Quality measure compared, which is determined empirically. is the reception quality better than the quality measure, then lies the reception quality is acceptable below the quality measure, then at an existing one digital audio channel switched to this, provided the digital audio channel has a number of transmission errors, which enables good reception (no muting).
  • the FM channel can be a digital carrier (RDS), which is used to determine the number of transmission errors can be used.
  • Method step 18 If it was found in method step 16 that no digital audio channel had been set and therefore none Number of transmission errors for the initialization of the Error concealment, then in Method step 18 the currently calculated Number of transmission errors resulting from the bit error rate, which results from the channel decoding, the Number of checksum errors caused by a CRC (Cyclic Redundancy Check) is calculated and the Number of scale factors errors calculated. With that the Initialization with start values in method step 20 started, then in process step 21 again Error concealment with currently calculated Continuing transmission error numbers.
  • CRC Cyclic Redundancy Check

Description

Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Fehlerverschleierung von Übertragungsfehlern in digitalen Audiodaten nach der Gattung des unabhängigen Patentanspruchs 1.
Es ist bereits bekannt, eine Fehlerverschleierung bei digitalen Audiodaten, die beispielsweise von einem Autoradio empfangen werden, vorzunehmen. Dabei wird stufenweise die Bandbreite des empfangenen Audiosignals mit zunehmender Übertragungsfehleranzahl reduziert. Dies senkt die subjektive Wahrnehmung der Übertragungsfehler bei einem Hörer. Es kann soweit gehen, dass eine Stummschaltung vorgenommen wird, falls die Übertragungsfehleranzahl einen Grenzwert überschreitet. Andere Strategien der Fehlerverschleierung betreffen das Ersetzen oder Eliminieren gestörter Signalwerte. Mittels Kanalcodierung werden den digitalen Audiodaten Redundanzen zugefügt, mittels derer ein Empfänger die Fehleranzahl und gegebenenfalls eine Fehlerkorrektur vornehmen kann. Eine Quellencodierung wird zur Reduktion der zu übertragenden Daten vorgenommen, wobei ein Empfänger anhand vorgegebener Regeln eine Quellendecodierung vornimmt, um die empfangenen digitalen Audiodaten wieder zu decodieren und nach erfolgter Digital-Analog-Wandlung hörbar zu machen.
Aus Wiese D., Preprints of papers presented at the AES convention, 1992: Optimization of Error Detection and Concealment for ISO/MPEG/Audio Codecs Layer-I and II geht hervor, allgemein die Fehlerverschleierung bei bestimmten erkannten Fehlern einzusetzen. Dabei werden verschiedene Fehlerverschleierungsmaßnahmen, z.B. Stummschaltung, Wiederholung oder Ersetzung vorgeschlagen. Insbesondere wird dabei der Skalenfaktor wiederholt.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zur Fehlerverschleierung von Übertragungsfehlern in digitalen Audiodaten mit den Merkmalen des unabhängigen Patentanspruchs 1 hat demgegenüber den Vorteil, dass die Fehlerverschleierung mit Startwerten initialisiert wird. Damit ist die Fehlerverschleierung (engl. Concealment) unabhängig von Einschwingvorgängen von Zählern, die für die Fehlerverschleierung verwendet werden. Es ist also keine Statistik notwendig, die eine bestimmte Anzahl von Ereigniswerten benötigt. Die Fehlerverschleierung spricht damit sofort an.
Weiterhin ermöglicht das erfindungsgemäße Verfahren eine verbesserte Fehlerverschleierung mit einem geringen Zusatzaufwand. Das erfindungsgemäße Verfahren kann auf allen verfügbaren Audiodecodem eingesetzt werden. Darüber hinaus sind individuelle Fehlerstrategien implementierbar, um je nach Anzahl der Übertragungsfehler eine entsprechende Formung des Audiospektrums vorzunehmen. Auch verschiedene Audiokompressionsverfahren sind mit dem erfindungsgemäßen Verfahren anwendbar.
Weiterhin ist es für die Initialisierung der Fehlerverschleierung von Vorteil, dass die Empfangsqualität von dem vorher eingestellten Audiokanal für die Initialisierung der Fehlerverschleierung bei dem aktuell eingestellten Audiokanal verwendet wird. Der vorher eingestellte Audiokanal liefert Daten über die Übertragungsbedingungen, die zur Zeit vorliegen und damit eine Abschätzung, welche Empfangsqualität bei dem aktuell eingestellten Audiokanal voraussichtlich zu erwarten ist. Durch einen weiteren Vergleich des Kanalfehlerschutzniveaus des aktuell und vorhergehend eingestellten Audiokanals ist eine Anpassung der Startwerte möglich. Weist der aktuell eingestellte Audiokanal einen höheren Kanalfehlerschutz auf als der vorher eingestellte, dann ist eine geringere Fehlerverschleierung notwendig, als dies vorher erforderlich war.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch angegebenen Verfahrens zur Fehlerverschleierung von Übertragungsfehlern in digitalen Audiodaten möglich.
Besonders vorteilhaft ist, dass die Empfangsqualität jeweils aus der Bitfehlerrate und/oder der Anzahl der Skalenfaktorfehler und/oder der Anzahl der Prüfsummenfehler berechnet wird. Diese Werte ergeben sich jeweils aus der Kanal- bzw. Quellendecodierung. Damit werden Werte, die sowieso für andere Aufgaben erstellt werden, zusätzlich verwendet.
Weiterhin ist es von Vorteil, dass die Fehlerverschleierung der digitalen Audiodaten durch eine Entzerrung vorgenommen wird. Damit ist eine Formung des Spektrums möglich, so dass der subjektive Eindruck eines Zuhörers von Übertragungsfehlern minimiert wird. Das basiert auf einer Equalizer-Funktion.
Darüber hinaus ist es von Vorteil, dass die Zeitdauer der Abspeicherung der Empfangsqualität des vorher eingestellten digitalen Audiokanals mit einem Schwellwert verglichen wird, so dass solche Empfangsqualitäten, die nur einen Eindruck über eine weit entfernte Vergangenheit geben, nicht für die Initialisierung der Fehlerverschleierung verwendet werden. Solch eine weit entfernte Vergangenheit betrifft hier beispielsweise Übertragungsfehleranzahlen, die vor mindestens 2 bis 3 Sekunden berechnet wurden. Innerhalb von 2 bis 3 s kann ein Fahrzeug bereits eine solche Entfernung zurückgelegt haben, so dass sich die Empfangsbedingungen und damit die Empfangsqualität erheblich geändert haben können.
Schließlich ist es auch von Vorteil, dass ein Rundfunkempfänger entsprechende Mittel aufweist, um das erfindungsgemäße Verfahren durchzuführen. Dazu gehört insbesondere ein Prozessor und ein Speicher, um die digitalen Audiodaten gemäß dem erfindungsgemäßen Verfahren zu bearbeiten.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Es zeigt
  • Figur 1 ein Blockschaltbild eines Rundfunkempfängers zur Durchführung des erfindungsgemäßen Verfahrens und
  • Figur 2 ein Flussdiagramm des erfindungsgemäßen Verfahrens.
  • Beschreibung
    Werden digitale Audiodaten beispielsweise mittels eines Autoradios empfangen, und es wird ein neuer Audiokanal eingestellt, dann muss eine Fehlerverschleierung, die bei einer bestimmten Übertragungsfehleranzahl verwendet wird, die nicht durch die Kanaldecodierung korrigiert werden kann, initialisiert werden. Erfindungsgemäß wird daher eine solche Fehlerverschleierung mit Startwerten initialisiert, wobei die Fehlerverschleierung dann durch eine Empfangsqualität, die sich aus dem aktuell eingestellten digitalen Audiokanal ergibt, angepaßt wird und dass dann nach der Kanaldecodierung die Fehlerverschleierung von den Übertragungsfehlern in den digitalen Audiodaten durchgeführt wird.
    Die Startwerte werden entweder aus der aktuellen Übertragungsfehleranzahl des eingestellten digitalen Audiokanals oder aus einer Übertragungsfehleranzahl eines vorher eingestellten digitalen Audiokanals berechnet. In die Übertragungsfehleranzahl fließen die Bitfehlerrate und/oder die Anzahl der Skalenfaktorfehler und/oder die Anzahl der Prüfsummenfehler ein. Durch einen Vergleich der Kanalfehlerschutzniveaus des ersten und zweiten Audiokanals werden die Startwerte entsprechend angepasst. Das Kanalfehlerschutzniveau bezeichnet, wieviele Daten den Nutzdaten hinzugefügt werden, um empfangsseitig Übertragungsfehler zu erkennen beziehungsweise zu korrigieren.
    Durch eine Entzerrung wird schließlich die Fehlerverschleierung realisiert. Dabei kann eine Formung des Audiospektrums oder nur eine Pegelreduktion bis zur Stummschaltung verwendet werden. Ist der vorher eingestellte Audiokanal ein analoger Audiokanal (FM), dann wird eine Empfangsqualität für diesen Audiokanal beispielsweise aus der Empfangsfeldstärke und den Synchronisationsversuchen berechnet und mit einem vorgegebenen Qualitätsmaß verglichen, um die Empfangsqualität des Audiokanals zu überprüfen. In kurzen Zeitabschnitten, die zu keinen hörbaren Effekten führen, wird eine Übertragungsfehleranzahl von äquivalenten digitalen Audiokanälen überprüft, so dass gegebenenfalls eine Umschaltung vorgenommen werden kann. Bei einer Umschaltung ist auch eine kurze Stummschaltung zu Beginn vorzusehen, um die jeweilige Übertragungsfehleranzahl des neu eingestellten digitalen Audiokanals für eine entsprechende Fehlerverschleierung zu ermitteln. Dies ist auch umgekehrt möglich.
    Sind die Übertragungsfehleranzahlen des vorher eingestellten digitalen Audiokanals zu alt, dann wird ebenfalls die Übertragungsfehleranzahl des aktuell eingestellten digitalen Audiokanals für die Initialisierung der Fehlerverschleierung verwendet. Die Fehlerverschleierung selbst wird durch eine Formung des Audiospektrums durchgeführt.
    Das erfindungsgemäße Verfahren ermöglicht, dass ein Umschalten insbesondere in ungünstigen Empfangssituationen zu einem subjektiv besseren Höreindruck von empfangenen Audioprogrammen führt. Dabei werden aktuell ausgewertete Daten verwendet.
    Das erfindungsgemäße Verfahren betrifft insbesondere digitale Audiodaten, die über digitale Rundfunkübertragungsverfahren übertragen werden. Dazu gehört insbesondere DAB (Digital Audio Broadcasting). Aber auch DRM (Digital Radio Mondiale) oder DVB (Digital Video Broadcasting) sind geeignete Rundfunkübertragungsverfahren. Diese Verfahren sind insbesondere für den mobilen Empfang geeignet, da orthogonaler Frequenzmultiplex (OFDM = Orthogonal Frequency Division Multiplex) als Übertragungsverfahren verwendet wird. Der OFDM stellt eine geeignete Methode zur Überwindung des frequenzselektiven Schwunds (fading) dar. Der frequenzselektive Schwund wird sich dann nicht drastisch auf den Empfang von digitalen Audiodaten auswirken, da die digitalen Audiodaten auf viele Unterträger, die sich gegenseitig nicht beeinflussen, verteilt werden. Die Unterträger befinden sich auf unterschiedlichen Frequenzen, die nahe beieinander liegen.
    Mit der Kanaldekodierung kann dann ein großer Teil der auftretenden Übertragungsfehler erkannt und gegebenenfalls korrigiert werden. Zusätzlich werden dann Fehlerverschleierungsmaßnahmen eingesetzt: Eine weitere Fehlererkennung, die in der Quellendekodierung implementiert ist und mittels einer Prüfsumme arbeitet, bildet eine zweite Stufe, um Fehler zu erkennen und zu korrigieren. Hierbei werden, wenn ein Fehler erkannt wird, vorher abgespeicherte Daten aktuelle fehlerbehaftete Daten ersetzen. Es liegt damit eine Fehlerverschleierung vor, aber, da zeitlich aufeinanderfolgende Audiodaten eine enge Korrelation zueinander aufweisen, ist es eine gute Schätzung, um aktuell fehlerbehaftete Daten zu ersetzen. Dies betrifft Rahmenfehler, die durch Prüfsummenfehler erkannt werden, und Skalenfaktorenfehler, die ebenfalls durch Prüfsummenfehler ermittelt werden.
    Bei DAB (Digital Audio Broadcasting) werden sendeseitig die Audiosignale in Frequenzbereiche aufgeteilt. Für jeden Frequenzbereich wird der Frequenzwert mit der größten Signalleistung als sogenannter Skalenfaktor verwendet. Die übrigen Signalwerte in diesem Frequenzbereich werden auf diesen Skalenfaktor normiert. Damit wird der Abstand von der kleinsten Signalleistung zur größten Signalleistung erheblich reduziert. Die Skalenfaktoren werden dann mit den normierten Audiodaten zum Empfänger hin übertragen.
    Ist die zeitliche Abfolge der Skalenfaktoren innerhalb eines Rahmens gleich oder sehr ähnlich, dann wird für diesen Frequenzbereich nur ein Skalenfaktor übertragen, um Übertragungskapazität einzusparen. Bei DAB werden für einen Frequenzbereich (engl. Subband) 36 zeitlich aufeinanderfolgende Abtastwerte genommen und in drei Gruppen zu je zwölf Abtastwerten aufgeteilt. Für jede Gruppe wird ein Skalenfaktor definiert. Sind zwei oder gar alle drei Skalenfaktoren gleich oder zumindest sehr ähnlich, dann wird dann nur jeweils ein Skalenfaktor übertragen. In dem DAB-Rahmen ist vermerkt, für welche Gruppen von Abtastwerten ein Skalenfaktor gilt.
    Im Empfänger wird für jeden Rahmen eine Fehlererkennung mittels Prüfsumme (engl. Cyclic Redundancy Check = CRC) durchgeführt und auch für die Skalenfaktoren. Die Fehlererkennung für die Skalenfaktoren wird für das erfindungsgemäße Verfahren verwendet. D.h. die Fehlerzahl, die bei den Skalenfaktoren ermittelt wird, bestimmt, welche Maßnahme das erfindungsgemäße Verfahren bezüglich der Entzerrung trifft.
    Die digitalen Audiodaten sind weiterhin spektral codiert. Dazu werden die bekannten MPEG-Verfahren oder Dolby-AC3 verwendet. Bei DAB wird eine Codierung nach MPEG-1,2 Layer 2 verwendet. Aufgrund von sich ständig ändernden Empfangsbedingungen bei DAB (Reflexionen an Gebäuden mit kurzen Empfangsaussetzern, Tunneldurchfahrten mit längeren Empfangsaussetzern, Abschattungen durch Gebirge oder schlecht versorgte Gebiete mit z. T. lang andauernden Empfangsaussetzern) treten Bitfehler im Audiodatenstrom auf, die zu erheblichen Qualitätseinbußen im Audiobereich führen können. Diese können je nach Art der Störung kurz (transient) oder langandauernd sein. Der DAB-Decoder führt bereits selbst eine Fehlerkorrektur durch die Kanaldecodierung durch. Hierbei können allerdings meist nicht alle Fehler korrigiert werden, was dazu führen kann, dass Restfehler zurückbleiben, die sich unmittelbar fehlerhaft auf den Audiodatenstrom auswirken. Diese Restfehler können im gewissen Umfang vom Audiodecoder korrigiert werden. Als zusätzliche Fehlerkorrekturmaßnahmen werden wie oben dargestellt Prüfsummen (CRC = Cyclic Redundancy Code) verwendet, die eine Erkennung der Restfehler ermöglichen. Diese Maßnahmen sind im wesentlichen ISO-CRC-Checksummenberechnung über den Rahmen-Header (Rahmen-Kopf) und Skalenfaktor-CRC-Checksummenberechnung.
    Der Audiodecoder erkennt anhand dieser beiden Checksummen, ob Fehler im Rahmen aufgetreten sind. Erkennt die erste Checksummenberechnung einen ISO-CRC-Fehler, ist der Rahmen nicht decodierbar. Es muß gegebenenfalls eine Rahmenwiederholung mit dem zuletzt korrekt empfangenen Rahmen durchgeführt werden. Ist es nicht möglich, tritt eine Stummschaltung ein. Im Falle der zweiten Checksummenberechnung ist im Fehlerfall der Rahmen noch decodierbar; da einige Skalenfaktoren aber beschädigt sind, werden sie durch vorher korrekt empfangene Skalenfaktoren ersetzt. Diese Maßnahmen können über einzelne, sehr kurzzeitige Empfangsprobleme hinweghelfen. Im Normalfall ändern sich die Empfangsbedingungen aber sehr rasch, weshalb der Audiodecoder ständig zwischen aktivierter Audioausgabe und gegebenenfalls einer Stummschaltung hin- und herschaltet. Dies klingt sehr unangenehm und wird einem digitalen High-End-Receiver, der eine Audiowiedergabe in CD-Qualität bereitstellen soll, nicht gerecht. Probleme ergeben sich insbesondere beim Aktivieren, also Einschalten von Audiokanälen. Wird ein Audiokanal aktiviert und ist die Audioqualität sehr schlecht, wird dieser in aller Regel trotzdem durchgeschaltet. Hier nun setzt das erfindungsgemäße Verfahren ein.
    In Figur 1 ist ein Rundfunkempfänger dargestellt, der das erfindungsgemäße Verfahren zur Fehlerverschleierung von Übertragungsfehlern in digitalen Audiodaten verwendet. Eine Antenne 1 ist an einen Eingang eines Hochfrequenzempfängers 2 angeschlossen. Ein Ausgang des Hochfrequenzempfängers 2 führt zu einem Analog-Digital-Wandler 3. Der Datenausgang des Analog-Digital-Wandlers 3 ist an einen Dateneingang einer Kanaldekodierung 5 angeschlossen. Ein Datenausgang der Kanaldekodierung 5 führt zu einem Eingang eines Demultiplexers 4 mit Fehlererkennung. Ein erster Datenausgang des Demultiplexers 4 führt zu einer Dequantisierung 6. Ein zweiter Datenausgang des Demultiplexers 4 führt zu einem zweiten Dateneingang der Dequantisierung 6. Ein dritter Datenausgang des Demultiplexers 4 führt zu einer Entzerrung 11, die wiederum an einen dritten Dateneingang der Dequantisierung 6 angeschlossen ist. Ein Datenausgang der Dequantisierung 6 führt zu einer Filterbank 7, die selbst an einen Digital-Analog-Wandler 8 angeschlossen ist. Der Ausgang des Digital-Analog-Wandlers 8 ist an einen Audioverstärker 9 angeschlossen. Die vom Audioverstärker verstärkten Signale werden von einem Lautsprecher 10 übertragen.
    Ein Prozessor, den der Rundfunkempfänger aufweist, führt die Kanaldekodierung 5 und das Demultiplexen 4 mit Fehlererkennung durch, während die wesentlichen Elemente der Quellendekodierung, die Dequantisierung 6 und die Filterbank 7, durch dafür speziell entwickelte Hardware realisiert werden. Aber auch die Quellendekodierung ist auf einem Prozessor implementierbar. Das Demultiplexen 4 mit Fehlererkennung ist auch sachlich zur Quellendekodierung zu rechnen. Aufgrund dieser letzt genannten Fehlererkennung tritt eine Fehlerverschleierung ein, wobei ein Ersetzen von Rahmen oder Skalenfaktoren eingesetzt wird.
    Die DAB-Signale, die mit der Antenne 1 empfangen werden, werden im Hochfrequenzempfänger 2 gefiltert, verstärkt und in einer Zwischenfrequenz umgesetzt. Die umgesetzten Signale werden dann vom Analog-Digital-Wandler 3 digitalisiert. Dann führt die Kanaldekodierung 5 die Berechnung der Bitfehler und gegebenenfalls eine Fehlerkorrektur durch. Mit der Kanaldekodierung 5 ist damit eine Bestimmung der Bitfehlerrate möglich. Der so entstandene Datenstrom wird vom Demultiplexer 4 in die Audiodaten und Seiteninformationen aufgeteilt.
    Diese Seiteninformationen betreffen insbesondere Daten über die Dequantisierung 6 der digitalen Audiodaten. Diese Seiteninformationen werden dann zur Dequantisierung 6 übertragen. Weiterhin führt der Demultiplexer 4 eine Fehlerbestimmung durch und zwar die Anzahl der Rahmenfehler und der Skalenfaktorenfehler. Gegebenenfalls wird eine Fehlerverschleierung durch eine Rahmenwiederholung und eine Verwendung von korrekt empfangenen Skalenfaktoren durchgeführt. Die Übertragungsfehleranzahl als die Empfangsqualität, die sich aus der Bitfehlerrate und den Rahmenfehlern sowie den Skalenfaktorenfehlern zusammensetzt, wird an die Entzerrung 11 übertragen.
    Die Entzerrung 11 initialisiert zu Beginn eines eingestellten Audiokanals (Subchannel) die Fehlerverschleierung (Concealment). Dafür verwendet die Entzerrung 11, falls vorher ein anderer digitaler Audiokanal eingestellt worden war, die Übertragungsfehlerzahl dieses vorher eingestellten digitalen Audiokanals und seinen Kanalfehlerschutz, um das Concealment mit Startwerten zu füllen. Dies ist notwendig, da zu Beginn eines eingestellten Audiokanals die Statistik über die Fehler, die in diesem aktuell eingestellten Audiokanal vorkommen, auf einer geringen Datenbasis basiert. Die aktuell berechneten Daten können daher ein verzerrtes Bild liefern. Der vorher und der aktuelle eingestellte Audiokanal können sich weiterhin im Kanalfehlerschutz unterscheiden. Das heißt, bei einem Kanal werden mehr Daten für den Kanalfehlerschutz verwendet als bei dem anderen. Dies muß bei der Berechnung der Startwerte für die Fehlerverschleierung berücksichtigt werden. Durch eine Stummschaltung zu Beginn einer Einstellung eines neuen Audiokanals ist möglich, eine ausreichende Datenbasis für die Initialisierung der Fehlerverschleierung zu ermitteln. Während der Stummschaltung werden die Übertragungsfehler für den neuen Audiokanal ermittelt und gezählt.
    Im einfachsten Fall wird einfach die Übertragungsfehlerzahl des vorher eingestellten Audiokanals übernommen, falls der Kanalfehlerschutz gleich ist, und eine entsprechende Entzerrung wird eingestellt. Die Entzerrung wird hier mittels der Formung des Audiospektrums vorgenommen. Das heißt, die spektralen Anteile des Audiospektrums werden mit der Entzerrung unterschiedlich gewichtet, so dass beispielsweise höhere Frequenzanteile herausgefiltert werden, um bei Störungen den subjektiven Höreindruck zu verbessern. Dies kann bis zur Stummschaltung getrieben werden. Aber auch eine einfache Pegelreduktion ist möglich. Damit wird eine Equalizer-Funktion realisiert. Anhand der Übertragungsfehlerzahl oder der Empfangsqualität wird dann der entsprechende Satz von Entzerrerwerten ausgewählt und geladen. Alternativ können die Entzerrerwerte auch mittels einer vorgegebenen Gleichung berechnet werden. Weiterhin kann ein Satz von Entzerrerwerten aus dem Speicher geladen werden, um dann ausgehend von diesen Entzerrerwerten neue Sätze von Entzerrerwerten zu berechnen.
    Die Initialisierung der Fehlerverschleierung wird also nur beim Umschalten auf ein anderes Audioprogramm (Audiokanal) oder beim Einschalten eines Rundfunkempfängers aktiviert. Solch eine Umschaltung liegt beispielsweise auch bei einer automatischen Alternativfrequenzumschaltung vor. Diese Technik wird bei FM-Programmen und bei DRM verwendet, weil hier Sender auf alternativen Frequenzen übertragen werden. Liegt kein vorher eingestellter Audiokanal vor, wie dies bei dem Einschalten der Fall ist, dann werden aktuell berechnete Werte der digitalen Audiodaten des aktuell eingestellten Audiokanals für die Initialisierung der Fehlerverschleierung verwendet, die beispielsweise während einer Stummschaltung ermittelt werden. Diese Werte geben dann doch wenigstens einen Hinweis, inwieweit die Übertragungsfehlerzahl zu einer Fehlerverschleierung führen muß. Liegt die Übertragungsfehleranzahl unter einem vorgegebenen Schwellwert, wird überhaupt keine Fehlerverschleierung vorgenommen, dann liegt ein ungestörter Rundfunkempfang vor.
    Sind die Übertragungsfehleranzahlen des vorher eingestellten Audiokanals für eine längere Zeit abgespeichert gewesen, d. h. länger als beispielsweise 3 Sekunden, dann werden auch diese Werte nicht mehr verwendet, da sie nicht mehr charakteristisch für die aktuell vorliegenden Übertragungsbedingungen in einem Kraftfahrzeug sind.
    Die Entzerrung 11 liefert dann also entsprechende Entzerrerwerte zu der Dequantisierung 6. Die Dequantisierung 6 ist Teil der Quellendecodierung. Hier werden die Skalenfaktoren, auf die die digitalen Audiodaten bezogen werden, verwendet, um die Dequantisierung durchzuführen. Dabei ist die Formung des Audiospektrums möglich. Das so entstandene Audiospektrum wird dann in der Filterbank 7 einer inversen diskreten Kosinustransformation unterzogen, um die Audiodecodierung abzuschließen. Die Audiodecodierung ist hier bei DAB nach dem Standard MPEG-1,2 Layer 2. Die decodierten Audiodaten werden dann von einem Digital-Analog-Wandler 8 in analoge Signale umgewandelt, um von dem Audioverstärker 9 verstärkt zu werden und von dem Lautsprecher 10 wiedergegeben zu werden. Die am Ausgang des Audiodecoders 7 vorliegenden decodierten Audiodaten liegen als PCM-Daten (Puls Code Modulation) vor. Diese Daten können auch auf einen Multimediabus geschaltet werden, um von anderen Komponenten von diesem Multimediabus, beispielsweise einem Lautsprechersystem, zur Wiedergabe verwendet zu werden. Weiterhin ist es möglich, dass nach der Filterbank 7 ein Abtastratenumsetzer eingesetzt wird, um gegebenenfalls die Abtastrate beispielsweise auf die Busübertragungsrate umzusetzen. Auch wenn andere Audiodaten, die beispielsweise mit MP 3 decodiert werden, von dem Rundfunkempfänger decodiert wurden, ist gegebenenfalls eine Abtastratenumsetzung notwendig.
    Weiterhin ist es möglich, dass der Rundfunkempfänger, der wie oben dargestellt ein digitaler Empfänger ist, in der Lage ist, sowohl DAB als auch FM zu empfangen. Dann wird die Fehlerverschleierung, wenn zunächst ein FM-Audiokanal gewählt wurde und dann ein DAB-Kanal, durch eine Schnüffelfunktion vorbereitet. D.h. in kurzen Zeitabschnitten überprüft der Rundfunkempfänger die Übertragungsfehleranzahl bei äquivalenten digitalen Audiokanälen, um bei einer Verschlechterung der Empfangsqualität des FM-Kanals automatisch umzuschalten. Dies gilt dann auch im gekehrten Fall, wenn bei einer schlechten Empfangssituation bei DAB auf ein äquivalenten FM-Audiokanal umgeschaltet wird. Hier wird dann während eines Rahmens die Empfangsqualität von äquivalenten FM-Kanälen ermittelt. Solche äquivalenten Kanäle werden als Begleitinformationen mit übertragen oder sie sind im Rundfunkempfänger bereits abgespeichert.
    Die Empfangsqualität kann bei FM aus der Empfangsfeldstärke (Signalfeldstärke), den Synchronisationsversuchen, der Basisbandenergie und anderen Parametern bestimmt werden. Diese Empfangsqualität wird mit einem vorgegebenen Qualitätsmaß verglichen, das empirisch ermittelt wird. Ist die Empfangsqualität besser als das Qualitätsmaß, dann liegt ein akzeptabler Empfang vor, liegt die Empfangsqualität unter dem Qualitätsmaß, dann wird bei einem vorhandenen digitalen Audiokanal auf diesen umgeschaltet, sofern der digitale Audiokanal eine Übertragungsfehleranzahl aufweist, die einen guten Empfang ermöglicht (keine Stummschaltung). Gegebenenfalls kann der FM-Kanal einen digitalen Träger (RDS), der zur Ermittlung der Öbertragungsfehleranzahl verwendet werden kann, aufweisen. Bei der Umschaltung wird eine kurze Stummschaltung vorgenommen, um eine Initialisierung der Fehlerverschleierung durchzuführen.
    Die Übertragnngsfehleranzahl, die für einen digitalen Audiokanal ermittelt wird, wird ebenfalls mit einem vorgegebenen Qualitätsmaß verglichen, um eine objektive Aussage über die Empfangsqualität machen zu können.
    Auch bei einem FM-Kanal kann durch eine Bandbreitenreduktion eine Fehlerverschleierung durchgeführt werden. In Abhängigkeit von der Empfangsqualität wird stufenweise eine Verminderung der Bandbreite durchgeführt. Eine Umschaltung von einem digitalen Audiokanal auf einen analogen Audiokanal wird vorzugsweise nur bei einer Stummschaltung oder bei einer drastischen Fehlerverschleierung durchgeführt.
    In Figur 2 ist das erfindungsgemäße Verfahren als Flussdiagramm dargestellt. In Verfahrensschritt 12 wählt ein Benutzer des Rundfunkempfängers, der in Figur 1 dargestellt wurde, einen Audiokanal, in dem digitale Audiodaten übertragen werden. Im Verfahrensschritt 13 empfängt der Rundfunkempfänger mittels der Antenne 1 des Hochfrequenzempfängers 2 und des Analog-Digital-Wandlers 3 die in den digitalen Rundfunksignalen enthaltenen digitalen Audiodaten. Am Ausgang des Analog-Digital-Wandlers 3 liegt ein Datenstrom vor.
    In Verfahrensschritt 14 wird dann die Kanaldecodierung im Block 5 aus Fig.l mit der Bestimmung der Bitfehlerrate durchgeführt. In Verfahrensschritt 22 wird dann im Demultiplexer 4 das Demultiplexen der Audiorahmen in Audiodaten und Seiteninformationen durchgeführt. Weiterhin werden hier mittels Prüfsummen die Rahmenfehler und die Skalenfaktorenfehler ermittelt. Diese Fehlermaße inklusive der Bitfehlerrate werden dann der Entzerrung 11 übertragen, die damit und gegebenenfalls mit einem vorher eingestellten Audiokanal die Fehlerverschleierung initialisiert beziehungsweise später an die aktuelle Empfangsqualität anpaßt. Die Startwerte für die Fehlerverschleierung berechnen sich also aus dem vorher eingestellten Audiokanal, und zwar aus dessen Übertragungsfehleranzahl. Darüber hinaus wird der Kanalfehlerschutz, den der vorher eingestellte Audiokanal und der aktuell eingestellte Audiokanal aufweisen, verglichen, um die Startwerte entsprechend anzupassen.
    In Verfahrensschritt 15 wird also mit der Initialisierung der Fehlerverschleierung begonnen. In Verfahrensschritt 16 wird dabei überprüft, ob vorher ein Kanal eingestellt worden war, bei dem die Übertragungsfehleranzahl bestimmt wurde. Ist das der Fall, dann wird in Verfahrensschritt 17 der Kanalfehlerschutz verglichen. In Verfahrensschritt 19 wird darüber hinaus überprüft, ob die Übertragungsfehleranzahl des vorher eingestellten Audiokanals für eine kürzere Zeit als ein eingesteller Schwellwert abgespeichert ist. Ist das der Fall, dann wird in Verfahrensschritt 20 die Initialisierung der Startwerte mit der vorher berechneten Übertragungsfehleranzahl des vorher eingestellten Audiokanals initialisiert, wobei der Kanalfehlerschutz berücksichtigt wird. In Verfahrensschritt 21 wird dann die Fehlerverschleierung gestartet, die dann durch aktuell berechnete Übertragungsfehleranzahlen des aktuell eingestellten Audiokanals an den aktuellen Zustand angepasst wird.
    Wurde in Verfahrensschritt 16 festgestellt, dass vorher kein digitaler Audiokanal eingestellt worden war und damit keine Übertragungsfehleranzahl für die Initialisierung der Fehlerverschleierung vorliegt, dann wird in Verfahrensschritt 18 die aktuell berechnete Übertragungsfehleranzahl, die sich aus der Bitfehlerrate, die sich aus der Kanaldecodierung ergibt, der Prüfsummenfehleranzahl, die durch einen CRC (Cyclic Redundancy Check) berechnet wird und die Skalenfaktorenfehleranzahl berechnet. Damit wird dann die Initialisierung mit Startwerten in Verfahrensschritt 20 begonnen, um dann in Verfahrensschritt 21 erneut die Fehlerverschleierung mit aktuell berechneten Übertragungsfehleranzahlen fortzuführen.
    Wurde in Verfahrensschritt 19 festgestellt, dass die Übertragungsfehleranzahl des vorher eingestellten Audiokanals bereits für eine längere Zeit als der eingestellte Schwellwert (zum Beispiel 3 s) abgespeichert worden war, dann wird diese Übertragungsfehleranzahl gelöscht, und es wird nur die Übertragungsfehleranzahl des aktuell eingestellten Audiokanals verwendet, so dass dann zu Verfahrensschritt 18 gesprungen wird, und, wie oben dargestellt, fortgefahren wird.

    Claims (6)

    1. Verfahren zur Fehlerverschleierung von Übertragungsfehlern in digitalen Audiodaten, wobei ein erster Audiokanal gewählt wird (12), wobei die in diesem ersten Audiokanal übertragenen digitalen Audiodaten empfangen werden (13), wobei an den empfangenen digitalen Audiodaten eine Kanaldecodierung (14) durchgeführt wird, wobei dann die digitalen Audiodaten einer Quellendecodierung unterzogen werden, wobei eine Fehlerverschleierung mit Startwerten initialisiert wird (15), wobei die Fehlerverschleierung durch eine erste Empfangsqualität des ersters Audiokanals an die digitalen Audiodaten angepasst wird und wobei nach der Kanaldecodierung (14) die Fehlerverschleierung (21) von den Übertragungsfehlern in den digitalen Audiodaten durchgeführt wird, dadurch gekennzeichnet, dass die Startwerte aus einer zweiten Empfangsqualität von den digitalen Audiodaten berechnet werden, die in einem zweiten Audiokanal übertragen werden, der vor dem ersten Audiokanal ausgewählt worden war.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zusätzlich die Kanalfehlerschutzniveaus des ersten und des zweiten Audiokanals verglichen werden und dass in Abhängigkeit von dem Vergleich die Startwerte angepasst werden.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste und die zweite Empfangsqualität der digitalen Audiodaten aus der Bitfehlerrate und/oder der Awzahl der Skalenfaktorfehler und/oder der Anzahl der Prüfsummenfehler bestimmt werden.
    4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fehlerverschleierung durch eine Entzerrung realisiert wird.
    5. Verfahren nach einem der Ansprüche 1, 2, 3 oder 4, dadurch gekennzeichnet, dass die Zeitdauer der Abspeicherung der zweiten Empfangsqualität der digitalen Audiodaten mit einem Schwellwert verglichen wird und dass, wenn die Zeitdauer den Schwellwert übertrifft, die zweite Empfangsqualität gelöscht wird und nur die erste Empfangsqualität für die Initialisierung der Fehlerverschleierung verwendet wird.
    6. Verwendung eines Rundfunkempfängers zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Rundfunkempfänger Mittel zur Durchführung des Verfahrens, einen Hochfrequenzempfänger (2) und Mittel zur akustischen Wiedergabe (9, 10) aufweist.
    EP01953895A 2000-07-18 2001-07-13 Verfahren zur fehlerverschleierung von übertragungsfehlern in digitalen audiodaten Expired - Lifetime EP1303856B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10034783 2000-07-18
    DE10034783A DE10034783A1 (de) 2000-07-18 2000-07-18 Verfahren zur Fehlerverschleierung von Übertragungsfehlern in digitalen Audiodaten
    PCT/DE2001/002557 WO2002007149A1 (de) 2000-07-18 2001-07-13 Verfahren zur fehlerverschleierung von übertragungsfehlern in digitalen audiodaten

    Publications (2)

    Publication Number Publication Date
    EP1303856A1 EP1303856A1 (de) 2003-04-23
    EP1303856B1 true EP1303856B1 (de) 2004-10-06

    Family

    ID=7649242

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01953895A Expired - Lifetime EP1303856B1 (de) 2000-07-18 2001-07-13 Verfahren zur fehlerverschleierung von übertragungsfehlern in digitalen audiodaten

    Country Status (6)

    Country Link
    EP (1) EP1303856B1 (de)
    JP (1) JP4813747B2 (de)
    CA (1) CA2415424C (de)
    DE (2) DE10034783A1 (de)
    ES (1) ES2228914T3 (de)
    WO (1) WO2002007149A1 (de)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE527866C2 (sv) * 2003-12-19 2006-06-27 Ericsson Telefon Ab L M Kanalsignalmaskering i multikanalsaudiosystem
    US7835916B2 (en) 2003-12-19 2010-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Channel signal concealment in multi-channel audio systems
    EP3340498B1 (de) 2016-12-22 2022-07-13 Nxp B.V. Empfangspfadqualitätsinformationen
    EP3340497A1 (de) * 2016-12-22 2018-06-27 Nxp B.V. Fehlerverdeckung mit redundanten datenströme
    WO2021200151A1 (ja) * 2020-03-30 2021-10-07 ソニーグループ株式会社 送信装置、送信方法、受信装置、及び受信方法

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2507972B2 (ja) * 1993-08-20 1996-06-19 日本電気株式会社 回線品質監視装置
    JPH08242215A (ja) * 1995-03-06 1996-09-17 Mitsubishi Electric Corp ディジタル音声放送受信機
    JP3345557B2 (ja) * 1996-10-14 2002-11-18 アルパイン株式会社 デジタルオーディオ放送受信装置及び受信方法
    DE19959037B4 (de) * 1999-12-08 2004-04-29 Robert Bosch Gmbh Verfahren zur Dekodierung von digitalen Audiodaten

    Also Published As

    Publication number Publication date
    DE50104018D1 (de) 2004-11-11
    ES2228914T3 (es) 2005-04-16
    EP1303856A1 (de) 2003-04-23
    JP4813747B2 (ja) 2011-11-09
    CA2415424C (en) 2007-10-02
    JP2004504744A (ja) 2004-02-12
    WO2002007149A1 (de) 2002-01-24
    DE10034783A1 (de) 2002-02-07
    CA2415424A1 (en) 2003-01-08

    Similar Documents

    Publication Publication Date Title
    DE4111131C2 (de) Verfahren zum Übertragen digitalisierter Tonsignale
    DE69738401T2 (de) Fehlerverdeckung in einem digitalen audioempfänger
    EP0610313A1 (de) Rundfunkübertragungssystem und rundfunkempfänger
    EP0659002B1 (de) Verfahren und Schaltungsanordnung zur Übertragung von Sprachsignalen
    EP1303856B1 (de) Verfahren zur fehlerverschleierung von übertragungsfehlern in digitalen audiodaten
    EP1245024B1 (de) Verfahren zur fehlerverschleierung von digitalen audiodaten durch spektrale entzerrung
    DE602004007142T2 (de) Fehlerverschleierung in mehrkanaligen audiosystemen
    DE60034204T2 (de) Mobiles Kommunikationsendgerät das geeignet ist für den Empfang von digitalen Hörfunksignalen
    EP1405302B1 (de) Verfahren zur störverdeckung bei digitaler audiosignalübertragung
    EP1238481B1 (de) Verfahren zur dekodierung von digitalen audiodaten
    EP1113599A2 (de) Empfänger für analog und digital übertragene Rundfunkprogramme, der umschaltet auf den Empfang vom analogen Rundfunksignal das mit dem digitalen Rundfunksignal übereinstimmt, wenn das digitale Signal nicht mehr zur Verfügung steht
    EP1287630B1 (de) Verfahren zur korrektur von taktabweichungen bei audiodaten
    WO1995026082A1 (de) Verfahren und empfangsgerät zur verminderung der subjektiven störempfindung bei störungdbehaftetem empfang bei verwendung von digital übertragenen tonsignalen
    DE4442147C2 (de) Mobiler Rundfunkempfänger
    EP1104138B1 (de) Entwürfelung von Datenrahmen
    DE3934282C2 (de) RDS-Empfänger
    DE4240609C2 (de) Verfahren zur Frequenzgangkorrektur
    DE10105738B4 (de) System und Verfahren für die Übertragung von digitalen Audiosignalen
    EP0862814A1 (de) Verfahren zur auswahl einer sendefrequenz
    EP2139133A2 (de) Vorrichtung und Verfahren zur Anpassung des Widergabespektrums zweier Audioquellen
    EP1672823A1 (de) Empfangsvorrichtung für digitale Rundfunksysteme
    DE3149803A1 (de) Schaltungsanordnung zur automatischen dynamikkompression
    DE102004041522A1 (de) Empfangsschaltung
    DE10131456A1 (de) Funkempfänger
    WO2003065624A1 (de) Rundfunkempfänger der anzeigt das ein digitales rundfunksignal empfangbar ist

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030218

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: KUPFERSCHMIDT, CLAUS

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: KUPFERSCHMIDT, CLAUS

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50104018

    Country of ref document: DE

    Date of ref document: 20041111

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050208

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2228914

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050707

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20090724

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20090727

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110818

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100714

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100714

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140721

    Year of fee payment: 14

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150713

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150713

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160927

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50104018

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180201