EP1295835B1 - Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger - Google Patents

Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger Download PDF

Info

Publication number
EP1295835B1
EP1295835B1 EP20020017290 EP02017290A EP1295835B1 EP 1295835 B1 EP1295835 B1 EP 1295835B1 EP 20020017290 EP20020017290 EP 20020017290 EP 02017290 A EP02017290 A EP 02017290A EP 1295835 B1 EP1295835 B1 EP 1295835B1
Authority
EP
European Patent Office
Prior art keywords
curve
yarn
limit
cleaning
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020017290
Other languages
English (en)
French (fr)
Other versions
EP1295835A3 (de
EP1295835B2 (de
EP1295835A2 (de
Inventor
Martin Zipperer
Ladislav Hajek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rieter Ingolstadt GmbH
Original Assignee
Rieter Ingolstadt Spinnereimaschinenbau AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7696769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1295835(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rieter Ingolstadt Spinnereimaschinenbau AG filed Critical Rieter Ingolstadt Spinnereimaschinenbau AG
Publication of EP1295835A2 publication Critical patent/EP1295835A2/de
Publication of EP1295835A3 publication Critical patent/EP1295835A3/de
Application granted granted Critical
Publication of EP1295835B1 publication Critical patent/EP1295835B1/de
Publication of EP1295835B2 publication Critical patent/EP1295835B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/06Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for setting a cleaning limit in an electronic yarn cleaner, wherein the possible yarn defects are arranged in a sorting scheme sorted by error value and error length and wherein the cleaning limit is selected by means of a curve and adjusted on Garnrlick.
  • the yarn defects are arranged in a table in the manner of a coordinate system.
  • One axis of the coordinate system represents the error cross section of the measured yarn and the other axis the error length.
  • a cleaning limit is defined in this coordinate system with at least two points, whereby a predefined connecting line is drawn between the points as the course of the cleaning limit. Outside the outermost points, a predeterminable course of the cleaning limit is selected.
  • the possible yarn defects are arranged sorted by error value and error length in a sorting scheme.
  • a sorting scheme is, for example, a table, a table-type coordinate system, a coordinate system, or the like. Over the ranges of interest of error value and error length, the sorting scheme detects the possible yarn defects, so that the cleaning limit can be defined in the scheme. The cleaning limit then separates the tolerable errors of the yarn from the unacceptable errors.
  • the yarn cleaner issues an error message if the fixed yarn defect is above or below the cleaning limit or at the cleaning limit. Based on the error signal is z. B. in an open-end spinning machine causes the cutting of a thread section with the error. Or in the case of the produced yarn, the error and the error location are registered, so that an error statistic is created.
  • the error value is a measure of the size of the error. This can be, for example, the error cross section, for example, undershooting or exceeding a desired yarn cross section. Or the error value is a deviation from a predetermined target color, whereby the yarn is spectrally analyzed by a sensor. Or it registers the hairiness of the yarn currently being produced, whereby the density or number of fiber ends projecting from the thread is registered. Further examples of error values are an error mass, which can be detected, for example, with a capacitive sensor, impurity fractions, which is detected, for example, with an optical sensor by absorption and / or reflection, or the like.
  • the cleaning limit is determined by a curve by means of exactly one point in the sorting scheme, whereby the curve of the curve itself is arbitrary but defined. This makes a particularly quick and easy setting of the cleaning curve by the user of the electronic yarn cleaner possible.
  • the user is not only a fixed curve available, but he can select the optimal curve from a predetermined set of curves with different curves. This results in a fast and flexible adaptation of the cleaning limit to the desired course.
  • z Preferably, on a selection screen, the user may be presented with two or more of the selectable waveforms which he may select by simply entering a selection number or clicking with a pointer element.
  • the curve selected in this way it is possible once again to influence the curve shape in order to optimally approximate the desired curve shape. Due to the scalability, any existing tolerances in the determination of the error length or the error value can be easily compensated. For example, if the error value or length determination has a relative error over the entire range.
  • the error value and / or the error length are therefore advantageously scalable.
  • the curve is advantageously compressed or stretched by the scaling factor. Also by turning or tilting the curve is a simple adaptation of the curve to the desired course. The scaling is particularly advantageously carried out starting from the point with which the curve is determined in the sorting scheme.
  • the running yarn is drawn for thickness measurement through a measuring slot of a sensor in a known manner.
  • the sensor registered z. B. optically the thickness or capacitive way the mass of the continuous yarn. Due to the known speed and the measured diameter of the yarn, the errors are classified according to the defect cross section and the defect length. This is z. B. also known from DE 40 20 330 C2. Within a tolerance range, the thus classified errors of the yarn continuously drawn through the sensor should be tolerated, ie the yarn corresponds to the desired quality. If, on the other hand, the classed errors lie outside this range, then these errors must be cut out of the yarn at a later processing stage or in the current processing stage by cutting become. The tolerable and the intolerable area are separated by a cleaning limit.
  • the setting of the cleaning limit according to the invention will be described below.
  • the setting is carried out by selecting the course of the cleaning curve RG and the setting of the point P.
  • Selection and setting can, for. B. done on an input device of the yarn cleaner.
  • an input device of the yarn cleaner For this purpose, either a table or a coordinate system is displayed two-dimensionally on a screen.
  • the setting and selection can also z. B. on a multi-line LCD display by entering the appropriate parameters.
  • the input device can be an input device of the yarn cleaner or an input device, the z. B. is connected to the machine control of a textile machine. With the input device, the parameters are queried by appropriate software implementation and, if necessary, transmitted to the yarn cleaner after the input has been completed via a communication connection.
  • the data can be input and transmitted via a communication link to a section controller for several spinning stations.
  • the section controller transmits the data to a yarn cleaner monitoring multiple spinning stations or to a yarn cleaner monitoring only one spinning station.
  • FIGS. 1 to 5 the selection and adjustment of the cleaning limit is shown in two-dimensional graphic for illustrative purposes. However, the appropriate setting and selection can also be easily entered using an alphanumeric parameterization and alphanumeric input on an input device.
  • FIG. 1 shows a diagram of yarn defects in which the length of the defect L is plotted on the x-axis and the diameter of the yarn defect is plotted on the y-axis.
  • the standard value of the desired yarn diameter is ⁇ soll .
  • the upper curve RG + indicates the upper cleaning limit, above which a yarn fault is cut out.
  • the cleaning limit RG + is a curve selected from a set of predetermined waveforms (see FIG. 3).
  • the position of the cleaning limit RG + is defined in the diagram by moving the setting point P +.
  • the point P + can be shifted in the x and y axis direction.
  • the curve of the cleaning limit RG + exceeds the lower limit of the yarn defect length L min and exceeds the upper limit of the maximum yarn allowance L max considered .
  • Figure 1 shows the setting of the lower cleaning limit RG-, which is set according to the upper cleaning limit RG +.
  • the curve of the lower cleaning limit RG- from a variety of different curves (not shown) is selected and fixed in the diagram by moving the point P-:
  • the basic curve shape RG 0 can be determined by a factor in the x-direction stretched or compressed.
  • the cleaning limit RG x is obtained by stretching the basic form RG 0 .
  • the cleaning curve can be stretched or compressed by a factor in the y-direction.
  • the cleaning limit RGy is generated by stretching the basic curve shape RG 0 .
  • a tilted cleaning limit RG ⁇ is obtained when the cleaning basic shape RG 0 is rotated by an angle ⁇ . The stretching and / or tilting takes place in FIG. 2 about the setting point P, but can optionally be set with reference to any point of the diagram or the basic form RG 0 out.
  • FIG. 3 shows different, selectable curves of the cleaning limit.
  • the tolerance for large cross-sectional errors is set relatively large up to the lower third of the maximum length.
  • the further course is approximately stepped, with transitions between the stages.
  • curve RG 1 large thickness errors are tolerated only up to a small length range and then also the error classes are gradually reduced, whereby here ramped transitions are selected.
  • RG 2 curve large error cross-sectional deviations are tolerated up to the mean error length, until a continuous transition to a small fault cross-section takes place at long lengths.
  • thick cross-sectional defects are tolerated only up to very short lengths.
  • the curve RG C is a customer-defined curve, which can be individually specified and is also selectable as a selection option under the curves.
  • a larger error diameter is tolerated in the middle length range than immediately left and right of this length range.
  • This setting is useful, for example, if production-related in this length range is very often a larger error cross-section and not constantly production should be stopped because of this error occurs.
  • lies in the middle range over all lengths a tolerable result including the average error lengths before, so that overall, even with this error, the average error specifications are observed.
  • the course of the upper (lower) cleaner boundary is only falling (rising) or sectionally constant, since a fault in a fabric is all the more conspicuous the longer the yarn defect is.
  • FIG. 4 illustrates the entry of the cleaning limit on the basis of a curve RG 0 in a tabular error classification.
  • this tabular error classification this is not done continuously as in the diagram of FIG. 1, but rather discrete error classes are defined, each of which summarizes a specific range of error lengths and error diameters.
  • the curve RG 0 is also fixed with the set point P + within the tabular matrix and then converted by the input device to limits between the error classes.
  • the curve RG 0 finally results in the used cleaning limit RG +, which has a stepped course.
  • Figure 5 shows another example of setting a cleaning limit on a yarn cleaner which examines optical color defects of the yarn produced.
  • this yarn cleaner for example, foreign fibers of a different color are recognized and removed by the yarn cleaning.
  • the yarn is scanned by a wavelength-sensitive sensor and in the diagram the wavelength is plotted over the error length L.
  • the yarn produced is intended to comply with two wavelength bands ⁇ A and ⁇ B of tolerable yarn error.
  • the upper wavelength band ⁇ A the upper cleaning limit RG A + and the lower cleaning limit RG A- are set by the corresponding set points P for this purpose.
  • the set point P A + for setting the upper cleaning limit RG A + is shown.
  • the upper cleaning limit RG B + and the lower cleaning limit RG B- are specified. Any color length errors outside of these two wavelength band ranges are detected by the electronic yarn cleaner and separated from the running yarn as needed.
  • the setting routine for setting a color aberration according to FIG. 5 is also implemented on a setting unit for setting the cleaning limits according to FIG. 1 (thickness error).
  • the parameters are transmitted to the electronic yarn cleaner, which detects both types of defects (color and thickness errors) and provides corresponding error signals.
  • the data evaluation can be z. B. done with a fast digital signal processor. Only in the optical signal acquisition different optoeletronic components are required to register the thread diameter on the one hand and on the other hand, the color of the thread.
  • FIG. 6A shows a yarn cleaner system consisting of the machine center or yarn cleaner control unit 10 for setting the cleaner limit and a yarn cleaner base system 20.
  • the setting of the cleaner limit according to the method described above takes place in a first embodiment in the machine center 10 of the spinning machine, which also controls the processes of the spinning machine and controlled. Or the adjustment takes place in a second embodiment in a Garnrutzmultiinheit 10, which is independent of the machine center of the spinning machine for setting Gamreinigem 22, their control and evaluation. In this case, then stands the Garnrurbanzone 10 with a machine center of Spinning machine in conjunction to exchange control commands or other data.
  • the CPU 10 includes a CPU as a curve and parameter generator.
  • the CPU is connected to a display device or a display 12, on which the parameter curves are displayed in graphical form.
  • the CPU 11 is connected to an input device 14, for example an alphanumeric keyboard, or the input device 14 is integrated as a so-called touch screen on the display 12.
  • the input device 14 is used to select the basic form of the cleaner boundaries RG 0-3 or predefined by the customer form RG C, setting the Aufuss P in the coordinate system for the yarn errors and the adaptation of the selected curve (scaling factors as described above, so that modified curves RG x, y, ⁇ arise).
  • the CPU 11 fetches from a memory 15 the predetermined basic forms of the cleaning limit RG 0-3 or already pre-edited form RG c, mod and stores there the edited curves for intermediate storage. Furthermore, 15 parameter data are temporarily stored in the memory 15, which are temporarily stored due to the already edited cleaner limit to be set in the yarn cleaners 22.
  • the parameter data is generated by the CPU 11, for example by transformation of the specified cleaner curve. In the transformation, the specified cleaner curve is scanned by means of a predetermined screening and "nearest" pairs of values determined, see, for example, the "actual” from these pairs of values, used by Garnrurban cleaner curve RG + and Figure 4.
  • the value pairs are cached in the memory 15 and then at the setting of the yarn cleaner retrieved from the memory 15 and transmitted by a communication device 13 via the communication path of the base systems 20, 30 to the yarn cleaner 22. Accordingly, this also applies to Figure 6B.
  • the parameters of the finally-edited cleaning curve for adjusting the yarn cleaner 22 are transmitted via a yarn-cleaner-own communication system.
  • This has a cleaner bus 21, with which the yarn cleaner 22 are each connected individually via a data interface.
  • the Gamrillian setting is preferably carried out before the start-up of the spinning machine or before production of a new batch, but can also be done during the spinning operation, so that there is a change in the cleaning limit during production.
  • Continuously measured data and status parameters are in turn transmitted from the yarn cleaners 22 via the cleaner bus 21 to the yarn cleaner central unit 10.
  • FIG. 6B shows a second embodiment of the yarn cleaner system, in which the communication structure is integrated into that of the spinning machine.
  • the parameters for programming the cleaner curve in the yarn cleaners 22 are here also transferred to a machine bus 31, transmitted by this to section controllers 32, which in turn transmit the parameters via a section bus 33 to the yarn cleaners 22 transmitted.
  • section controllers 32 At each section controller 32 each more spinning units of the spinning machine are connected, which are controlled and monitored by the section controller.
  • the yarn cleaners 22 may also be connected directly to the section controller 32.
  • the number of yarn cleaners 22 and the number of section controllers 32 are given by way of example only, it being understood that their numbers may be substantially higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger, wobei die möglichen Garnfehler in einem Sortierschema sortiert nach Fehlerwert und Fehlerlänge angeordnet sind und wobei die Reinigungsgrenze mittels einer Kurve ausgewählt und am Garnreiniger eingestellt wird.
  • Bei einem bekannten Verfahren zum Einstellen der Reinigungsgrenze elektronischer Garnreiniger (DE 40 20 330 C2) sind die Garnfehler in einer Tabelle nach Art eines Koordinatensystems angeordnet. Eine Achse des Koordinatensystems stellt den Fehlerquerschnitt des gemessenen Garns und die andere Achse die Fehlerlänge dar. Eine Reinigungsgrenze wird in diesem Koordinatensystem mit mindestens zwei Punkten festgelegt, wobei zwischen den Punkten als Verlauf der Reinigungsgrenze eine vordefinierte Verbindungslinie gezogen wird. Außerhalb der äußersten Punkte wird ein vorgebbarer Verlauf der Reinigungsgrenze gewählt Um einen möglichst frei wählbaren Verlauf der Reinigungsgrenze zu ermöglichen, ist es bei diesem Verfahren notwendig, eine Vielzahl von Punkten zu verwenden und im Koordinatensystem festzulegen, was eine aufwendige Einstellung der Reinigungsgrenze erfordert. Werden dagegen nur sehr wenige Punkte verwendet, so ist die Einstellung der Reinigungsgrenze durch Verwendung der vorgegebenen, definierten Verbindungslinie nicht flexibel anpaßbar.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren und eine Einstellvorrichtung zum Einstellen der Reinigungsgrenze bei einem elektronischen Garnreiniger vorzusehen, die ein einfaches, schnelles und flexibles Einstellen der Reinigungsgrenze ermöglichen.
  • Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 bzw. 11 gelöst.
  • Bei dem Verfahren gemäß Anspruch 1 werden die möglichen Garnfehler in einem Sortierschema nach Fehlerwert und Fehlerlänge sortiert angeordnet. Ein Sortierschema ist beispielsweise eine Tabelle, ein tabellenartiges Koordinatensystem, ein Koordinatensystem oder dergleichen. Über die interessierenden Bereiche von Fehlerwert und Fehlerlänge erfaßt hier das Sortierschema die möglichen Garnfehler, so daß in dem Schema die Reinigungsgrenze festlegbar ist. Die Reinigungsgrenze trennt dann die tolerierbaren Fehler des Garns von den nicht mehr zu tolerierenden Fehlern. Vorzugsweise gibt der Garnreiniger nach dem Einstellen der Reinigungsgrenze während der laufenden Fadenuntersuchung eine Fehlermeldung aus, wenn der fest-gestellte Fadenfehler oberhalb bzw. unterhalb der Reinigungsgrenze oder auf der Reinigungsgrenze liegt. Anhand des Fehlersignals wird dann z. B. bei einer Offenend-Spinnmaschine das Ausschneiden eines Fadenabschnitts mit dem Fehler veranlaßt. Oder bei dem produzierten Garn wird der Fehler und die Fehlerstelle registriert, so daß eine Fehlerstatistik erstellt wird.
  • Der Fehlerwert ist ein Maß für die Größe des Fehlers. Dieser kann beispielsweise der Fehlerquerschnitt sein, z.B. ein Unter- oder Überschreiten eines Soll-Garnquerschnitts. Oder der Fehlerwert ist eine Abweichung von einer vorgegebenen Soll-Farbe, wobei von einem Sensor das Garn spektral analysiert wird. Oder es wird die Haarigkeit des laufend produzierten Garns registriert, wobei die Dichte oder Anzahl der vom Faden abstehenden Faserenden registriert wird. Weitere Beispiele für Fehlerwerte sind eine Fehlermasse, die z.B. mit einem kapazitiven Sensor erfaßbar ist, Fremdstoffanteile, die z.B. mit einem optischen Sensor durch Absorption und/oder Reflektion erfaßt wird, oder dergleichen.
  • Die Reinigungsgrenze wird durch eine Kurve mittels genau eines Punktes im Sortierschema festgelegt, wobei der Kurvenverlauf der Kurve an sich beliebig aber definiert ist. Dadurch ist ein besonders schnelles und einfaches Festlegen der Reinigungskurve durch den Benutzer des elektronischen Garnreinigers möglich.
  • Bei einer ganz besonders vorteilhaften Ausgestaltung steht dem Nutzer nicht nur eine festgelegte Kurve zur Verfügung, sondern er kann den optimalen Kurvenverlauf aus einem vorgegebenen Satz von Kurven mit unterschiedlichem Kurvenverlauf auswählen. Damit erfolgt eine schnelle und flexible Anpassung der Reinigungsgrenze an den gewünschten Verlauf. Vorzugsweise werden z. B. an einem Auswahlbildschirm dem Benutzer zwei oder mehr der wählbaren Kurvenform angezeigt, die er lediglich durch Eingabe einer Auswahlnummer oder durch Anklicken mit einem Zeigerelement auswählen kann.
  • Durch die Skalierbarkeit der so ausgewählten Kurve kann nochmals auf den Kurvenverlauf Einfluß genommen werden, um den gewünschten Kurvenverlauf möglichst optimal anzunähern. Durch die Skalierbarkeit können auch eventuell vorhandene Toleranzen bei der Bestimmung der Fehlerlänge oder des Fehlerwerts einfach ausgeglichen werden. Wenn beispielsweise die Fehlerwerts- oder Längenbestimmung einen relativen Fehler über den gesamten Bereich aufweist. Vorteilhaft sind daher der Fehlerwert und/oder die Fehlerlänge skalierbar. Beim Skalieren wird vorteilhaft die Kurve durch den Skalierungsfaktor gestaucht oder gedehnt. Auch durch Drehen oder Kippen der Kurve erfolgt eine einfache Anpassung der Kurve an den gewünschten Verlauf. Besonders vorteilhaft wird die Skalierung ausgehend von dem Punkt vorgenommen, mit dem die Kurve im Sortierschema festgelegt wird.
  • Anhand von Zeichnungen werden Ausführungsformen der Erfindung näher erläutert. Es zeigen:
  • Figur 1
    die Festlegung einer Reinigungsgrenze in einem Koordinatensystem,
    Figur 2
    das Skalieren eines vorgegebenen Kurvenverlaufs,
    Figur 3
    einen Satz auswählbarer, vorgegebener Kurvenverläufe,
    Figur 4
    das Festlegen einer Reinigungsgrenze in einer Fehlertabelle,
    Figur 5
    das Festlegen von Farbbandspektren in einem Koordinatensystem und
    Figur 6A und 6B
    zwei Ausführungsformen von Garnreinigerstrukturen mit einer Einstelleinrichtung zum Einstellen der Reinigergrenze.
  • Bei einer Offenend-Spinnmaschine, einer Ringspinnmaschine oder einer Umspulmaschine wird auf an sich bekannte Weise das laufende Garn zur Dickenmessung durch einen Meßschlitz eines Sensors gezogen. Der Sensor registriert z. B. auf optischem Wege die Dicke bzw. auf kapazitivem Wege die Masse des durchgezogenen Garns. Auf Grund der bekannten Geschwindigkeit und des gemessenen Durchmessers des Garns werden die Fehler klassiert nach dem Fehlerquerschnitt und der Fehlerlänge. Dies ist z. B. auch aus der DE 40 20 330 C2 bekannt. Innerhalb eines Toleranzbereichs sollen die so klassierten Fehler des laufend durch den Sensor gezogenen Garns toleriert werden, d. h. das Garn entspricht der gewünschten Qualität. Liegen dagegen die klassierten Fehler außerhalb dieses Bereichs, so müssen diese Fehler bei einer späteren Verarbeitungsstufe oder in der momentanen Verarbeitungsstufe durch Ausschneiden aus dem Garn herausgetrennt werden. Der tolerierbare und der nicht tolerierbare Bereich sind dabei durch eine Reinigungsgrenze getrennt.
  • Im Folgenden wird das erfindungsgemäße Einstellen der Reinigungsgrenze beschrieben. Das Einstellen erfolgt dabei durch Auswahl des Verlaufs der Reinigungskurve RG und das Einstellen des Punktes P. Auswahl und Einstellen kann z. B. an einem Eingabegerät des Garnreinigers erfolgen. Dazu wird entweder eine Tabelle oder ein Koordinatensystem zweidimensional auf einem Bildschirm dargestellt. Die Einstellung und Auswahl kann auch z. B. an einem Mehrzeilen-LCD-Display mittels Eingabe der entsprechenden Parameter erfolgen. Das Eingabegerät kann dabei ein Eingabegerät des Garnreinigers sein oder ein Eingabegerät, das z. B. mit der Maschinensteuerung einer Textilmaschine verbunden ist. Beim Eingabegerät werden durch entsprechende Softwareimplementierung die Parameter abgefragt und ggf. nach Abschluß der Eingabe über eine Kommunikationsverbindung zum Garnreiniger übertragen. Beispielsweise können bei einem Eingabegerät der Maschinensteuerung der Textilmaschine die Daten eingegeben werden und über eine Kommunikationsverbindung zu einem Sektionscontroller für mehrere Spinnstellen übertragen werden. Vom Sektionscontroller werden die Daten zu einem Garnreiniger, der mehrere Spinnstellen überwacht, oder zu einem Garnreiniger, der nur eine Spinnstelle überwacht, übertragen. Unten wird das Eingabegerät bzw. die Eingabevorrichtung mit Bezug auf die Figuren 6A und 6B näher beschrieben.
  • In den Figuren 1 bis 5 ist die Auswahl und Einstellung der Reinigungsgrenze zweidimensional graphisch zur Veranschaulichung dargestellt. Die entsprechende Einstellung und Auswahl läßt sich jedoch auch ohne Weiteres anhand einer alphanumerischen Parametrisierung und alphanumerischer Eingabe an einem Eingabegerät eingeben.
  • Figur 1 zeigt ein Diagramm von Garnfehlern, bei dem auf der x-Achse die Länge des Fehlers L und auf der y-Achse der Durchmesser φ des Garnfehlers aufgetragen ist. Der Normwert des gewünschten Garndurchmessers ist φsoll. Die obere Kurve RG+ bezeichnet die obere Reinigungsgrenze, bei deren Überschreitung ein Garnfehler ausgeschnitten wird. Die Reinigungsgrenze RG+ ist eine Kurve, die aus einem Satz von vorgegebenen Kurvenformen ausgewählt wurde (siehe Fig. 3). Die Lage der Reinigungsgrenze RG+ wird im Diagramm durch Verschieben des Einstellpunktes P+ festgelegt. Der Punkt P+ läßt sich in x-und y-Achsenrichtung verschieben. Der Kurvenverlauf der Reinigungsgrenze RG+ geht über den unteren Grenzwert der Garnfehlerlänge Lmin hinaus und über den oberen Grenzwert der maximal berücksichtigten Garnfehlerlänge Lmax hinaus. Dargestellt ist jedoch nur der Kurvenverlauf innerhalb der Grenzen Lmin und Lmax. Nach dem Einstellen der Reinigungsgrenze RG+ wird auch nur der Kurvenverlauf innerhalb dieser Grenzen beim elektronischen Garnreiniger zur Garnreinigung berücksichtigt. Neben der Einstellung der Reinigungsgrenze, wie sie im Diagramm von Fig. 1 dargestellt ist, werden durch eigene Parameterabfragen der S- und L-Kanal für die Garnreinigung eingestellt. Diese betreffen Dick- und DünnStellen und werden auf herkömmliche Weise eingestellt.
  • Weiterhin zeigt Figur 1 das Einstellen der unteren Reinigungsgrenze RG-, die entsprechend der oberen Reinigungsgrenze RG+ eingestellt wird. Auch hier wird der Kurvenverlauf der unteren Reinigungsgrenze RG- aus einer Vielzahl von verschiedenen Kurvenverläufen (nicht dargestellt) ausgewählt und im Diagramm durch Verschieben des Punktes P- fixiert:
  • Nach Auswahl des Verlaufs der Reinigungskurve und des Fixierungspunktes P der Reinigungskurve wird bei Bedarf eine Skalierung der Reinigungskurve durchgeführt, wie dies in Figur 2 dargestellt ist. Dies kann sowohl die obere Reinigungskurve RG+ als auch die untere Reinigungskurve RG- entsprechend betreffen. Die Grundkurvenform RG0 kann durch einen Faktor in x-Richtung gestreckt oder gestaucht werden. Beispielsweise wird die Reinigungsgrenze RGx durch Strecken der Grundform RG0 erhalten. Weiterhin kann die Reinigungskurve durch einen Faktor in y-Richtung gestreckt oder gestaucht werden. In Figur 2 ist die Reinigungsgrenze RGy durch Strecken der Grundkurvenform RG0 erzeugt. Daneben wird eine gekippte Reinigungsgrenze RGϕ erhalten, wenn die Reinigungsgrundform RG0 um einen Winkel ϕ verdreht wird. Das Strecken und/oder Kippen erfolgt in Fig. 2 um den Einstellpunkt P, kann aber optional bezogen auf einen beliebigen Punkt des Diagramms oder der Grundform RG0 aus eingestellt werden.
  • Figur 3 zeigt verschiedene, auswählbare Kurvenverläufe der Reinigungsgrenze. Beim Kurvenverlauf RG0 ist beispielsweise die Toleranz für große Querschnittsfehler bis zum unteren Drittel der maximalen Länge relativ groß eingestellt. Der weitere Verlauf ist ungefähr treppenförmig, wobei zwischen den Stufen fließende Übergänge sind. Bei Kurvenverlauf RG1 werden große Dickenfehler nur bis zu einem kleinen Längenbereich toleriert und danach ebenfalls die Fehlerklassen stufenweise verringert, wobei hier rampenförmige Übergänge gewählt sind. Beim Kurvenverlauf RG2 werden bis zur mittleren Fehlerlänge große Fehlerquerschnittsabweichungen toleriert, bis dann ein kontinuierlicher Übergang zu einem kleinen Fehlerquerschnitt bei großen Längen stattfindet. Beim Kurvenverlauf RG3 werden wiederum dicke Querschnittsfehler nur bis zu sehr kurzen Längen toleriert.
  • Der Kurvenverlauf RGC ist ein kundendefinierter Kurvenverlauf, der individuell vorgebbar ist und ebenfalls als Auswahloption unter den Kurvenverläufen auswählbar ist. Bei diesem Kurvenverlauf RGC wird im mittleren Längenbereich ein größerer Fehlerdurchmesser toleriert als unmittelbar links und rechts von diesem Längenbereich. Diese Einstellung ist beispielsweise dann sinnvoll, wenn produktionsbedingt in diesem Längenbereich sehr häufig ein größerer Fehlerquerschnitt vorliegt und nicht ständig die Produktion angehalten werden soll, weil dieser Fehler auftritt. Dagegen liegt im mittleren Bereich über alle Längen ein tolerierbares Ergebnis einschließlich der mittleren Fehlerlängen vor, so daß insgesamt selbst mit diesem Fehler die gemittelten Fehlervorgaben einzuhalten sind. Herkömmlicherweise ist der Verlauf der oberen (unteren) Reinigergrenze jedoch nur fallend (steigend) oder abschnittsweise konstant, da ein Fehler in einem Gewebe um so auffälliger ist, je länger der Garnfehler ist.
  • Figur 4 veranschaulicht die Eingabe der Reinigungsgrenze anhand eines Kurvenverlaufs RG0 in einer tabellarischen Fehlerklassifikation. Bei dieser tabellarischen Fehlerklassifikation erfolgt diese nicht kontinuierlich wie beim Diagramm von Fig. 1, sondern es werden diskrete Fehlerklassen definiert, die jeweils einen bestimmten Bereich an Fehlerlängen und Fehlerdurchmesser zusammenfassen. In diesem Fall wird der Kurvenverlauf RG0 ebenfalls mit dem Einstellpunkt P+ innerhalb der tabellarischen Matrix fixiert und dann durch die Eingabeeinrichtung auf Grenzbereiche zwischen den Fehlerklassen umgerechnet. Somit ergibt sich aus dem Kurvenverlauf RG0 schließlich die verwendete Reinigungsgrenze RG+, die einen stufenförmigen Verlauf hat. Eine Zuordnung des Kurvenverlaufs RG0 zur Reinigungsgrenze RG+ erfolgt dabei jeweils für jedes Matrixelement, wobei der Abschnitt der Reinigungsgrenze RG+ unterhalb der jeweiligen Klasse verläuft, wenn der Kurvenverlauf RG0 innerhalb dieser Klasse unten weniger als die Hälfte der Fläche der Klasse schneidet.
  • Figur 5 zeigt ein weiteres Beispiel für das Einstellen einer Reinigungsgrenze bei einem Garnreiniger, der auf optische Farbfehler des produzierten Garns untersucht. Bei diesem Garnreiniger werden beispielsweise Fremdfasern einer anderen Farbe erkannt und durch die Garnreinigung entfernt. Das Garn wird durch einen wellenlängenempfindlichen Sensor abgetastet und im Diagramm wird die Wellenlänge über die Fehlerlänge L aufgetragen. Beim Beispiel von Fig. 5 soll das erzeugte Garn zwei Wellenlängenbänder λA und λB an tolerierbarem Garnfehler einhalten. Für das obere Wellenlängenband λA werden hierzu die obere Reinigungsgrenze RGA+ und die untere Reinigungsgrenze RGA- durch die entsprechenden Einstellpunkte P eingestellt. In Fig. 5 ist beispielsweise der Einstellpunkt PA+ zum Einstellen der oberen Reinigungsgrenze RGA+ dargestellt. Für das untere, tolerierbare Wellenlängenband λB werden die obere Reinigungsgrenze RGB+ und die untere Reinigungsgrenze RGB- vorgegeben. Alle Farb-Längen-Fehler außerhalb dieser beiden Wellenlängenbandbereiche werden durch den elektronischen Garnreiniger erkannt und bei Bedarf aus dem laufenden Garn herausgetrennt.
  • Bei einer Ausführungsform ist an einer Einstelleinheit zum Einstellen der Reinigungsgrenzen gemäß Fig. 1 (Dickenfehler) ebenfalls die Einstellroutine zum Einstellen eines Farbfehlers entsprechend Fig. 5 mit implementiert. Die Parameter werden zum elektronischen Garnreiniger übertragen, der beide Fehlerarten (Farb- und Dickenfehler) erkennt und entsprechende Fehlersignale liefert. Die Datenauswertung kann dabei z. B. mit einem schnellen digitalen Signalprozessor erfolgen. Lediglich bei der optischen Signalerfassung sind unterschiedliche optoeletronische Komponenten erforderlich, die den Fadendurchmesser einerseits und andererseits die Farbe des Fadens registrieren.
  • Figur 6A zeigt ein Garnreinigersystem bestehend aus der Maschinenzentrale oder Garnreinigersteuereinheit 10 zum Einstellen der Reinigergrenze und einem Garnreinigerbasissystem 20. Das Einstellen der Reinigergrenze gemäß dem oben beschriebenen Verfahren erfolgt in einer ersten Ausgestaltung in der Maschinenzentrale 10 der Spinnmaschine, die auch die Prozesse der Spinnmaschine steuert und kontrolliert. Oder das Einstellen erfolgt bei einer zweiten Ausgestaltung in einer Garnreinigerzentraleinheit 10, die unabhängig von der Maschinenzentrale der Spinnmaschine zum Einstellen von Gamreinigem 22, deren Kontrolle und Auswertung dient. In diesem Fall steht dann die Garnreinigerzentraleinheit 10 mit einer Maschinenzentrale der Spinnmaschine in Verbindung, um Steuerbefehle oder sonstige Daten auszutauschen.
  • Die Zentraleinheit 10 umfaßt eine CPU als Kurven- und Parametergenerator. Die CPU ist mit einer Anzeigeeinrichtung bzw. einem Display 12 verbunden, auf der die Parameterkurven in graphischer Form dargestellt werden. Weiterhin ist die CPU 11 mit einer Eingabeeinrichtung 14 verbunden, beispielsweise einer alphanumerischen Tastatur, oder die Eingabeeinrichtung 14 ist als sogenannter Touch-Screen am Display 12 integriert. Die Eingabeeinrichtung 14 dient der Auswahl der Grundform der Reinigergrenzen RG0-3 oder der vom Kunden vordefinierten Form RGC, dem Festlegen des Aufpunktes P im Koordinatensystem für die Garnfehler und der Anpassung der gewählten Kurve (Skalierungsfaktoren wie oben beschrieben, so daß modifizierte Kurven RGx, y, ϕ entstehen). Die CPU 11 holt aus einem Speicher 15 die vorgegebenen Grundformen der Reinigungsgrenze RG0-3 oder bereits voreditierte Form RGc,mod und legt dort die editierten Kurven zur Zwischenspeicherung ab. Weiterhin werden im Speicher 15 Parameterdaten zwischengespeichert, die aufgrund der bereits editierten Reinigergrenze, die bei den Garnreinigern 22 eingestellt werden soll, zwischengespeichert werden. Nachdem der Nutzer des Garnreinigersystems die endgültig editierte Reinigerkurve festgelegt hat und diese zur (späteren) Einstellung an den Garnreinigern bestimmt, werden die Parameterdaten durch die CPU 11 beispielsweise durch Transformation der festgelegten Reinigerkurve generiert. Bei der Transformation wird die festgelegte Reinigerkurve mittels einer vorgegebenen Rasterung abgetastet und "nächstliegende" Wertepaare ermittelt, siehe z.B. die aus diesen Wertepaaren sich ergebende "tatsächliche", vom Garnreiniger genutzte Reinigerkurve RG+ und Figur 4. Die Wertepaare werden im Speicher 15 zwischengespeichert und dann bei der Einstellung der Garnreiniger aus dem Speicher 15 abgerufen und durch eine Kommunikationseinrichtung 13 über den Kommunikationsweg der Basissysteme 20, 30 zum Garnreiniger 22 übertragen. Entsprechend gilt dies auch für Figur 6B.
  • Im Beispiel von Figur 6A erfolgt die Übertragung der Parameter der endgültig editierten Reinigungskurve zum Einstellen der Garnreiniger 22 über ein garnreinigereigenes Kommunikationssystem. Dieses weist einen Reinigerbus 21 auf, mit dem die Garnreiniger 22 jeweils einzeln über eine Datenschnittstelle verbunden sind. Die Gamreinigereinstellung erfolgt vorzugsweise vor Inbetriebnahme der Spinnmaschine bzw. vor Produktion einer neuen Charge, kann aber auch während des laufenden Spinnbetriebs erfolgen, so daß hier während der laufenden Produktion eine Änderung der Reinigungsgrenze erfolgt. Laufend gemessene Daten und Statusparameter werden umgekehrt von den Garnreinigern 22 über den Reinigerbus 21 zur Garnreinigerzentraleinheit 10 übertragen.
  • Figur 6B zeigt eine zweite Ausführungsform des Garnreinigersystems, bei der die Kommunikationsstruktur in diejenige der Spinnmaschine eingebunden ist. Auch hier erfolgt die Einstellung entweder über die Maschinenzentrale oder eine Garnreinigerzentraleinheit 10. Die Parameter zum Programmieren der Reinigerkurve in den Garnreinigern 22 werden hier zu einem Maschinenbus 31 übertragen, von diesem zu Sektionscontrollern 32 übermittelt, die wiederum die Parameter über einen Sektionsbus 33 den Garnreinigern 22 übermittelt. An jeden Sektionscontroller 32 sind jeweils mehrere Spinnstellen der Spinnmaschine angeschlossen, wobei diese durch den Sektionscontroller gesteuert und überwacht werden. Anstelle des Sektionsbusses 33 können die Garnreiniger 22 auch direkt mit dem Sektionscontroller 32 verbunden sein. In den Figuren 6A und 6B ist die Zahl der Garnreiniger 22 und die Zahl der Sektionscontroller 32 nur beispielhaft angegeben, wobei selbstverständlich ist, daß deren Zahl wesentlich höher sein kann.

Claims (18)

  1. Verfahren zum Einstellen einer Reinigungsgrenze bei zumindest einem elektronischen Garnreiniger, wobei die möglichen Garnfehler in einem Sortierschema sortiert nach Fehlerwert (φ, λ) und Fehlerlänge (L) angeordnet sind und wobei die Reinigungsgrenze (RG) mittels einer Kurve ausgewählt und am Garnreiniger eingestellt wird, dadurch gekennzeichnet, daß eine die Reinigungsgrenze (RG) darstellende Kurve durch genau einen Punkt (P) in dem Sortierschema festgelegt wird, wobei der Kurvenverlauf der Kurve an sich beliebig aber definiert ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kurve aus einem vorgegebenen Satz von Kurven (RG0 - RG3, RGC, RGA+, RGA-, RGB+, RGB-) mit unterschiedlichem Kurvenverlauf ausgewählt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kurve (RG) skalierbar ist.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Kurve (RG) in Bezug auf den Fehlerwert (φ, λ) und/oder die Fehlerlänge (L) skalierbar ist.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Skalierungsfaktor ein Stauchungs- und/oder Dehnungsfaktor ist.
  6. Verfahren nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, daß der Skalierungsfaktor ein Kippwinkel (ϕ) ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Sortierschema eine Tabelle und/oder ein Koordinatensystem ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Fehlerwert ein Fehlerquerschnitt (φ), eine Fehlerklasse, eine Haarigkeit oder eine Farbabweichung ist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest zwei Reinigungsgrenzen (RGA+, RGA-, RGB+, RGB-) zum Festlegen einer oberen und unteren Grenze zumindest eines Reinigungsbereichs (λA, λB) einstellbar sind.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine Kurve (RGC) eine frei definierbare oder veränderbare Kurve ist.
  11. Einstellvorrichtung zum Auswählen und Festlegen einer Reinigungsgrenze (RG) für elektronische Garnreiniger (22), mit einer Rechnereinheit (11), einer Kommunikationseinheit (13) zum Übertragen von Einstellparametem zu den elektronischen Garnreinigern (22), einer Anzeigeeinrichtung (12) und einer Eingabeeinrichtung (14) zum Eingeben von Editierparametern für die Rechnereinheit (11), gekennzeichnet durch eine Speichereinrichtung (15), in der zumindest zwei Grundtypen von an sich beliebigen aber definierten Reinigergrenzen (RG0-3, C, A+, A-, B+, B-) abgespeichert sind, wobei mittels der Rechnereinheit und den eingegebenen Editierparametern (P, x, y, ϕ) eine modifizierte Reinigergrenze (RGx,y,ϕ) zur Anzeige generierbar ist und mittels der Rechnereinheit (11) aus einer ausgewählten, modifizierten Reinigergrenze ein Einstellparametersatz zur Übertragung zu den elektronischen Garnreinigern (22) generierbar ist.
  12. Einstellvorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß in der Speichereinrichtung (15) zumindest eine bereits modifizierte Reinigergrenze (RGx, y, ϕ) als vordefinierte Reinigergrenze hinterlegbar ist.
  13. Einstellvorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Einstellvorrichtung in eine Maschinenzentralsteuereinheit (10) einer Spinnmaschine integriert ist.
  14. Einstellvorrichtung nach Anspruch 11, 12 oder 13, dadurch gekennzeichnet, daß die Anzeigeeinrichtung (12) die definierte und/oder modifizierte Reinigergrenze (RG0-3, C, RGx, y, ϕ) in einer graphischen Darstellung (Fig. 1-5), vorzugsweise nach Art eines Koordinatensystems, anzeigt.
  15. Garnreinigersystem mit einer Einstellvorrichtung (10) gemäß einem der Ansprüche 11 bis 14, einer Vielzahl von elektronischen Garnreinigern (22) und einem Kommunikationssystem (21; 31, 32, 33) zum Übertragen des Einstellparametersatzes zu den elektronischen Garnreinigern (22).
  16. Garnreinigersystem nach Anspruch 15, dadurch gekennzeichnet, daß das Kommunikationssystem einen Maschinenbus (31) einer Spinnmaschine umfaßt.
  17. Garnreinigersystem nach Anspruch 16, dadurch gekennzeichnet, daß das Kommunikationssystem eine Vielzahl von Sektionscontrollern (32) umfaßt.
  18. Garnreinigersystem nach Anspruch 17, dadurch gekennzeichnet, daß das Kommunikationssystem eine Vielzahl von Sektionsbussen (33) umfaßt.
EP02017290.4A 2001-08-28 2002-08-01 Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger Expired - Lifetime EP1295835B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001141963 DE10141963A1 (de) 2001-08-28 2001-08-28 Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger
DE10141963 2001-08-28

Publications (4)

Publication Number Publication Date
EP1295835A2 EP1295835A2 (de) 2003-03-26
EP1295835A3 EP1295835A3 (de) 2003-08-27
EP1295835B1 true EP1295835B1 (de) 2006-03-08
EP1295835B2 EP1295835B2 (de) 2013-09-25

Family

ID=7696769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02017290.4A Expired - Lifetime EP1295835B2 (de) 2001-08-28 2002-08-01 Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger

Country Status (2)

Country Link
EP (1) EP1295835B2 (de)
DE (2) DE10141963A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816983A (zh) * 2014-01-30 2015-08-05 村田机械株式会社 纱线状态显示装置、纱线处理装置及纱线状态显示方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342383A1 (de) * 2003-09-13 2005-05-25 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum berührungslosen Bestimmen der Geschwindigkeit eines laufenden Fadens
DE10352429A1 (de) * 2003-11-10 2005-06-23 Saurer Gmbh & Co. Kg Garnreiniger
WO2009076782A1 (de) * 2007-12-18 2009-06-25 Uster Technologies Ag Verfahren und vorrichtung zur bewertung von fremdstoffen in bewegtem textilem prüfgut
DE102008037758B4 (de) * 2008-08-14 2019-09-19 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zur Qualitätsüberwachung eines längsbewegten Garnes an einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
CH699599A1 (de) 2008-09-29 2010-03-31 Uster Technologies Ag Verfahren und vorrichtung zur überwachung von spleissen in einem länglichen textilen prüfgut.
DE102012102576A1 (de) * 2012-03-26 2013-09-26 Maschinenfabrik Rieter Ag Verfahren zur Garnüberwachung
CN102965786B (zh) * 2012-12-03 2015-09-30 吴江市科时达纺织有限公司 纱线处理量大的清纱器
JP2018034917A (ja) * 2016-08-29 2018-03-08 村田機械株式会社 クリアリングリミット設定装置及び糸巻取機
JP2019137537A (ja) * 2018-02-14 2019-08-22 村田機械株式会社 クリアリングリミット設定装置及び糸巻取機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH477573A (de) * 1967-10-03 1969-08-31 Zellweger Uster Ag Vorrichtung für Garnreiniger
DE2404136C3 (de) * 1973-02-05 1984-06-28 Gebrüder Loepfe AG, Wetzikon Einrichtung zum Einstellen der Reinigungsgrenzen eines elektronischen Fadenreinigers
CH678173A5 (de) * 1989-06-29 1991-08-15 Zellweger Uster Ag
DE4019957A1 (de) * 1990-02-08 1991-08-14 Zellweger Uster Ag Verfahren zur qualitaetsbewertung von garnen und einrichtung zur durchfuehrung des verfahrens
CH683350A5 (de) 1991-09-11 1994-02-28 Peyer Ag Siegfried Verfahren und Vorrichtung zum Klassifizieren und Reinigen von Garnen.
EP0652432A1 (de) 1993-11-04 1995-05-10 BARCO nv/Automation Vorrichtung zum Erkennen von Fremdmaterial, insbesondere von Fremdfasern, in einem längsbewegten textilen Gebilde
JP3611140B2 (ja) 1995-07-20 2005-01-19 計測器工業株式会社 糸の測定装置
EP0877108B1 (de) * 1997-04-23 2003-07-16 Uster Technologies AG Verfahren und Vorrichtung zum Reinigen von Garnen
DE19907684B4 (de) 1999-02-23 2007-04-12 Saurer Gmbh & Co. Kg Textilmaschine mit Prozessoren an den Arbeitsstellen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104816983A (zh) * 2014-01-30 2015-08-05 村田机械株式会社 纱线状态显示装置、纱线处理装置及纱线状态显示方法

Also Published As

Publication number Publication date
EP1295835A3 (de) 2003-08-27
EP1295835B2 (de) 2013-09-25
EP1295835A2 (de) 2003-03-26
DE50205990D1 (de) 2006-05-04
DE10141963A1 (de) 2003-03-20

Similar Documents

Publication Publication Date Title
EP1290440B1 (de) Verfahren und vorrichtung zur erkennung von fremdstoffen in einem längsbewegten fadenförmigen produkt
DE2409882C3 (de) Vorrichtung zum Erkennen des fehlerhaften Arbeiten« von Spinnmaschinen
EP0207471B1 (de) Verfahren zur Überwachung der Fadenqualität des laufenden Fadens
EP1295835B1 (de) Verfahren zum Einstellen einer Reinigungsgrenze bei einem elektronischen Garnreiniger
DE19822886B4 (de) Regulierstreckwerk für einen Faserverband, z. B. Baumwolle, Chemiefasern o. dgl. mit mindestens einem Verzugsfeld
WO2007012212A1 (de) Textilmaschine mit garnüberwachung
DE19939711B4 (de) Verfahren und Vorrichtung zur Detektierung von Fremdkörpern in einem längsbewegten Faden
EP2483190B1 (de) Verfahren zum festlegen einer reinigungsgrenze auf einer garnreinigungsanlage
DE4431810B4 (de) Einstellung der Parameter für optimale Ansetzvorgänge einer Ansetzvorrichtung bei Partiewechsel an einer Rotorspinnmaschine
DE10214955B9 (de) Spinnereivorbereitungsmaschine
EP0685580B1 (de) Verfahren und Vorrichtung zur Ermittlung von Ursachen für Fehler in Garnen, Vorgarnen und Bändern
EP2303743B1 (de) Verfahren und vorrichtung zur garnreinigung
EP0439768B1 (de) Verfahren zur qualitativen Klassierung von elektronisch gereinigtem Garn
EP3760772A1 (de) Optimierung des betriebes einer spinnmaschine
EP1006225B2 (de) Verfahren zur Auswertung der Wirkung von Garneigenschaften auf das Aussehen textiler Flächengebilde
EP1187786B1 (de) Verfahren und vorrichtung zum reinigen von garn
DE10142976A1 (de) Textilanlage mit einer Steuereinrichtung zur Bereitstellung partiebezogener Betriebsdaten
WO1994025869A1 (de) Verfahren zur fehlerdiagnose in einem herstellungsprozess eines synthetischen fadens
WO2020244867A1 (de) Karde, vliesleitelement, spinnereivorbereitungsanlage und verfahren zur erfassung von störenden partikeln
EP2830982B1 (de) Verfahren zur garnüberwachung
DE19649314B4 (de) Verfahren zum Überprüfen des Fadenprofils
DE102020125938A1 (de) Textilmaschine sowie Verfahren zur Ermittlung der Fadenverbindungsqualität einer durch eine Fadenverbindungseinheit einer Textilmaschine hergestellten Fadenverbindung
EP1883903A1 (de) Verfahren und vorrichtung zur simulation eines visuellen flächenmusters eines faserproduktes sowie verfahren und vorrichtung zur herstellung eines bcf-garnes
CH692388A5 (de) Verfahren zur Beurteilung der Qualität eines Faserbandes in einer Textilmaschine.
DE2820097B2 (de) Verfahren zur Bestimmung der Häufigkeit von Garnfehlern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031001

AKX Designation fees paid

Designated state(s): BE CH CZ DE LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH CZ DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50205990

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: USTER TECHNOLOGIES AG

Effective date: 20061208

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RIETER INGOLSTADT GMBH

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20090729

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100801

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: USTER TECHNOLOGIES AG

Effective date: 20061208

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130925

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE CH CZ DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50205990

Country of ref document: DE

Effective date: 20130925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130823

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160825

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170829

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205990

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301