EP1289350A1 - Betriebsschaltung für Entladungslampe mit vorheizbaren Elektroden - Google Patents

Betriebsschaltung für Entladungslampe mit vorheizbaren Elektroden Download PDF

Info

Publication number
EP1289350A1
EP1289350A1 EP02015874A EP02015874A EP1289350A1 EP 1289350 A1 EP1289350 A1 EP 1289350A1 EP 02015874 A EP02015874 A EP 02015874A EP 02015874 A EP02015874 A EP 02015874A EP 1289350 A1 EP1289350 A1 EP 1289350A1
Authority
EP
European Patent Office
Prior art keywords
circuit
frequency
operating
preheating
operating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02015874A
Other languages
English (en)
French (fr)
Other versions
EP1289350B1 (de
Inventor
Thomas Neidlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1289350A1 publication Critical patent/EP1289350A1/de
Application granted granted Critical
Publication of EP1289350B1 publication Critical patent/EP1289350B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to an operating circuit for a discharge lamp with preheatable electrodes.
  • the electrodes generally filaments, preheated should be. Proper preheating not only makes it easier the starting process, but is particularly important for the life of the electrodes essential.
  • one of the discharge routes is used for this connected in parallel by the discharge lamp and to the two electrodes
  • Conventional discharge lamps in series circuit which is a parallel circuit from a capacitor and a thermistor (PTC element) contains.
  • PTC element thermistor
  • the operating circuit acts on the discharge lamp an operating voltage, which, however, is relative to the PTC thermistor large current, which leads the electrodes through which this current flows or filaments heated up.
  • the PTC thermistor with high resistance, so that now only the reactance of the capacitor is effective. This increases the voltage between the electrodes so that the discharge can be ignited.
  • a half-bridge oscillator with two bipolar transistors has as switching transistors, proposed the emitter resistors to change these bipolar transistors after the preheating time, with what the negative feedback in the half-bridge oscillator can be influenced.
  • the use is technically necessary for the circuit shown there a toroidal transformer, which depends on the normal operation Emitter resistances saturated at different times. From the change the negative feedback is thus influenced by the operating frequency the operating circuit.
  • the operating circuit is designed so that they are facing one by a circle of lamps during preheating given resonance frequency is too high and only after the preheating time is brought to a value in the manner described which corresponds to Ignition of the discharge lamp leads.
  • the preamble of claim 1 is based on this prior art.
  • the invention is based on the technical problem of a new operating circuit to be specified for discharge lamps with preheatable electrodes, which is a reliable, flexible and inexpensive solution for preheating of the electrodes guaranteed.
  • an operating circuit for a discharge lamp is provided with preheatable electrodes that have an oscillator circuit with at least one switching transistor for generating an output power an RF frequency for the discharge lamp to be connected to the oscillator circuit by switching operation corresponding to the HF frequency has, the operating circuit is designed so that after a start the operating circuit changes the RF frequency of the oscillator circuit is that the discharge lamp does not initially ignite, but a preheating current for preheating the electrodes flowing through the electrodes, and the RF frequency after a preheat time to an operating frequency nearby a resonance frequency of the oscillator circuit is fed back to the Ignite discharge lamp, characterized in that the RF frequency the oscillator circuit by at least its own resonant circuit is determined, which is connected to a control electrode of the switching transistor is to the control electrode with control signals with the by the Resonant circuit to apply certain RF frequency, the change the HF frequency for preheating by detuning the natural frequency of the resonant circuit with respect to
  • an independent one is thus used to determine the operating frequency Resonant circuit used.
  • This resonant circuit is located on the control electrode of the at least one switching transistor of the oscillator circuit Operating circuit and thus shapes the resonant circuit frequency switching operation of the switching transistor and thus the entire operating circuit. Incidentally, if more than one switching transistor is provided, also two or more resonant circuits can be provided.
  • the resonant circuit (s) is the operating frequency set, not to be understood as if any Vibration frequency of a resonant circuit can be selected as the operating frequency. Since the switching transistors belong to the oscillator circuit and this has a certain resonance frequency, are the total operating frequency only frequencies in a certain environment around this resonance frequency possible. So if the frequency of the resonant circuit compared to the resonance frequency the oscillator circuit should be very badly out of tune, so there is no operation. Around within a certain environment however, the resonance frequency of the oscillator circuit becomes operational determines the frequency of the resonant circuit.
  • the resonant circuit and the oscillator circuit are at least by driving the switching transistors coupled. However, energy feedback is also preferred from the oscillator circuit in the resonant circuit for energy coupling in provided the resonant circuit.
  • the resonant circuit according to the invention is compared to the oscillator circuit independent in so far as it defines an independent frequency and independent in terms of frequency, i.e. in particular also changed, i.e. can be detuned.
  • the invention now provides, instead of that in the State of the art proposed influencing the wiring of the Switching transistors and thus influencing the negative feedback of the oscillator circuit directly the frequency-determining variables in the invention To change the resonant circuit.
  • the resonant circuit should therefore be detuned in a targeted manner to enable preheating. So he's during the preheating time or the operating frequencies that a Ignition of the discharge lamp result, shifted in frequency, and is only changed after the preheating time so that the discharge lamp can ignite.
  • the concept according to the invention can be used relatively universally, because the selection of transistors as switching elements in oscillator circuits in different ways, not just in the form of bipolar transistors, can be done. Other essential requirements than the use at least one switching transistor in the oscillator circuit consist in Basically not.
  • the use of a toroidal transformer is also not necessary. Rather, there is a transformer for feedback in the resonant circuit preferred, which does not saturate in normal operation.
  • a half-bridge arrangement as oscillator circuit is preferred, the two Contains switching transistors.
  • one can be used for each switching transistor Resonant circuit can be provided.
  • solutions can also be found find that get along with a single resonant circuit.
  • the signal of an oscillating circuit for one of the two switching transistors be inverted while it is applied to the other unchanged becomes.
  • the use of complementary switching transistors is preferred in the half-bridge, i.e. a pair of an npn and a pnp switching transistor or a pair of an n-channel and a p-channel FET.
  • the switching elements preferred according to the invention are voltage-controlled, thus FETs or IGBTs, in particular MOS-FETs.
  • At least one resonant circuit is preferably between the control electrode of the respective switching transistor and the bridge center provided, as the embodiment shows.
  • the oscillating circuit is preferably an oscillating circuit, in which the frequency by one or more inductors and one or multiple capacities is defined, i.e. an LC resonant circuit.
  • the capacitance can also be a transistor input capacitance his. It is not necessarily a separate capacitor required.
  • the detuning of the resonant circuit can take place in various forms, for example by changing the effective frequency-determining inductance or capacity. However, switching on or off is preferred a capacity. This is done in a distance connected with the capacity to provide a switch in the resonant circuit, in particular a transistor.
  • the frequency during the preheating is preferably above the Continuous operating frequency, the resonant circuit is still at higher frequencies out of tune. So the capacity mentioned, if it acts in parallel with other capacities, during preheating be switched off, the corresponding line section is therefore interrupted his. At the end of the preheating time, the line is switched on and thus the capacity with frequency determining. With a series connection to each other the reverse applies to other capacities. For example use a small transistor input capacitance during preheating find while the one to be switched on after the end of preheating Capacity is in the form of its own capacitor. It is based on the embodiment directed.
  • the preheating time can be defined in various forms.
  • a preferred one Solution is a circuit that has a preheating capacity during the preheating time and after reaching a certain voltage of the capacitance leads to a switching of the frequency in the resonant circuit.
  • the invention offers the advantage of being considerably shorter Time interval between switching off and again with proper Preheating, switch on. With the one proposed here This time interval can help to define the preheating time Need can be further shortened by giving the preheating capacity a discharge resistance is connected in parallel. Basically, however, the component-related Self-discharge of the capacitor is sufficiently quick Discharge after switching off.
  • the voltage threshold when loading the preheat time capacity can be defined, for example, by a zener diode.
  • the execution example shows how after overcoming the forward voltage of the zener diode a transistor is turned on, which in the on the capacitor for the Frequency detuning (towards the operating frequency) is arranged is.
  • the zener diode then serves the purpose that is predetermined by the transistor Increase threshold voltage.
  • Resistor can be provided, which makes the circuit less sensitive With regard to fluctuations in the transistor, so approximately parallel to the in the exemplary embodiment provided here the emitter-base path of the bipolar transistor the preheating circuit.
  • the invention is basically directed to operating circuits for discharge lamps, in particular on operating circuits for low-pressure discharge lamps. It is the preferred application in ballasts, which can be carried out separately or integrated. So are claimed ballasts for fluorescent lamps designed according to the invention, which are usually carried out separately. On the other hand, judges the invention also on ballasts for compact fluorescent lamps, and both as separate ballasts as well as integrated. In the latter In this case, the entire compact fluorescent lamp is used.
  • the figure shows a circuit diagram of an embodiment for a operating circuit according to the invention.
  • La denotes a low-pressure discharge lamp, it being shown schematically that two incandescent filaments are connected in the part of the operating circuit which is referred to in the figure as the lamp circuit.
  • the incandescent filaments are connected via a capacitor C 7 , which serves as a resonance capacitor.
  • a parallel circuit comprising a further capacitor and a PTC thermistor is connected in series with the resonance capacitor C 7 in order to provide for the preheating of the electrodes in the manner already described. This additional capacitor and the PTC thermistor are no longer necessary in the invention.
  • the discharge lamp La is supplied as follows: A fuse Si is connected to the mains input (household mains voltage) labeled L and N. This is followed by a rectifier consisting of diodes D 1 to D 4 , the output of which has a smoothing capacitor C 1 .
  • L 1 denotes a filter choke and C 2 denotes a capacitor; both components together form a radio interference suppression element.
  • the components R 1 , R 2 , C 3 , D 5 and the diac form a start-up circuit which is known per se.
  • the capacitor C 3 is charged in this start-up circuit after applying the mains voltage to the terminals L and N until a breakdown voltage is present at the diac and this provides a first control pulse for the switching transistors T 1 and T 2 .
  • the connection of the capacitor C 3 prevents the latter from again supplying a control pulse.
  • the mode of operation of the starting circuit is of no importance for the present invention.
  • the discharge lamp La is connected via a resonance inductor L 3 -A to the center tap between the two switching transistors T 1 and T 2 forming a half-bridge, and to the other electrode via a decoupling capacitor C 6 to the upper supply branch in the figure, that is to say one of the two external connections the half bridge.
  • the resonance inductor L 3 -A, the decoupling capacitor C 6 and the resonance capacitor C 7 form a series resonance circuit.
  • the capacitor C 5 only serves to relieve the switching transistors T 1 and T 2 and contributes to radio interference suppression.
  • the switching transistors are controlled via the control circuit so-called in the figure, the component VS of which is shown in the lower part of the figure and is responsible for preheating the electrodes of the discharge lamp La.
  • the control circuit forms an independent resonant circuit with the inductance L 2 and the capacitance C 4 . If, on the other hand, the emitter-collector path of the transistor T V is open, the resonant circuit in the drive circuit consists only of the inductance L 2 together with the transistor input capacitances of the switching transistors T 1 and T 2 .
  • the auxiliary capacitor C 4b shown in broken lines in the figure can be added, which forms a suitable (comparatively small) total capacitance in series connection with the capacitor C 4 .
  • control circuit is only provided in a simple manner and is connected to the control electrodes of both switching transistors T 1 and T 2 . This is possible because the switching transistors are complementary, as the switching symbols in the figure illustrate.
  • a winding L 3 -B is connected to the resonant circuit in the control circuit via the resistor R 3 , this winding L 3 -B being coupled to the resonance inductance L 3 -A already mentioned in the lamp circuit.
  • This can be a transformer (which does not saturate in normal operation), but the two inductors can also be mounted sufficiently close to one another so that there is a magnetic coupling. The coupling is used to synchronize the vibrations of the control circuit and the rest of the oscillator circuit and to feed energy into the resonant circuit.
  • the circuit diagram shows that the resonant circuit in the control circuit defines an independent frequency with respect to the lamp circuit with the emitter-collector paths of the switching transistors T 1 and T 2 .
  • Coupling via the inductors L 3 -A and L 3 -B and the control electrodes of the switching transistors T 1 and T 2 creates a system of two coupled oscillators. This is used to preheat the discharge lamp La after the start (start pulse of the diac), in that the emitter-collector path of the transistor T V in the preheating circuit VS remains open and thus the resonant circuit comprising the inductance L 2 and the input capacitances of the switching transistors T 1 and T 2 or the total capacitance C 4 in series with C 4b with a frequency which is somewhat too high compared to the natural frequency of the series resonance circuit in the lamp circuit.
  • the frequency predetermined by the resonant circuit is only detuned upwards with respect to the natural frequency of the series resonant circuit to such an extent that the oscillator circuit resonates to a certain extent, that is to say there is also energy feedback via the transformer into the resonant circuit. Due to the frequency detuning, there is no sufficient voltage rise between the electrodes in the lamp circuit, so that the discharge lamp La does not ignite. Instead, a preheating current flows through the electrodes due to the forced vibration in the oscillator circuit.
  • the transistor input capacitances of the switching transistors T 1 and T 2 together with the inductor L 2 should define a natural frequency of the resonant circuit in the control circuit that is already close to the ignition frequency, either the inductor L 2 could be changed or additional damping could be carried out.
  • the emitter-collector path of the transistor T V becomes conductive, so that the frequency of the resonant circuit in the control circuit is determined by the inductance L 2 together with the capacitance C 4 , This frequency is close to the resonance frequency of the rest of the oscillator (ie the series resonance circuit of the lamp circuit together with the switching paths of the switching transistors T 1 and T 2 ).
  • a capacitor C V shown in the detailed illustration of the preheating circuit VS is switched from a point A via a diode D V1 and a resistor R V1 is charged until the sum of the necessary base-emitter voltage and the breakdown voltage of a Zener diode D V2 is reached.
  • One side of the capacitor C V is connected to the control electrode (the base of the bipolar transistor T V ) via this zener diode D V2 , while the other side of the capacitor C V is connected to another terminal (the emitter) of the transistor T V.
  • the capacitor voltage is applied to the emitter-base path, so that the emitter-collector path of the transistor T V becomes conductive.
  • the breakdown voltage of the Zener diode D V2 is not reached, the base and the emitter of the transistor T V are short-circuited via the resistor R V2 , so that the emitter-collector path remains open.
  • the diode D V3 is, moreover, a freewheeling diode which is customary for the wiring of bipolar transistors.
  • the capacitor C V has a discharge resistor R V3 in parallel which, after the entire operating circuit has been switched off, discharges the capacitor again in a very short period of time for the use of the discharge lamp La and thus enables the discharge lamp La to be switched on again briefly with proper preheating.
  • the discharge of the transistor T V given by this resistor R V3 is slow enough to make the discharge sufficiently weak compared to the charging processes by the diode D V1 and the resistor R V1 .
  • the resistor R V1 brakes the charging of the capacitor C V and, together with its capacitance and the breakdown voltage of the diode D V2, serves to define the preheating time.
  • Resistor R V2 also serves to avoid excessive dependencies on scattering of different individual transistors T V.
  • the operating circuit could be composed of the figure with the discharge lamp La for an integrated solution, for example a compact fluorescent lamp with a ballast integrated in the base act.
  • the circuit is equally applicable to separate solutions, in which a discharge lamp La with its electrodes connected to corresponding ones Connections of the operating circuit can be connected.
  • the rectifier instead of the supply shown via the connections L N mains voltage to be applied naturally also a different supply, about from a battery, then the rectifier could be omitted.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Die Erfindung bezieht sich auf eine neue Betriebsschaltung für eine Entladungslampe, bei der durch eine gegenüber der Resonanzfrequenz der Lampenbeschaltung frequenzverstimmte Ansteuerung von Schalttransistoren einer Oszillatorschaltung eine Vorheizung der Lampenelektroden bewirkt wird. Die Frequenz der Ansteuerung wird durch einen eigenständigen Schwingkreis definiert. <IMAGE>

Description

Technisches Gebiet
Die Erfindung bezieht sich auf eine Betriebsschaltung für eine Entladungslampe mit vorheizbaren Elektroden.
Stand der Technik
Es ist allgemein bekannt, dass bei Niederdruckentladungslampen vor dem Zünden der Entladung die Elektroden, im allgemeinen Glühwendeln, vorgeheizt werden sollen. Ein ordnungsgemäßes Vorheizen erleichtert nicht nur den Startvorgang, sondern ist insbesondere für die Lebensdauer der Elektroden wesentlich.
Konventionellerweise verwendet man hierzu eine der Entladungsstrecke durch die Entladungslampe parallel geschaltete und zu den beiden Elektroden üblicher Entladungslampen in Reihe liegende Schaltung, die eine Parallelschaltung aus einem Kondensator und einem Kaltleiter (PTC-Element) enthält. Bei einem Kaltstart ist der Kaltleiter leitend, so dass der Kondensator überbrückt ist. Die Betriebsschaltung beaufschlagt die Entladungslampe mit einer Betriebsspannung, die jedoch durch den Kaltleiter zu einem relativ großen Strom führt, der die von diesem Strom durchflossenen Elektroden bzw. Glühwendeln aufheizt. Nach einer bestimmten Vorheizzeit wird der Kaltleiter hochohmig, so dass nunmehr nur der Blindwiderstand des Kondensators wirksam ist. Dadurch steigt die Spannung zwischen den Elektroden an, so dass die Entladung gezündet werden kann.
Diese Lösung ist mit verschiedenen Nachteilen verbunden. Zum einen führt der Kaltleiter im Dauerbetrieb zu einer die Effizienz etwas beeinträchtigenden beständigen Leistungsaufnahme. Außerdem können daraus thermische Probleme für Vorschaltgeräte folgen. Zum zweiten benötigt der Kaltleiter zum Abkühlen nach dem Ausschalten der Entladungslampe eine vergleichsweise lange Zeit, z.B. zwei Minuten. Wenn die Entladungslampe also nach (eventuell versehentlichem) Ausschalten kurze Zeit später wieder eingeschaltet wird, so erfolgt dieser Neustart ohne ordnungsgemäße Vorheizung der Elektroden. Schließlich muß der verwendete Kondensator für die an der Entladungslampe bei der Zündung anliegenden Spannungen ausgelegt sein und ist daher ein vergleichsweise teures Bauteil. Auch der Kaltleiter ist ein die Kosten der Betriebsschaltung insgesamt spürbar erhöhendes Bauteil.
Man ist daher bestrebt, alternative Möglichkeiten zum Vorheizen der Elektroden in den Entladungslampen zu finden.
Eine solche Möglichkeit schildert die DE 196 13 149. Dort wird für eine Betriebsschaltung, die einen Halbbrückenoszillator mit zwei Bipolartransistoren als Schalttransistoren aufweist, vorgeschlagen, die Emitterwiderstände dieser Bipolartransistoren nach Ablauf der Vorheizzeit zu verändern, womit die Gegenkopplung in dem Halbbrückenoszillator beeinflusst werden kann. Technisch notwendig für die dort dargestellte Schaltung ist die Verwendung eines Ringkerntransformators, der im Normalbetrieb abhängig von den Emitterwiderständen zu unterschiedlichen Zeitpunkten sättigt. Aus der Veränderung der Gegenkopplung folgt somit eine Beeinflussung der Betriebsfrequenz der Betriebsschaltung. Dabei ist die Betriebsschaltung so ausgelegt, dass sie während des Vorheizens gegenüber einer durch einen Lampenkreis gegebenen Resonanzfrequenz zu hoch liegt und erst nach Ablauf der Vorheizzeit in der beschriebenen Weise auf einen Wert gebracht wird, der zum Zünden der Entladungslampe führt.
Darstellung der Erfindung
Von diesem Stand der Technik geht der Oberbegriff des Anspruchs 1 aus. Der Erfindung liegt das technische Problem zugrunde, eine neue Betriebsschaltung für Entladungslampen mit vorheizbaren Elektroden anzugeben, die eine funktionssichere, flexible und kostengünstige Lösung zum Vorheizen der Elektroden gewährleistet.
Erfindungsgemäß ist hierzu eine Betriebsschaltung für eine Entladungslampe mit vorheizbaren Elektroden vorgesehen, die eine Oszillatorschaltung mit zumindest einem Schalttransistor zur Erzeugung einer Ausgangsleistung mit einer HF-Frequenz für die an die Oszillatorschaltung anzuschließende Entladungslampe durch einen der HF-Frequenz entsprechenden Schaltbetrieb aufweist, wobei die Betriebsschaltung so ausgelegt ist, dass nach einem Start der Betriebsschaltung die HF-Frequenz der Oszillatorschaltung so verändert wird, dass die Entladungslampe zunächst nicht zündet, jedoch ein Vorheizstrom zum Vorheizen der Elektroden durch die Elektroden fließt, und die HF-Frequenz nach einer Vorheizzeit auf eine Betriebsfrequenz in der Nähe einer Resonanzfrequenz der Oszillatorschaltung zurückgeführt wird, um die Entladungslampe zu zünden, dadurch gekennzeichnet, dass die HF-Frequenz der Oszillatorschaltung durch zumindest einen eigenen Schwingkreis bestimmt wird, der an einer Steuerelektrode des Schalttransistors angeschlossen ist, um die Steuerelektrode mit Steuersignalen mit der durch den Schwingkreis bestimmten HF-Frequenz zu beaufschlagen, wobei die Veränderung der HF-Frequenz zum Vorheizen durch eine Verstimmung der Eigenfrequenz des Schwingkreises gegenüber der Resonanzfrequenz der Oszillatorschaltung erfolgt.
Bevorzugte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Bei der Erfindung wird somit zur Festlegung der Betriebsfrequenz ein eigenständiger Schwingkreis verwendet. Dieser Schwingkreis liegt an der Steuerelektrode des zumindest einen Schalttransistors der Oszillatorschaltung der Betriebsschaltung und prägt somit die Schwingkreisfrequenz dem Schaltbetrieb des Schalttransistors und damit der gesamten Betriebsschaltung auf. Wenn mehr als ein Schalttransistor vorgesehen ist, können übrigens auch zwei oder mehrere Schwingkreise vorgesehen sein.
Dabei darf die Aussage, dass der oder die Schwingkreise die Betriebsfrequenz festlegen, nicht so verstanden werden, als könnte damit jede beliebige Schwingfrequenz eines Schwingkreises als Betriebsfrequenz gewählt werden. Da die Schalttransistoren zu der Oszillatorschaltung gehören und diese eine bestimmte Resonanzfrequenz hat, sind als Betriebsfrequenz insgesamt nur Frequenzen in einer gewissen Umgebung um diese Resonanzfrequenz möglich. Wenn also die Frequenz des Schwingkreises gegenüber der Resonanzfrequenz der Oszillatorschaltung sehr stark verstimmt sein sollte, so kommt kein Betrieb zustande. Innerhalb einer bestimmten Umgebung um die Resonanzfrequenz der Oszillatorschaltung wird der Betrieb jedoch durch die Frequenz des Schwingkreises bestimmt. Der Schwingkreis und die Oszillatorschaltung sind dabei zumindest durch die Ansteuerung der Schalttransistoren gekoppelt. Vorzugsweise ist jedoch auch eine Energierückkopplung aus der Oszillatorschaltung in den Schwingkreis zur Energieeinkopplung in den Schwingkreis vorgesehen.
Der erfindungsgemäße Schwingkreis ist gegenüber der Oszillatorschaltung insoweit eigenständig, als er eine eigenständige Frequenz festlegt und eigenständig in der Frequenz abgestimmt, also insbesondere auch verändert, d.h. verstimmt werden kann. Die Erfindung sieht nun vor, statt der in dem zitierten Stand der Technik vorgeschlagenen Beeinflussung der Beschaltung der Schalttransistoren und damit Beeinflussung der Gegenkopplung der Oszillatorschaltung direkt die frequenzbestimmenden Größen in dem erfindungsgemäßen Schwingkreis zu verändern. Der Schwingkreis soll also gezielt verstimmt werden, um den Vorheizbetrieb zu ermöglichen. Er ist also während der Vorheizzeit gegenüber der oder dejenigen Betriebsfrequenzen, die ein Zünden der Entladungslampe zur Folge haben, frequenzverschoben, und wird erst nach Ablauf der Vorheizzeit so verändert, dass die Entladungslampe zünden kann.
Damit lassen sich besonders einfache und effiziente Schaltungen realisieren; insbesondere erübrigt sich die Verwendung des Kaltleiters und des hierzu konventionellerweise parallel geschalteten Kondensators.
Außerdem ist das erfindungsgemäße Konzept relativ universell einsetzbar, weil die Auswahl von Transistoren als Schaltelementen in Oszillatorschaltungen in verschiedener Weise, nicht nur in Form von Bipolartransistoren, erfolgen kann. Andere wesentliche Voraussetzungen als die Verwendung zumindest eines Schalttransistors in der Oszillatorschaltung bestehen im Grunde nicht. Auch die Verwendung eines Ringkerntransformators ist nicht notwendig. Vielmehr ist zur Rückkopplung in den Schwingkreis ein Transformator bevorzugt, der im Normalbetrieb nicht sättigt.
Bevorzugt ist eine Halbbrückenanordnung als Oszillatorschaltung, die zwei Schalttransistoren enthält. Hierbei kann pro Schalttransistor eine eigene Schwingkreisschaltung vorgesehen sein. Es lassen sich jedoch auch Lösungen finden, die mit einem einzigen Schwingkreis auskommen. Insbesondere könnte das Signal eines Schwingkreises für einen der beiden Schalttransistoren invertiert werden, während es an den anderen unverändert angelegt wird. Bevorzugt ist jedoch die Verwendung komplementärer Schalttransistoren in der Halbbrücke, also eines Paares aus einem npn- und einem pnp-Schalttransistor oder eines Paares aus einem n-Kanal- und einem p-Kanal-FET. Die erfindungsgemäß bevorzugten Schaltelemente sind spannungsgesteuert, also FETs oder IGBTs, insbesondere MOS-FETs.
Wenn eine Brückenschaltung (im allgemeinen Sinn, als z.B. auch eine Vollbrücke) vorgesehen ist, so ist zumindest ein Schwingkreis vorzugsweise zwischen der Steuerelektrode des jeweiligen Schalttransistors und dem Brückenmittelpunkt vorgesehen, wie auch das Ausführungsbeispiel zeigt.
Bei dem Schwingkreis handelt es sich vorzugsweise um einen Schwingkreis, in dem die Frequenz durch eine oder mehrere Induktivitäten und eine oder mehrere Kapazitäten definiert ist, also einen LC-Schwingkreis. Wie das Ausführungsbeispiel verdeutlicht, kann die Kapazität dabei auch eine Transistoreingangskapazität sein. Es ist nicht notwendigerweise eine eigener Kondensator erforderlich.
Das Verstimmen des Schwingkreises kann in verschiedener Form erfolgen, beispielsweise durch Verändern der effektiven frequenzbestimmenden Induktivität oder Kapazität. Bevorzugt ist jedoch das Zu- oder Wegschalten einer Kapazität. Hierzu ist also in einer mit der Kapazität verbundenen Strecke in dem Schwingkreis ein Schalter vorzusehen, insbesondere ein Transistor.
Vorzugsweise wird dabei die Frequenz während des Vorheizens über der Dauerbetriebsfrequenz liegen, der Schwingkreis also noch zu höheren Frequenzen hin verstimmt werden. Dazu kann also die erwähnte Kapazität, wenn sie zu anderen Kapazitäten parallel wirkt, während des Vorheizens weggeschaltet sein, die entsprechende Leitungsstrecke also unterbrochen sein. Nach Ende der Vorheizzeit wird die Strecke dann eingeschaltet und somit die Kapazität mit frequenzbestimmend. Bei einer Reihenschaltung zueinander zu anderen Kapazitäten gilt das Umgekehrte. Beispielsweise kann während des Vorheizens eine kleine Transistoreingangskapaziät Verwendung finden, während die nach dem Ende des Vorheizens zuzuschaltende Kapazität in Form eines eigenen Kondensators vorliegt. Es wird auf das Ausführungsbeispiel verwiesen.
Die Vorheizzeit kann in verschiedener Form definiert werden. Eine bevorzugte Lösung besteht in einer Schaltung, die eine Vorheizzeitkapazität während der Vorheizzeit auflädt und nach Erreichen einer bestimmten Spannung an der Kapazität zu einem Umschalten der Frequenz im Schwingkreis führt.
Grundsätzlich bietet die Erfindung den Vorteil eines erheblich kürzeren Zeitabstandes zwischen einem Ausschalten und einem wieder mit ordnungsgemäßem Vorheizen erfolgenden Einschalten. Bei der hier vorgeschlagenen Lösung zur Definition der Vorheizzeit kann dieser Zeitabstand bei Bedarf weiter dadurch verkürzt werden, dass der Vorheizkapazität ein Entladewiderstand parallel geschaltet ist. Im Grunde kann aber schon die bauelementbedingte Eigenentladung des Kondensators eine ausreichend schnelle Entladung nach dem Ausschalten bewirken.
Der Spannungsschwellenwert bei dem Laden der Vorheizzeitkapazität kann beispielsweise durch eine Zenerdiode definiert werden. Das Ausrührungsbeispiel zeigt, wie nach Überwinden der Durchlassspannung der Zenerdiode ein Transistor leitend geschaltet wird, der in der an dem Kondensator für die Frequenzverstimmung (zu der Betriebsfrequenz hin) liegenden Strecke angeordnet ist. Die Zenerdiode dient dann dazu, die durch den Transistor vorgegebene Schwellenwertspannung zu erhöhen.
Außerdem kann parallel zu der Steuerstrecke des Transistors ein weiterer Widerstand vorgesehen sein, der die Schaltung weniger empfindlich im Hinblick auf Schwankungen des Transistors macht, also etwa parallel zu der im Ausführungsbeispiel hier vorgesehenen Emitter-Basis-Strecke des Bipolartransistors der Vorheizschaltung.
Wenn die bereits erwähnten Schalttransistoreingangskapazitäten für eine ausreichende Oszillation der Oszillatorschaltung während des Vorheizens nicht ausreichen, so kann der beschriebenen Transistorstrecke, die während des Vorheizens unterbrochen wird und danach leitend sein soll, eine verhältnismäßig kleine Kapazität parallel geschaltet sein, um diese Vorheizoszillationen auf ein ausreichendes Niveau zu bringen und damit einen ausreichenden Vorheizstrom zu ermöglichen.
Entsprechende Lösungen sind natürlich auch möglich, wenn anstelle der Kapazität zur Frequenzverstimmung im Schwingkreis eine Induktivität verwendet wird.
Die Erfindung richtet sich grundsätzlich auf Betriebsschaltungen für Entladungslampen, insbesondere auf Betriebsschaltungen für Niederdruckentladungslampen. Damit findet sie bevorzugte Anwendung in Vorschaltgeräten, die separat oder integriert ausgeführt sein können. Beansprucht werden somit auch erfindungsgemäß ausgestaltete Vorschaltgeräte für Stableuchtstofflampen, die in der Regel separat ausgeführt sind. Andererseits richtet sich die Erfindung auch auf Vorschaltgeräte für Kompaktleuchtstofflampen, und zwar sowohl als separate Vorschaltgeräte wie auch als integrierte. Im letzteren Fall wird also die komplette Kompaktleuchtstofflampe beansprucht.
Beschreibung der Zeichnungen
Im folgenden wird ein erfindungsgemäßes Ausführungsbeispiel näher dargestellt, das zur Veranschaulichung der verschiedenen erfindungsgemäßen Merkmale dient. Die dabei offenbarten Einzelmerkmale können auch in anderen Kombinationen als dargestellt erfindungswesentlich sein. Vorsorglich wird darauf hingewiesen, dass die Erfindung nicht nur im Rahmen von Produktansprüchen, sondern auch im Rahmen von Verfahrensansprüchen beansprucht werden könnte, die vorstehende und die folgende Offenbarung also auch im Hinblick auf Verfahrensmerkmale zu lesen und zu verstehen ist.
Die Figur zeigt ein Schaltungsdiagramm eines Ausführungsbeispiels für eine erfindungsgemäße Betriebsschaltung.
Darin bezeichnet La eine Niederdruckentladungslampe, wobei schematisch dargestellt ist, dass zwei Glühwendeln in den in der Figur als Lampenkreis bezeichneten Teil der Betriebsschaltung geschaltet sind. Die Glühwendeln sind über einen Kondensator C7 verbunden, der als Resonanzkondensator dient. Bei konventionellen Schaltungen zum Vorheizen der Elektroden liegt seriell zu dem Resonanzkondensator C7 eine Parallelschaltung aus einem weiteren Kondensator und einem Kaltleiter, um in der bereits beschriebenen Art und Weise für das Vorheizen der Elektroden zu sorgen. Dieser weitere Kondensator und der Kaltleiter sind bei der Erfindung nicht mehr notwendig.
Die Versorgung der Entladungslampe La erfolgt folgendermaßen: An dem mit L und N bezeichneten Netzeingang (Haushaltsnetzspannung) ist eine Sicherung Si angeschlossen. Es folgt ein aus den Dioden D1 bis D4 bestehender Gleichrichter, dessen Ausgang einen Glättungskondensator C1 aufweist. L1 bezeichnet eine Filterdrossel und C2 einen Kondensator; beide Bauteile bilden gemeinsam ein Funkentstörungsglied.
Es folgt die eigentliche Oszillatorschaltung mit zwei Schalttransistoren T1 und T2, nämlich MOS-FET-Transistoren. Die Bauteile R1, R2, C3, D5 und der Diac bilden eine Anlaufschaltung, die an sich bekannt ist. Der Kondensator C3 wird bei dieser Anlaufschaltung nach Anlegen der Netzspannung an die Anschlüsse L und N solange aufgeladen, bis an dem Diac eine Durchbruchspannung anliegt und diese einen ersten Ansteuerpuls für die Schalttransistoren T1 und T2 bereitstellt. Im weiteren Betrieb wird durch die Beschaltung des Kondensators C3 verhindert, dass dieser erneut einen Ansteuerpuls liefert. Die Funktionsweise der Anlaufschaltung ist für die vorliegende Erfindung ohne Belang.
Die Entladungslampe La ist über eine Resonanzinduktivität L3-A mit dem Mittenabgriff zwischen den beiden eine Halbbrücke bildenden Schalttransistoren T1 und T2 verbunden und an der anderen Elektrode über einen Auskoppelkondensator C6 mit dem in der Figur oberen Versorgungsast, also einem der beiden Außenanschlüsse der Halbbrücke, verbunden.
Die Resonanzinduktivität L3-A, der Auskoppelkondensator C6 und der Resonanzkondensator C7 bilden einen Serienresonanzkreis. Der Kondensator C5 dient lediglich zur Entlastung der Schalttransistoren T1 und T2 und trägt bei zur Funkentstörung.
Die Ansteuerung der Schalttransistoren geschieht über den in der Figur so bezeichneten Ansteuerkreis, dessen Bestandteil VS im unteren Teil der Figur eigens dargestellt ist und für die Vorheizung der Elektroden der Entladungslampe La verantwortlich ist. Im Dauerbetrieb ist die Emitter-Kollektor-Strecke des Transistors TV in der Vorheizschaltung VS leitend, so dass die beiden Punkte B und C verbunden sind. In diesem Zustand bildet der Ansteuerkreis einen eigenständigen Schwingkreis mit der Induktivität L2 und der Kapazität C4. Wenn andererseits die Emitter-Kollektor-Strecke des Transistors TV offen ist, besteht der Schwingkreis in dem Ansteuerkreis nur aus der Induktivität L2 zusammen mit den Transistoreingangskapazitäten der Schalttransistoren T1 und T2. Wenn die Transistoreingangskapazitäten für die im folgenden noch erläuterte Funktion des Schwingkreises in diesem Zustand nicht ausreichen, so kann der in der Figur gestrichelt eingezeichnete Hilfskondensator C4b hinzugefügt werden, der in Serienschaltung mit dem Kondensator C4 eine passende (vergleichsweise kleine) Gesamtkapazität bildet.
Der Ansteuerkreis ist bei diesem Ausführungsbeispiel nur einfach vorgesehen und an die Steuerelektroden beider Schalttransistoren T1 und T2 angeschlossen. Dies ist möglich, weil es sich um komplementäre Schalttransistoren handelt, wie die Schaltsymbole in der Figur verdeutlichen.
Weiterhin erkennt man, dass über den Widerstand R3 eine Wicklung L3-B an den Schwingkreis in dem Ansteuerkreis angeschlossen ist, wobei diese Wicklung L3-B mit der bereits erwähnten Resonanzinduktivität L3-A im Lampenkreis gekoppelt ist. Es kann sich hier um einen (im Normalbetrieb nicht sättigenden) Transformator handeln, jedoch können die beiden Induktivitäten auch hinreichend nah zueinander montiert sein, so dass eine magnetische Kopplung besteht. Die Kopplung dient zur Synchronisation der Schwingungen des Ansteuerkreises und der übrigen Oszillatorschaltung und zur Energieeinspeisung in den Schwingkreis. Das Schaltdiagramm zeigt, dass der Schwingkreis in dem Ansteuerkreis nämlich gegenüber dem Lampenkreis mit den Emitter-Kollektor-Strecken der Schalttransistoren T1 und T2 eine eigenständige Frequenz definiert. Durch die Kopplung über die Induktivitäten L3-A und L3-B und die Steuerelektroden der Schalttransistoren T1 und T2 entsteht ein System aus zwei gekoppelten Oszillatoren. Dies wird dazu ausgenutzt, die Entladungslampe La nach dem Start (Startpuls des Diac) zunächst vorzuheizen, indem die Emitter-Kollektor-Strecke des Transistors TV in der Vorheizschaltung VS offen bleibt und somit der Schwingkreis aus der Induktivität L2 und den Eingangskapazitäten der Schalttransistoren T1 und T2 bzw. der Gesamtkapazität C4 in Serie mit C4b mit einer gegenüber der Eigenfrequenz des Serienresonanzkreises im Lampenkreis etwas zu hohen Frequenz schwingt. Die durch den Schwingkreis vorgegebene Frequenz ist dabei jedoch gegenüber der Eigenfrequenz des Serienresonanzkreises nur soweit nach oben verstimmt, dass die Oszillatorschaltung in einem gewissen Maß mitschwingt, also auch eine Energierückkopplung über den Transformator in den Schwingkreis erfolgt. Durch die Frequenzverstimmung kommt es in dem Lampenkreis nicht zu einer ausreichenden Spannungsüberhöhung zwischen den Elektroden, so dass die Entladungslampe La nicht durchzündet. Stattdessen fließt infolge der erzwungenen Schwingung in der Oszillatorschaltung ein Vorheizstrom durch die Elektroden.
Wenn übrigens die Transistoreingangskapazitäten der Schalttransistoren T1 und T2 zusammen mit der Induktivität L2 eine bereits zu zündfrequenznahe Eigenfrequenz des Schwingkreises in dem Ansteuerkreis definieren sollten, könnte entweder die Induktivität L2 verändert oder eine zusätzliche Bedämpfung vorgenommen werden.
Wenn nun eine Vorheizzeit abgelaufen ist, auf deren technische Realisierung noch eingegangen wird, wird die Emitter-Kollektor-Strecke des Transistors TV leitend, so dass die Frequenz des Schwingkreises in dem Ansteuerkreis durch die Induktivität L2 zusammen mit der Kapazität C4 bestimmt wird. Diese Frequenz liegt in der Nähe der Resonanzfrequenz des übrigen Oszillators (also des Serienresonanzkreises des Lampenkreises zusammen mit den Schaltstrecken der Schalttransistoren T1 und T2).
Infolge dessen entsteht zwischen den bereits vorgeheizten Elektroden infolge der Resonanzüberhöhung eine für die Zündung der Entladungslampe La ausreichende Spannung, so dass die Entladungslampe La durchzündet. Sobald die Zündung erfolgt ist, bildet die Entladungslampe La einen parallelen Strompfad zu dem Resonanzkondensator C7, so dass nur noch relativ geringe Ströme durch die Elektroden zu dem Kondensator C7 fließen.
Der Schaltbetrieb des Transistors TV, der die Kapazität C4 zunächst wegschaltet und dann zuschaltet, wird in folgender Weise gesteuert: Ein in der detaillierten Darstellung der Vorheizschaltung VS eingezeichneter Kondensator CV wird von einem Punkt A aus über eine Diode DV1 und einen Widerstand RV1 aufgeladen, bis die Summe aus der notwendigen Basis-Emitter-Spannung und der Durchbruchspannung einer Zenerdiode DV2 erreicht ist. Über diese Zenerdiode DV2 ist eine Seite des Kondensators CV mit der Steuerelektrode (der Basis des Bipolartransistors TV) verbunden, während die andere Seite des Kondensators CV mit einem anderen Anschluss (dem Emitter) des Transistors TV verbunden ist. Dadurch wird die Kondensatorspannung an die Emitter-Basis-Strecke angelegt, so dass die Emitter-Kollektor-Strecke des Transistors TV leitend wird. Solange allerdings die Durchbruchspannung der Zenerdiode DV2 nicht erreicht ist, sind die Basis und der Emitter des Transistors TV über den Widerstand RV2 kurzgeschlossen, so dass die Emitter-Kollektor-Strecke offen bleibt. Bei der Diode DV3 handelt es sich im übrigen um eine für die Beschaltung von Bipolartransistoren übliche Freilaufdiode.
Dem Kondensator CV liegt im übrigen ein Entladewiderstand RV3 parallel, der den Kondensator nach einem Ausschalten der gesamten Betriebsschaltung in einer für die Nutzung der Entladungslampe La sehr kleinen Zeitspanne wieder entlädt und so ein kurzfristiges Wiedereinschalten der Entladungslampe La mit ordnungsgemäßem Vorheizen ermöglicht. Andererseits ist die durch diesen Widerstand RV3 gegebene Entladung des Transistors TV langsam genug, um die Entladung im Vergleich zu den Ladevorgängen durch die Diode DV1 und den Widerstand RV1 hinreichend schwach auszulegen.
Der Widerstand RV1 bremst die Aufladung des Kondensators CV und dient damit zusammen mit dessen Kapazität und der Durchbruchspannung der Diode DV2 zur Definition der Vorheizzeit.
Der Widerstand RV2 dient im übrigen zur Vermeidung zu großer Abhängigkeiten von Streuungen verschiedener individueller Transistoren TV.
Insgesamt könnte es sich bei der Betriebsschaltung aus der Figur zusammen mit der Entladungslampe La um eine integrierte Lösung, also beispielsweise eine Kompaktleuchtstofflampe mit im Sockel integriertem Vorschaltgerät handeln. Die Schaltung ist jedoch genauso gut auf separate Lösungen anwendbar, bei denen eine Entladungslampe La mit ihren Elektroden an entsprechende Anschlüsse der Betriebsschaltung angeschlossen werden kann. Außerdem könnte statt der dargestellten Versorgung über die an die Anschlüsse L N anzulegende Netzspannung natürlich auch eine andere Versorgung, etwa aus einer Batterie erfolgen, wobei dann der Gleichrichter entfallen könnte.

Claims (15)

  1. Betriebsschaltung für eine Entladungslampe (La) mit vorheizbaren Elektroden,
    welche Betriebsschaltung eine Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) mit zumindest einem Schalttransistor zur Erzeugung einer Ausgangsleistung mit einer HF-Frequenz für die an die Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) anzuschließende Entladungslampe (La)durch einen der HF-Frequenz entsprechenden Schaltbetrieb aufweist,
    wobei die Betriebsschaltung so ausgelegt ist, dass nach einem Start der Betriebsschaltung die HF-Frequenz der Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) so verändert wird, dass die Entladungslampe (La) zunächst nicht zündet, jedoch ein Vorheizstrom zum Vorheizen der Elektroden durch die Elektroden fließt,
    und die HF-Frequenz nach einer Vorheizzeit auf eine Betriebsfrequenz in der Nähe einer Resonanzfrequenz der Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) zurückgeführt wird, um die Entladungslampe zu zünden,
    dadurch gekennzeichnet, dass die HF-Frequenz der Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) durch zumindest einen eigenen Schwingkreis (L2, C4, C4b, VS) bestimmt wird, der an einer Steuerelektrode des Schalttransistors (T, T2) angeschlossen ist, um die Steuerelektrode mit Steuersignalen mit der durch den Schwingkreis (L2, C4, C4b, VS) bestimmten HF-Frequenz zu beaufschlagen,
    wobei die Veränderung der HF-Frequenz zum Vorheizen durch eine Verstimmung der Eigenfrequenz des Schwingkreises (L2, C4, C4b, VS) gegenüber der Resonanzfrequenz der Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) erfolgt.
  2. Betriebsschaltung nach Anspruch 1, bei der die Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) eine Halbbrückenschaltung mit zwei Schalttransistoren (T1, T2) ist.
  3. Betriebsschaltung nach Anspruch 2, bei der die Halbbrückenschaltung komplementäre Schalttransistoren (T1, T2) aufweist.
  4. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der die Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) MOS-FETs als Schalttransistoren (T1, T2) aufweist.
  5. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der die Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) eine Brückenschaltung ist und der Schwingkreis (L2, C4, C4b, VS) zwischen der Steuerelektrode und einem Brückenmittelpunkt liegt.
  6. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der der Schwingkreis ein LC-Schwingkreis ist.
  7. Betriebsschaltung nach einem der vorstehenden Ansprüchge, bei der die Verstimmung der Eigenfrequenz des Schwingkreises durch ein Schalten einer mit einer Kapazität (C4) verbundenen Strecke (Tv) in dem Schwingkreis erfolgt.
  8. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der die Vorheizzeit durch einen Ladevorgang einer Vorheizzeitkapazität (CV) erfolgt.
  9. Betriebsschaltung nach Anspruch 8, bei der der Vorheizzeitkapazität (CV) ein Entladewiderstand (RV3) parallelgeschaltet ist, um ein Vorheizen der Elektroden auch nach kurzen Betriebsunterbrechungen zu ermöglichen.
  10. Betriebsschaltung nach Anspruch 8 oder 9, bei der eine Zenerdiode (DV2) zur Definition eines elektrischen Schwellenwerts für den Ladevorgang der Vorheizzeitkapazität (CV) verwendet wird.
  11. Betriebsschaltung nach Anspruch 8, 9 oder 10, bei der durch die Aufladung der Vorheizzeitkapazität (CV) die Umschaltung einer Transistorstrecke (TV) erfolgt und zwischen die vorheizzeitkapazitätsseitigen Anschlüsse des Transistors (TV) ein Widerstand (RV2) zur Verringerung des Einflusses von Schwankungen der elektrischen Daten des Transistors (TV) geschaltet ist.
  12. Betriebsschaltung nach einem der vorstehenden Ansprüche, zumindest Anspruch 7, bei der der mit der Kapazität (C4) verbundenen Strecke (TV) eine Kapazität (C4b) parallelgeschaltet ist, um eine ausreichende Oszillation der Oszillatorschaltung (T1, T2, C5 - C7, L3-A, La) zur Erzeugung einer Ausgangsleistung für einen ausreichenden Vorheizstrom zu ermöglichen.
  13. Elektrisches Vorschaltgerät für eine Stableuchtstofflampe mit einer Betriebsschaltung nach einem der Ansprüche 1 bis 12.
  14. Elektrisches Vorschaltgerät für eine Kompaktleuchtstofflampe mit einer Betriebsschaltung nach einem der Ansprüche 1 bis 12.
  15. Kompaktleuchtstofflampe mit einem elektrischen Vorschaltgerät nach Anspruch 13 oder 14.
EP02015874A 2001-08-27 2002-07-16 Betriebsschaltung für Entladungslampe mit vorheizbaren Elektroden Expired - Fee Related EP1289350B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10140723 2001-08-27
DE10140723A DE10140723A1 (de) 2001-08-27 2001-08-27 Betriebsschaltung für Entladungslampe mit vorheizbaren Elektroden

Publications (2)

Publication Number Publication Date
EP1289350A1 true EP1289350A1 (de) 2003-03-05
EP1289350B1 EP1289350B1 (de) 2004-03-17

Family

ID=7695990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02015874A Expired - Fee Related EP1289350B1 (de) 2001-08-27 2002-07-16 Betriebsschaltung für Entladungslampe mit vorheizbaren Elektroden

Country Status (5)

Country Link
US (1) US6744219B2 (de)
EP (1) EP1289350B1 (de)
JP (1) JP2003077692A (de)
CA (1) CA2399793A1 (de)
DE (2) DE10140723A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028777A1 (de) * 2005-09-07 2007-03-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und verfahren zum betreiben einer entladunslampe

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592753B2 (en) * 1999-06-21 2009-09-22 Access Business Group International Llc Inductively-powered gas discharge lamp circuit
DE10229633A1 (de) * 2002-07-02 2004-01-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Ansteuerung für einen Halbbrückenwechselrichter
ATE456289T1 (de) * 2004-06-28 2010-02-15 Koninkl Philips Electronics Nv Ansteuerschaltung für fluoreszenzröhrenlampen
WO2006056143A1 (en) * 2004-11-29 2006-06-01 Century Concept Ltd. Electronic ballast with preheating and dimming control
US7821208B2 (en) * 2007-01-08 2010-10-26 Access Business Group International Llc Inductively-powered gas discharge lamp circuit
WO2008086892A1 (de) * 2007-01-17 2008-07-24 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung und verfahren für die zündung und den betrieb einer oder mehrerer entladungslampen
CA2655013A1 (en) * 2008-02-22 2009-08-22 Queen's University At Kingston Current-source gate driver
CN102573249A (zh) * 2010-12-21 2012-07-11 苏州博创集成电路设计有限公司 一种压控频率扫描振荡器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678554A (ja) * 1992-08-26 1994-03-18 Matsushita Electric Works Ltd インバータ装置
JPH07192881A (ja) * 1993-12-24 1995-07-28 Toshiba Lighting & Technol Corp 高周波電源装置および放電灯点灯装置および照明器具
US6051936A (en) * 1998-12-30 2000-04-18 Philips Electronics North America Corporation Electronic lamp ballast with power feedback through line inductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201631A (nl) * 1982-04-20 1983-11-16 Philips Nv Gelijkstroom-wisselstroomomzetter voor het ontsteken en met wisselstroom voeden van een gas- en/of dampontladingslamp.
DE4140557A1 (de) * 1991-12-09 1993-06-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer oder mehrerer niederdruckentladungslampen
DE4425859A1 (de) * 1994-07-21 1996-01-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen
DE19548506A1 (de) * 1995-12-22 1997-06-26 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer Lampe
DE19612170A1 (de) * 1996-03-27 1997-10-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb von elektrischen Lampen und Betriebsverfahren für elektrische Lampen
DE19613149A1 (de) 1996-04-03 1997-10-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb elektrischer Lampen
DE19917364A1 (de) * 1999-04-16 2000-10-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung mit Halbbrücke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678554A (ja) * 1992-08-26 1994-03-18 Matsushita Electric Works Ltd インバータ装置
JPH07192881A (ja) * 1993-12-24 1995-07-28 Toshiba Lighting & Technol Corp 高周波電源装置および放電灯点灯装置および照明器具
US6051936A (en) * 1998-12-30 2000-04-18 Philips Electronics North America Corporation Electronic lamp ballast with power feedback through line inductor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 332 (E - 1567) 23 June 1994 (1994-06-23) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10 30 November 1995 (1995-11-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028777A1 (de) * 2005-09-07 2007-03-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und verfahren zum betreiben einer entladunslampe
DE102005042527B4 (de) * 2005-09-07 2015-10-29 Osram Gmbh Schaltungsanordnung und Verfahren zum Betreiben einer Entladungslampe

Also Published As

Publication number Publication date
JP2003077692A (ja) 2003-03-14
EP1289350B1 (de) 2004-03-17
US6744219B2 (en) 2004-06-01
CA2399793A1 (en) 2003-02-27
DE50200299D1 (de) 2004-04-22
DE10140723A1 (de) 2003-03-20
US20030080692A1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
EP0800335B1 (de) Schaltungsanordnung zum Betrieb elektrischer Lampen
DE2710036A1 (de) Abgestimmter vorschaltschwingkreis
EP0185179A1 (de) Schaltungsanordnung zur Zündung einer Niederdruckentladungslampe
DE19635686A1 (de) Vorschaltanordnung für Leuchtstofflampen mit wählbaren Leistungspegeln
DE4140557A1 (de) Schaltungsanordnung zum betrieb einer oder mehrerer niederdruckentladungslampen
EP1289350B1 (de) Betriebsschaltung für Entladungslampe mit vorheizbaren Elektroden
EP0917412B1 (de) Freischwingende Oszillatorschaltung mit einfacher Anlaufschaltung
EP0655880A1 (de) Schaltungsanordnung zum Betrieb einer Niderdruckentladungslampe an einer Niedervolt-Spannungsquelle
EP1467474A2 (de) Schnittstellenschaltung zum Betrieb von kapazitiven Lasten
DE2360263B2 (de) Schaltungsanordnung zum Zünden einer Gas- und/oder Dampfentladungslampe
DE3245219A1 (de) Verfahren zur Spannungsversorgung von Gasentladungslampen und Vorrichtung mit einer Gasentladungslampe und einem Versorgungsteil
DE3137940C2 (de) Elektronisches Vorschaltgerät für mindestens eine Leuchtstofflampe
EP0519220A1 (de) Vorschaltgerät mit gesteuerter Heizzeit
EP0697803A2 (de) Schaltungsanordnung zur Ansteuerung von Gasentladungslampen
DE10133515A1 (de) Schaltungsanordnung zum Betreiben einer Leuchtstofflampe
DE69817326T2 (de) Vorschaltgerät
EP1424880A2 (de) Vorrichtung zum Betreiben von Entladungslampen
DE10304544B4 (de) Elektronisches Vorschaltgerät
DE112005000771T5 (de) Entladungslampen-Schaltvorrichtung
AT389614B (de) Vorschaltgeraet fuer wenigstens einen durch einen generator periodisch gezuendeten und gespeisten verbraucher
EP0707437A2 (de) Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen
DE19517355C2 (de) Dimmbares elektronisches Vorschaltgerät
DE3503778C2 (de) Leuchtstofflampen-Vorschaltgerät
EP1962565B1 (de) Vorschaltgerät mit Leistungsumschaltung
DE19501695B4 (de) Vorschaltgerät für mindestens eine Gasentladungslampe mit vorheizbaren Lampenwendeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030317

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): BE DE FR GB NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50200299

Country of ref document: DE

Date of ref document: 20040422

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040419

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 7

Ref country code: NL

Payment date: 20080707

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080710

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080715

Year of fee payment: 7

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20090731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090716

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50200299

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50200299

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50200299

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50200299

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50200299

Country of ref document: DE

Effective date: 20150203