EP1288483A2 - Verfahren und Vorrichtung zum emissionsüberwachenden Betrieb eines Vorratsbehältnisses zur Bevorratung eines flüchtigen Mediums, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges - Google Patents
Verfahren und Vorrichtung zum emissionsüberwachenden Betrieb eines Vorratsbehältnisses zur Bevorratung eines flüchtigen Mediums, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges Download PDFInfo
- Publication number
- EP1288483A2 EP1288483A2 EP02016161A EP02016161A EP1288483A2 EP 1288483 A2 EP1288483 A2 EP 1288483A2 EP 02016161 A EP02016161 A EP 02016161A EP 02016161 A EP02016161 A EP 02016161A EP 1288483 A2 EP1288483 A2 EP 1288483A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- medium
- value
- storage container
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0809—Judging failure of purge control system
Definitions
- the invention relates to the monitoring of the emission of Storage containers for storing volatile media, in particular of fuel tank systems used in motor vehicles.
- the invention relates in particular to a method, a circuit and a control unit for the emission monitoring operation of such Storage container according to the generic terms of respective independent claims.
- the present invention based on the knowledge that the temperature of the volatile medium have a significant impact on the Measuring accuracy in a leak test (leak diagnosis) Has.
- the functional tests mentioned, especially with tank systems only inside certain temperature ranges are carried out because with increasing fuel temperature the outgassing of the medium increases, from a certain temperature an excess pressure in the storage container due to the outgassing arises and this overpressure finally that at Leak test increased pressure or the counteracts generated negative pressure. That way make false assumptions about the pressure conditions are a cause of misdiagnosis In case of a diagnosis carried out with overpressure leaky storage container defective as "tight" and in the case of a diagnosis carried out with negative pressure sealed container is incorrectly diagnosed as "leaking".
- storage container for example in the case of motor vehicle tank systems important for the tightness of the entire tank system Functional elements such as lines and seals with includes.
- the present invention is therefore based on the object a method, a circuit and a control device of the type mentioned at the beginning, which one improved emission monitoring compared to the prior art allow for said storage containers.
- this improvement is intended to be achieved through detection the current temperature of the stored medium with the least possible technical effort, in particular avoiding the use of more expensive Temperature sensors in the storage container are made to hence the accuracy of one on the storage container carried out leak test.
- the invention is based on the idea of temperature of the volatile medium in one described at the beginning Include functional testing as a correction variable and this based on further parameters, such as the ambient temperature, the fill level of the storage container or, in the case of a motor vehicle, additionally based on operating data of the vehicle (vehicle speed or the like) or the vehicle engine (operating time, Model engine shutdown time, engine temperature or the like), i.e. determined using a model calculation.
- the invention provides the real temperature of the medium (T_ktm) from these Determine parameters arithmetically and the calculated in this way Value of T_ktm, as mentioned above, as a correction quantity when checking the functionality of the storage container included.
- T_ktm real temperature of the medium
- Value of T_ktm as mentioned above, as a correction quantity when checking the functionality of the storage container included.
- a second variant is a test for the functionality of the storage container only carried out if the calculated value of T_ktm within a predeterminable Temperature interval.
- the correction size can be in each case in the variants mentioned before performing a function test or temporarily, for example cyclically recurring, by means of the Model calculation can be determined.
- the parameters required for the calculation of T_ktm according, in particular for a given type of construction of the storage container or a motor vehicle once performed model calculation in the form of a characteristic diagram or saved in a corresponding table and thus stand for the following provisions from T_ktm immediately available without the named Model calculations are carried out again each time got to.
- the proposed method can also include parameters such as the operating or storage period of one due to the storage container supplied internal combustion engine (motor) as well, in the case of a vehicle, the vehicle speed, the fuel level depending on the vehicle speed, and / or the altitude of the storage container or such a container having the vehicle. So when falling Ambient temperature with relative at the same time high geographical height of the vehicle location, e.g. during a mountain pass, due to the lower Air pressure from a reduced cooling rate be assumed.
- the respective Vehicle data related characteristics such as Body shape and / or engine type are included, whereby advantageous both different flow conditions when the vehicle is moving and a related one different underflow of a fuel tank as well as different installation positions of the Fuel tanks and / or the engine in the vehicle chassis, depending on the body shape can be. Even if a storage period is included of the engine provided in the model calculation be to store a series-specific cooling curve and this as an initial value when the engine is restarted to be used for the engine temperature.
- a relatively high level due to the result higher heat capacity of the medium slower heating of the stored medium and a relatively low level for faster heating.
- the ambient temperature at the Determination of T_ktm multiplicatively become.
- Fuel tank can be used for heating and / or Cooling curve of vehicle and / or engine operating variables such as the current or average Engine load, vehicle speed, and / or gear selection be taken into account or as a correction variable (s) received.
- T_ktm only becomes one or several parameters determined if the named Parameter (s) within a specifiable range of variance lie, i.e. if the respective parameter Sufficiently constant over a predefinable time interval behaves.
- the Waiting time can be, depending on the situation, similar to the one mentioned above the type of engine and / or body shape of the vehicle, for example for individual vehicle series be separated.
- T_ktm determined vehicle container cached and during subsequent commissioning the engine or the vehicle with a current measured ambient temperature is compared. Until the subsequent redefinition of T_ktm, the larger of the two values as the initial value for T_ktm used.
- an external heating of the stocked Medium during a parking time of the vehicle e.g. due to a chassis effect caused by solar radiation and / or tank heating. Similar can also influence the current geographic Take the height position of the vehicle into account.
- T_ktm is also used for moving vehicle determines the influence of the engine running near the tank Heat build-up to take into account the fuel temperature.
- T_ktm is also with a Medium deviating temperature
- changes in the tank level for example in a manner known per se.
- Refueling detected by a fuel cap sensor As mentioned above, setting can also be done here a temperature equilibrium can be waited until T_ktm is redetermined. Until redefinition can be an approximate value, for example the mean from the last saved value of T_ktm and the current ambient temperature, which has the advantage that at least until then a meaningful one Value is present.
- redefinition can be an approximate value, for example the mean from the last saved value of T_ktm and the current ambient temperature, which has the advantage that at least until then a meaningful one Value is present.
- a occurring during an interruption of the vehicle Refueling can be recognized by that the start of the engine the difference between the current Tank level and the temporarily stored tank level value exceeds a predefinable threshold value. It It is worth noting that the amount of fuel topped up Medium when recalculating T_ktm after a Include the re
- the invention enables it to be used more cost-effectively Plastic tanks, for example in internal combustion engines Motor vehicles without for leak diagnosis of the Size 0.5 mm required to be arranged in the storage container costly temperature sensors.
- plastic fuel i.e. in hybrid operation ethanol / methanol operated motor vehicles enables the invention also the detection of critical outgassing temperatures.
- one or more failures Sensors (temperature, tank level sensor, etc.) the determination from the available data a meaningful T_ktm enables.
- the associated temperature variable empirically in the model equation determining substitute value can be assigned, for example average value of 20 ° C.
- a defect Tank level sensor instead of a currently determined T_ktm value, a last saved value of T_ktm can be used.
- T_ktm values for the sensor failures mentioned to suppress more effectively or such adulteration with rapidly changing environmental conditions Avoiding itself can also be a plausibility check be carried out with a current determined T_ktm with predeterminable upper and / or compared lower limits and only then as correct is assumed if T_ktm is within these limits lies. In addition, if a limit value is exceeded the current value is equal to the limit value itself become.
- the invention can be advantageous in an existing Control unit, for example an engine control unit, in the form of a control program. This benefits that some or all of the characteristics mentioned are already detected in such a control device.
- the invention can be in the form of its own Circuit, for example as an Application Specific Integrated Circuit (ASIC) can be realized.
- ASIC Application Specific Integrated Circuit
- the underlying Model calculation in the form of one of several Binary logic circuit formed stages be realized, with each stage as a filter for the Influence of the respective parameter on T_ktm considered becomes.
- Attenuation of the respective filter Preferably be based on at least two filters in the model calculation. So the ambient air temperature can be in a first filter as well as the altitude of the vehicle and in the at least second filter the tank level, the vehicle and / or engine shutdown time and the operating time.
- this includes the invention Control unit or the circuit one to the above Read / write memory (RAM) to save the characteristic diagrams mentioned and / or for the intermediate storage of an already determined one T_ktm value.
- RAM Read / write memory
- the invention is basically Storage containers in all areas of technology, in where volatile substances are stored in such a container become applicable. It also goes without saying that the term “storage container” also applies to entire tank systems or the like, including their other components, with includes.
- T_ktm also as a correction variable for functions similar to the function test mentioned, For example for a tank ventilation function mentioned at the beginning, can be used.
- Fig. 1 shows the basic sequence of one of the Invention leak diagnosis routine.
- T_ktm a rewritable Memory, for example a read-only memory (RAM), temporarily stored 25.
- the query is then carried out in a loop 30 whether a request to perform a leak diagnosis is present. If not, it will be over a delay stage 35 to the beginning of the subroutine jumped back to determine T_ktm.
- T_ktm is outside these temperature limits, in the embodiment T_ktm equated to the maximum value T_max as a security measure to the 'worst case' value correspond.
- a leak diagnosis process is carried out started, the value of T_ktm again from the RAM read out and, if a result of the Leakage diagnosis, using this result T_ktm corrected.
- This can be used for leak diagnosis determined leak rate based on an increased material outgassing factor due to the wall material of the Storage container or based on the total used Seals with an appropriate offset value Getting corrected. It can also be used for leak diagnosis assumed negative or positive pressure reduction gradient be corrected accordingly.
- a method of determining fuel temperature is described below using the example of a motor vehicle, although that from the description below principles that become clear to others Storage containers such as chemical fabric tanks or the like can be used accordingly. That in the related Figures 2a - 2d illustrated method can, for example, as a control program in an engine control unit or implemented as a separate circuit (ASIC or the like) become. The following process steps, including the filters described below etc., implemented in binary logic known per se become.
- the method begins with one step 100 in which an engine (not shown) started becomes.
- a step 110 it is checked whether an engine shutdown time t_maz longer than a given time was. If this is the case, it is assumed that the Fuel temperature after passing the outside air temperature has adjusted and it will be in one step 120 a temperature offset T_ktm_offset, which in a read / write memory is stored, the value O ° C assigned, and the method in a step 125 continued.
- the engine shutdown time t_maz was shorter or equal to the given time, so directly in one Step 125 measurands and stored values from the Read-write memory accepted and there is a maximum selection between the measured value of the outside air temperature T_a poverty and a last saved Value of fuel temperature T_ktm (old) instead, where Maximum selection means that the larger of the two Values in the further steps of the process as worth is used for the outside air temperature.
- Maximum selection means that the larger of the two Values in the further steps of the process as worth is used for the outside air temperature.
- step 130 an operation counter becomes started.
- T_aluft in the described embodiment Represents a key figure, since this parameter is independent of dynamic parameters such as vehicle speed, affects fuel temperature the most and otherwise also on other parameters such as engine temperature Influences.
- step 140 After waiting t_ini_kttm, after which one Has set equilibrium state (step 140), a check is carried out in a step 145 as to whether a Level sensor (not shown) is defective. Is this the case, the value of the fill level becomes in a step 147 on the last trip fs_tank_v into a variable for the value of the current level fs_tank accepted; otherwise step 150 follows (see Fig. 2b).
- step 150 in FIG. 2b it is checked whether a refueling process occurred during a business interruption Has. To do this, the difference between the currently measured tank level fs_tank and that the read / write memory taken over during the last trip determined tank level fs_tank (old). If this difference is greater than a specifiable one Value d_fs_tlfz, it is assumed that a refueling has occurred, and in step 155 one becomes Variables for the refueling detection b_kttm der Assigned value '1'. This variable b_kttm is used later in step 210 as one of the selection criteria for whether a refueling process has taken place and then an approximate value for the fuel temperature is determined.
- step 160 determines whether an outside air temperature sensor is defective. is the difference determined in step 150, however, is smaller as a predeterminable value d_fs_tlfz, it is directly in the Step 160 checks if the outside air temperature sensor is broken. If so, it will be in one step 290 of the variables for the outside air temperature T_aluft assigned the value 20 ° C. Then there is a step 180, in which it is checked whether the motor is shorter than one Predefinable threshold time, for example 30 minutes, in operation was, that is, whether a criterion for a short Operating time is available.
- Predefinable threshold time for example 30 minutes
- step 160 If it turns out in step 160 that the outside air temperature sensor is not defective, the measured outside air temperature is assigned to the variable for the outside air temperature T_aluft in a step 170, followed by step 180.
- step 180 the first step of the method is to check whether the criterion for a short operating time exists. After a short period of operation, the temperature has not yet reached equilibrium, so that the fuel temperature must not be redetermined. Therefore, after a waiting time of 10 minutes in a step 325, the cycle from step 160 is carried out again.
- step 180 If, on the other hand, it is found in step 180 that the operating time of the engine was longer than 30 minutes, then in a step 190 it is only checked during the first run through of the method whether there is a criterion for a short shutdown time, with a time under a short shutdown time 30 minutes is understood. With a short shutdown time, the fuel temperature has not changed compared to the last operating cycle of the engine, so that here too the fuel temperature must not be redetermined immediately.
- step 220 If the vehicle speed v_can is greater than zero, then a further check follows in a step 220 (FIG. 2c), whether the level sensor is defective. Is this the case, in a step 225 the variable the last saved value for the level fs_tank assigned to the level when driving fs_tank_v. A Check the level sensor at this point therefore necessary because for the following refueling detection a correct level when the engine is running is required. If the tank level sensor is defective the process can then be done automatically with at least one assigned level value continue.
- step 220 it is checked in step 210 whether refueling has taken place while the engine is running or during an interruption in operation. For this purpose, the difference between the currently measured tank level fs_tank and the last tank level fs_tank_v measured at a vehicle speed greater than zero is determined. If the difference is greater than a value d_fs_tel, refueling has taken place with the engine running. If the value of the variable b_kttm from step 155 is '1', refueling has taken place during the last business interruption.
- step 310 the operating counter is set to zero and the procedure is carried out directly with a step 270 (Fig. 2d) continued.
- step 270 the transfer to this takes place Valid fuel temperature T_ktm in the Read / write memory as fuel temperature T_ktm (old), the variable for fueling detection b_kttm is set to '0'. Then, if the Engine is still operating, which is in a step 280 is checked, the cycle for determining the fuel temperature in step 320 after a wait of Repeated 100 milliseconds from step 160.
- Resetting the operation counter in step 310 causes that the procedure in the next determination cycle from step 180 is carried out exactly as if it were Engine has been restarted and the criterion for one short operating times.
- the procedure in the first run only after a waiting period continued from 10 minutes.
- Step 230 the variables for the fill level while driving fs_tank_v the value of the measured level fs_tank assigned.
- Step 240 The check is then carried out in a step 240 on a geographical change in altitude. This is shown in detail in FIG. 3.
- the verification, whether there has been a change in altitude, starts with a step 2410 in FIG. 3.
- the altitude can be carried out with measures known per se, for example by means of a Pressure sensor based on the usual pressure dependency the outside air p_aluft can be determined.
- Step 2420 checks whether there is a decrease in altitude is present, that is, it is checked whether, for example a passport descent takes place. Is this the If so, in a step 2450 the temperature offset T_ktm_offset set to zero, then is checking for a change in altitude in Step 2460 ends and the method of determining fuel temperature continues to step 250 (see Fig.
- step 2430 it is checked in a step 2430 whether there is an increase in altitude. Then this is the case when the vehicle is on a pass. If there is an increase in altitude, then in step 2440 the temperature offset T_ktm_offset assigned the value 5. This temperature offset later in a step 250 the one in a Circuit calculated fuel temperature T_ktm added. This takes into account the fact that the outside air temperature increases faster during a pass decreases as the fuel temperature of the Outside air temperature can adjust.
- step 250 the fuel temperature T_ktm as a function of outside air temperature T_a poverty, one Attenuation in a mathematical filter "A” which the series of the vehicle and the influence of the operating time of the engine to the increase in fuel temperature considered, depending on the bodywork and Engine series can be different, and one Attenuation in a mathematical filter "B", which is the Fuel temperature depending on the level of the tank, the tank level fs_tank and the engine shutdown time t_maz considered, calculated. To the so determined The value of the fuel temperature becomes the value of the temperature offset T_ktm_offset added. Subsequently is checked in a step 260 (FIG. 2c) whether the thus calculated fuel temperature T_ktm within a predeterminable temperature interval is (minimum / maximum limitation).
- step 4 is a flowchart of a method for Minimum / maximum limitation of the fuel temperature according to Step 260 shown in detail.
- the procedure starts in step 2610.
- step 2620 there is a check whether the one determined in step 250 Fuel temperature T_ktm is greater than a specifiable Maximum value T_ktm_max. If so, so is calculated in a step 2640 of the variables of the Fuel temperature T_ktm the value of the specifiable Allocated maximum temperature T_ktm_max and the process for minimum / maximum limitation in one step 2660 ended, step 270 (FIG.
- step 2620 the determined fuel temperature T_ktm not greater than the specifiable maximum value T_ktm_max is checked in a step 2630, whether the fuel temperature T_ktm is less than a Predeterminable minimum value T_ktm_min. If this is the case, then in a step 2650 the variable for the fuel temperature T_ktm the value of the minimum temperature T_ktm_min assigned.
- step 2660 the procedure for minimum / maximum limitation finished and step follows 270 (Fig. 2).
- Step 320 the value of the value determined in this way is determined at step 270
- Fuel temperature T_ktm as a variable T_ktm_alt stored in the read / write memory.
- the variable for the fueling detection b_kttm assigned the value zero and saved. It is then checked in step 280 whether the engine is still in operation, this is not the case the process ends (step 290). Otherwise it will The above-mentioned method for determining the fuel temperature after a waiting time of 100 milliseconds carried out again from step 160 in FIG. 2a (Step 320).
- the counter for the engine shutdown time is when switching off the engine started, and stopped as soon as the engine is started again.
- the parking time determined in this way becomes a variable in the read / write memory t_maz saved.
- the embodiment of a characteristic diagram shown in FIG. 5 can contribute to the purpose already mentioned the procedure described above can be used.
- T_ktm over T_a poverty and fs_tank plotted with the family of curves shown is parameterized over time t.
- the one in the characteristic diagram shown dependence on T_ktm as a function The above-described model calculation is from T_aluft and fs_tank based.
- the characteristic diagram can be generated automatically and T_ktm without further measures from this machine be read. It should be noted that the characteristic diagram in the case of n-1 additional parameters and in the shown parameterization with time t n-dimensional is trained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
- Fig. 1
- den prinzipiellen Ablauf einer Tankleckdiagnose unter Anwendung des erfindungsgemäßen Verfahrens;
- Fig. 2a-d
- ein Flußdiagramm eines von der Erfindung Gebrauch machenden Verfahrens zur Bestimmung der Kraftstofftemperatur aus der Außenlufttemperatur;
- Fig. 3
- ein Flußdiagramm eines Verfahrens zur Überprüfung einer Höhenlageänderung in welcher ein Temperatur-Offset gesetzt wird;
- Fig. 4
- ein Flußdiagramm eines Verfahrens zur Durchführung einer Minimal-/Maximalbegrenzung der bestimmten Kraftstofftemperatur; und
- Fig. 5
- ein Ausführungsbeispiel eines Kenngrößendiagramms zur Bestimmung der Kraftstofftemperatur aus den über die Größe Zeit parametrisierten Kenngrößen Außenlufttemperatur und Tankfüllstand.
Deshalb wird nach einer Wartezeit von 10 Minuten in einem Schritt 325 der Zyklus ab Schritt 160 erneut durchgeführt.
Bei einer kurzen Abstellzeit hat sich die Kraftstofftemperatur im Vergleich zum letzten Betriebszyklus des Motors nicht verändert, so dass auch hier nicht sofort eine Neubestimmung der Kraftstofftemperatur erfolgen darf.
Claims (22)
- Verfahren zum emissionsüberwachenden Betrieb eines ein flüchtiges Medium bevorratenden Vorratsbehältnisses, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges, wobei zeitweilig eine Dichtheitsprüfung des Vorratsbehältnisses durchgeführt wird, dadurch gekennzeichnet, dass die Temperatur des Mediums anhand wenigstens einer Kenngröße, insbesondere der Umgebungstemperatur, mittels einer Modellrechnung zeitweilig oder zyklisch ermittelt wird und entweder als Korrekturgröße bei der Dichtheitsprüfung einbezogen wird oder die Dichtheitsprüfung nur dann durchgeführt wird, wenn die ermittelte Temperatur des Mediums innerhalb eines vorgebbaren Temperaturintervalls liegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Füllstand des Vorratsbehältnisses als weitere Kenngröße verwendet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Falle eines Kraftfahrzeuges wenigstens eine Betriebsgröße des Kraftfahrzeuges als weitere Kenngröße verwendet wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass wenigstens ein die Fahrzeugbaureihe betreffendes Kenndatum als weitere Kenngröße verwendet wird.
- Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Abstelldauer eines Kraftfahrzeugmotors bei der Modellberechnung der Temperatur des Mediums einbezogen wird, wobei eine baureihenspezifische Abkühlkurve gespeichert und bei einem Neustart des Kraftfahrzeugmotors als Anfangswert für die Motortemperatur verwendet wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die anhand der wenigstens einen Kenngröße modellierte Temperatur des Mediums über die wenigstens eine Kenngröße in Form wenigstens eines Kenngrößendiagramms gespeichert wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur des Mediums erst dann aus der wenigstens einen Kenngröße ermittelt wird, wenn die wenigstens eine Kenngröße innerhalb einer vorgebbaren Varianzbreite liegt.
- Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Temperatur des Mediums nur dann ermittelt wird, wenn die Fahrzeuggeschwindigkeit und/oder die Betriebsdauer des Kraftfahrzeugmotors einen vorgebbaren Grenzwert überschreiten.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Grenzwert in Abhängigkeit von der Baureihe des Kraftfahrzeugmotors und/oder der Karosserieform des Fahrzeuges, insbesondere für einzelne Fahrzeugbaureihen getrennt, festgelegt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein im Betrieb des Vorratsbehältnisses und/oder des Fahrzeuges ermittelter Temperaturwert des Mediums zwischengespeichert und bei einer nachfolgenden Inbetriebnahme des Vorratsbehältnisses und/oder des Fahrzeuges mit einer gemessenen, momentanen Umgebungstemperatur verglichen wird und bis zu einer nachfolgenden Ermittlung der Temperatur des Mediums anhand der Modellrechnung der jeweils größere der beiden Werte als Anfangswert für die Temperatur des Mediums herangezogen wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Änderung des Füllstandes des Vorratsbehältnisses aufgrund einer Betankung erfasst und bei der Modellrechnung berücksichtigt wird.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Betankung dadurch erkannt wird, dass nach dem Start des Kraftfahrzeugmotors die Differenz zwischen momentanem Tankfüllstand und einem zwischengespeicherten Tankfüllstandswert einen vorgebbaren Schwellwert übersteigt.
- Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Menge an nachgetanktem Medium bei der Neuberechnung der Temperatur des Mediums in die Modellrechnung eingeht.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Falle eines erkannten Ausfalls eines Temperatur- oder Füllstandsensors einer zugehörigen Temperaturvariablen in der Modellgleichung ein vorgebbarer Ersatzwert zugewiesen wird oder ein momentan ermittelter Temperaturwert des Mediums durch einen gespeicherten Temperaturwert ersetzt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Plausibilitätsprüfung durchgeführt wird, bei welcher ein momentan vorliegender Temperaturwert des Mediums mit vorgebbaren oberen und/oder unteren Grenzwerten verglichen und nur dann als korrekt angenommen wird, wenn der Temperaturwert innerhalb dieser Grenzwerte liegt.
- Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass bei Überschreiten eines der Grenzwerte der Temperaturwert gleich einem der Grenzwerte selbst gesetzt wird.
- Verfahren zur Bestimmung der Temperatur eines in einem Vorratsbehältnis bevorrateten flüchtigen Mediums, insbesondere der Temperatur von in einem Kraftstoffvorratstank eines Kraftfahrzeuges bevorratetem Kraftstoff, dadurch gekennzeichnet, dass die Temperatur des Mediums anhand wenigstens einer Kenngröße, insbesondere der Umgebungstemperatur, mittels einer Modellrechnung nach einem der vorhergehenden Ansprüche ermittelt wird.
- Schaltung, insbesondere binär-logische Schaltung, gekennzeichnet durch Schaltungsmittel zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 16.
- Schaltung nach Anspruch 18, gekennzeichnet durch wenigstens zwei Stufen, wobei jede Stufe einen Filter für den Einfluss der jeweiligen Kenngröße auf die Temperatur des Mediums darstellt und wobei die Dämpfung des jeweiligen Filters abhängig von den Kenngrößen und den von der Umgebung abhängigen Korrekturgrößen variiert.
- Schaltung nach Anspruch 19, gekennzeichnet durch wenigstens zwei bei der Modellrechnung zugrundegelegte Filter, wobei in einen ersten Filter die Umgebungstemperatur und/oder die Höhenlage des Vorratsbehältnisses oder des Fahrzeuges eingehen und wobei in den wenigstens zweiten Filter der Füllstand des Vorratsbehältnisses und/oder die Fahrzeugabstellzeit und/oder die Fahrzeugmotorabstellzeit und/oder die Betriebsdauer des Vorratsbehältnisses oder des Kraftfahrzeuges eingehen.
- Steuergerät, gekennzeichnet durch ein Steuerprogramm zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 16.
- Steuergerät nach Anspruch 21, gekennzeichnet durch einen Schreib-/Lesespeicher (RAM) zur Speicherung des wenigstens einen Kenngrößendiagrammes und/oder zur Zwischenspeicherung eines ermittelten Temperaturwertes des Mediums.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10140940 | 2001-08-21 | ||
DE10140954A DE10140954A1 (de) | 2001-08-27 | 2001-08-27 | Verfahren und Vorrichtung zum emissionsüberwachenden Betrieb eines Vorratsbehältnisses zur Bevorratung eines flüchtigen Mediums, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges |
DE10140954 | 2001-08-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1288483A2 true EP1288483A2 (de) | 2003-03-05 |
EP1288483A3 EP1288483A3 (de) | 2005-12-21 |
EP1288483B1 EP1288483B1 (de) | 2009-09-23 |
Family
ID=7696130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02016161A Expired - Lifetime EP1288483B1 (de) | 2001-08-27 | 2002-07-20 | Verfahren und Vorrichtung zum emissionsüberwachenden Betrieb eines Vorratsbehältnisses zur Bevorratung eines flüchtigen Mediums, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges |
Country Status (3)
Country | Link |
---|---|
US (1) | US6829555B2 (de) |
EP (1) | EP1288483B1 (de) |
DE (2) | DE10140954A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1760303A1 (de) * | 2005-08-31 | 2007-03-07 | Audi Ag | Verfahren zur Überprüfung der Gasdichtheit einer Kraftfahrzeug- Tankentlüftungsanlage |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10252225A1 (de) * | 2002-11-11 | 2004-05-27 | Robert Bosch Gmbh | Verfahren zur Bestimmung des Kraftstoff-Dampfdrucks in einem Kraftfahrzeug mit Bordmitteln |
US7251997B1 (en) * | 2004-07-28 | 2007-08-07 | Kavlico Corporation | Fuel tank module control system |
DE102005005685A1 (de) * | 2005-02-08 | 2006-08-10 | Bayerische Motoren Werke Ag | Vorrichtung und/oder Verfahren zur Überprüfung der Dichtheit einer Kraftstoff-Tankanlage eines Kraftfahrzeugs |
JP2007231813A (ja) * | 2006-02-28 | 2007-09-13 | Denso Corp | 燃料性状判定装置、漏れ検査装置、および燃料噴射量制御装置 |
US8870499B2 (en) * | 2007-06-06 | 2014-10-28 | No Screw Ltd. | Cutting tool holder and a cutting insert therefor |
DE102007029801B4 (de) | 2007-06-27 | 2022-10-20 | Volkswagen Ag | Verfahren zur Steuerung eines für ein Kraftfahrzeug bestimmten Antriebes |
US11084485B2 (en) * | 2012-07-24 | 2021-08-10 | Magna Steyr Fahrzeugtechnik Ag & Co Kg | Method for operating a hybrid vehicle |
DE102015214322A1 (de) * | 2015-07-29 | 2017-02-02 | Robert Bosch Gmbh | Verfahren zum Ermitteln der Beladung eines Speichers für Kohlenwasserstoffe |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19636431A1 (de) | 1996-09-07 | 1998-03-12 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage |
DE19809384A1 (de) | 1998-03-05 | 1999-09-09 | Bosch Gmbh Robert | Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage |
DE19836967A1 (de) | 1998-08-14 | 2000-02-24 | Bosch Gmbh Robert | Verfahren zur Prüfung der Funktionsfähigkeit eines Behältnisses |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5251592A (en) * | 1991-02-20 | 1993-10-12 | Honda Giken Kogyo Kabushiki Kaisha | Abnormality detection system for evaporative fuel control systems of internal combustion engines |
US5259424A (en) * | 1991-06-27 | 1993-11-09 | Dvco, Inc. | Method and apparatus for dispensing natural gas |
DE4126880A1 (de) * | 1991-06-28 | 1993-01-07 | Bosch Gmbh Robert | Tankentlueftungsanlage sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit |
US5411004A (en) * | 1993-02-03 | 1995-05-02 | Siemens Automotive Limited | Positive pressure canister purge system integrity confirmation |
JPH09242621A (ja) * | 1996-03-07 | 1997-09-16 | Honda Motor Co Ltd | 内燃機関の蒸発燃料制御装置 |
US6095793A (en) * | 1998-09-18 | 2000-08-01 | Woodward Governor Company | Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same |
US6196203B1 (en) * | 1999-03-08 | 2001-03-06 | Delphi Technologies, Inc. | Evaporative emission control system with reduced running losses |
-
2001
- 2001-08-27 DE DE10140954A patent/DE10140954A1/de not_active Ceased
-
2002
- 2002-07-20 EP EP02016161A patent/EP1288483B1/de not_active Expired - Lifetime
- 2002-07-20 DE DE50213862T patent/DE50213862D1/de not_active Expired - Lifetime
- 2002-08-27 US US10/228,209 patent/US6829555B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19636431A1 (de) | 1996-09-07 | 1998-03-12 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage |
US5890474A (en) | 1996-09-07 | 1999-04-06 | Robert Bosch Gmbh | Method and arrangement for checking the operability of a tank-venting system |
DE19809384A1 (de) | 1998-03-05 | 1999-09-09 | Bosch Gmbh Robert | Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage |
US6131550A (en) | 1998-03-05 | 2000-10-17 | Robert Bosch Gmbh | Method for checking the operability of a tank-venting system |
DE19836967A1 (de) | 1998-08-14 | 2000-02-24 | Bosch Gmbh Robert | Verfahren zur Prüfung der Funktionsfähigkeit eines Behältnisses |
US6234152B1 (en) | 1998-08-14 | 2001-05-22 | Robert Bosch Gmbh | Method of checking the operability of a tank-venting system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1760303A1 (de) * | 2005-08-31 | 2007-03-07 | Audi Ag | Verfahren zur Überprüfung der Gasdichtheit einer Kraftfahrzeug- Tankentlüftungsanlage |
Also Published As
Publication number | Publication date |
---|---|
US20030037599A1 (en) | 2003-02-27 |
DE10140954A1 (de) | 2003-04-03 |
EP1288483A3 (de) | 2005-12-21 |
EP1288483B1 (de) | 2009-09-23 |
DE50213862D1 (de) | 2009-11-05 |
US6829555B2 (en) | 2004-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102011115630B4 (de) | Werkzeug zur diagnose eines grossen lecks für ein abgedichtetes kraftstoffsystem in einem fahrzeug | |
DE69906487T2 (de) | Fahrzeugverdampfungsleckerkennungssystem und methode | |
DE4441101B4 (de) | Verfahren und Vorrichtung zur Bestimmung von Diagnoseschwellwerten für einen bestimmten Kraftfahrzeugtyp im Feld | |
DE69609492T2 (de) | System zur leckerkennung von brennstoffdämpfen | |
DE19713085C2 (de) | Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug | |
EP0559854A1 (de) | Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage | |
DE112012005026B4 (de) | Verfahren zum Ermitteln einer Leckage in einem Dampfmanagementsystem eines Kraftstoffsystems eines Kraftfahrzeugs sowie Dampfmanagementsysteme für ein Kraftfahrzeug mit Mitteln zum Ermitteln von Leckagen | |
DE102009036263B4 (de) | Verfahren zur Dichtheitsprüfung eines Tanksystems und Tanksystem | |
EP1288483B1 (de) | Verfahren und Vorrichtung zum emissionsüberwachenden Betrieb eines Vorratsbehältnisses zur Bevorratung eines flüchtigen Mediums, insbesondere eines Kraftstoffvorratstanks eines Kraftfahrzeuges | |
DE102015222795A1 (de) | Anzeigeeinheit zum Anzeigen einer Restreichweite in einem Kraftfahrzeug | |
EP0580603B1 (de) | Verfahren und vorrichtung zum prüfen einer tankentlüftungsanlage | |
DE19818697A1 (de) | Verfahren zur Bestimmung von Leckagen im Kraftstoffversorgungssystem eines Kraftfahrzeuges | |
WO2001069073A1 (de) | Verfahren und vorrichtung zur dichtheitsprüfung eines tanksystems eines fahrzeugs | |
DE19536646A1 (de) | Verfahren zur Erkennung von Betankungsvorgängen an Behältnissen | |
DE19548684A1 (de) | Verfahren zum Erfassen und Dokumentieren von abgasrelevanten Fehlfunktionen eines Fahrzeugs mit Brennkraftmaschine mit Hilfe bordeigener Mittel | |
DE10223513B4 (de) | Fehlfunktionsdiagnosesystem eines Verdampfungskraftstoff-Verarbeitungssystems | |
DE10254485A1 (de) | Kraftfahrzeug | |
DE102018212277A1 (de) | Verfahren zum Überprüfen einer Dichtigkeit eines Hochvoltspeichergehäuses eines Kraftfahrzeugs sowie Dichtigkeitsmessvorrichtung für ein Hochvoltspeichergehäuse eines Kraftfahrzeugs | |
DE102015221053A1 (de) | Verfahren zum Überprüfen der Dichtheit einer Kraftstoffversorgungsanlage | |
DE112014001033B4 (de) | Überwachungseinheit und Verfahren zur Überwachung eines Kraftstoffsystems | |
DE10010847C1 (de) | Verfahren zum Überwachen der Kraftstoffeinspritzung bei einer Brennkraftmaschine | |
DE4030948C1 (en) | Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions | |
DE102005007105B4 (de) | Überwachung von Kühlflüssigkeitstemperaturgebern | |
DE19836102C2 (de) | Verfahren zur Plausibilitätsüberprüfung eines Tankdrucksensors | |
WO2021013887A1 (de) | Verfahren und vorrichtung zur diagnose eines kraftstoffverdunstungs-rückhaltesystems einer verbrennungskraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20060621 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20061027 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50213862 Country of ref document: DE Date of ref document: 20091105 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100624 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140925 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140721 Year of fee payment: 13 Ref country code: FR Payment date: 20140724 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140724 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50213862 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150720 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160202 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150720 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |