EP1280997A2 - Systeme de palier magnetique a amortissement - Google Patents

Systeme de palier magnetique a amortissement

Info

Publication number
EP1280997A2
EP1280997A2 EP01936224A EP01936224A EP1280997A2 EP 1280997 A2 EP1280997 A2 EP 1280997A2 EP 01936224 A EP01936224 A EP 01936224A EP 01936224 A EP01936224 A EP 01936224A EP 1280997 A2 EP1280997 A2 EP 1280997A2
Authority
EP
European Patent Office
Prior art keywords
magnetic
ring
rings
bearing
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01936224A
Other languages
German (de)
English (en)
Inventor
Christian Beyer
Heinrich Engländer
Josef Hodapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1280997A2 publication Critical patent/EP1280997A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • F16C32/0478Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings with permanent magnets to support radial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Definitions

  • the invention relates to a magnetic bearing for fast rotating machines, in particular for turbocompressors, friction vacuum pumps or the like, with two magnetic bearings, each consisting of a stator-side magnetic ring package and a rotor-side magnetic ring package, and with means for damping the rotor movement.
  • a magnetic bearing of this type is known from EP 413 851 AI. It consists of two camps.
  • the first, passively designed bearing has interlocking stator and rotor magnet rings.
  • the second, axially active bearing is equipped with two axially spaced rotor magnet rings.
  • An annular disk made of non-magnetizable material with high electrical conductivity engages from the outside in the annular space formed by these rings, which brings about the desired damping, in particular of the radial rotor movements.
  • This damping is based on the induction of flow through by changes in the magnetic flux in the electrically highly conductive material.
  • the eddy currents induced in the disk which is perpendicularly penetrated by the magnetic field, generate electromagnetic counterforces which counteract radial deflections of the rotor system and thus dampen these movements.
  • the present invention has for its object to provide a magnetic bearing with the features mentioned, in which the damping is not limited to just one of the two bearings and which can be manufactured and assembled more easily.
  • damping means can be assigned to each of the magnetic rings, preferably at least some of the magnetic rings of the respective stator side associated magnetic ring sets, opposing forces damping the rotor movement can be generated in both magnetic bearings, i.e. not only in the actively controlled bearing. Mink teeth on stator-side and rotor-side rings are no longer required. This makes the manufacture and assembly of the bearings easier compared to the state of the art.
  • FIGS. 1 and 2 show a schematic representation of machines with rotors, which are each supported in a magnetic bearing designed according to the invention
  • FIG. 3 shows a turbomolecular / molecular vacuum pump with the bearing according to the invention
  • the rotating system 2 is suspended in two magnetic bearings 3, 4.
  • Each of the magnetic bearings 3, 4 consists of two ring packs 5, 6 (bearings 3) and 7, 8 (Camp 4).
  • the respective inner ring packet 5, 7 is fixed in place
  • the outer ring packs 6, 8, which surround the respective inner ring packet concentrically and without contact (gap 9) are components of the rotating system 2.
  • the overall structure is rotationally symmetrical. A drive motor is not shown.
  • the rotating system 2 is provided on both ends with central recesses 11, 12.
  • the walls of these recesses form receptacles 13, 14 for the rotating magnet ring packages 6, 8.
  • the receptacle 14 is a tubular reinforcement made of non-magnetizable material, e.g. CFRP, which is preferably attached to the rotating system 2 via a press fit.
  • a section of the reinforcement 14 surrounding the recess 12 carries the magnet ring package 8 on its inside.
  • the respective lower supports 16 in the figures have a central bore 19 for a stub shaft 20 of the rotating system 2, the end face of which is assigned an axial sensor 21.
  • the axial sensor 21 is part of the means for the axial control of the magnetic bearing 4.
  • two coils 23 surrounding the ring packet 8 are provided.
  • Your yoke components 24 are separated from each other by a spacer 26 made of non-ferritic material.
  • a controller 27 is used to control the coils or the magnetic fields generated by the coils 23 as a function of the signals supplied by the sensor 21.
  • the magnetic forces serving to control the axis become effective.
  • the ring packs 5 to 8 each consist of rings magnetized in the axial direction, which are arranged so as to change poles (indicated by way of example in the bearing 3 according to FIG. 1) in such a way that the ring packs 5, 6 and 7, 8 of the magnetic bearings 3, 4 repel one another.
  • the ring packs 5, 6 and 7, 8 each form two cylinders arranged concentrically to one another.
  • the dimensions of the magnetic rings of the magnetic ring packages 5, 7 and 6, 8 are expediently identical in each case.
  • FIG. 1 The dimensions of the magnetic rings of the magnetic ring packages 5, 7 and 6, 8 are expediently identical in each case.
  • the diameters of the mutually facing circumferential surfaces of the rings of both ring packs 5, 6 and 7, 8 of the bearings 3, 4 change stepwise (in the same direction), so that the gap 9 also has a step shape.
  • the gap 28 too in the bearing 4 can (differently than shown in Figure 2) have a step shape.
  • the cross section of the rotating magnet can be kept smaller than in the bearing 4. This saves costs for magnetic material.
  • the rings of the magnetic ring packs 5 to 8 are held firmly in their receptacles 13, 14, 17, 18.
  • Annular spacer disks 31, which consist of non-ferritic materials, rest on both end faces of each magnetic ring, so that the magnetic forces are preferably effective in the columns 9 and 28, respectively. If the material of the spacer washers 31 also has good electrical conductivity properties (e.g. copper), damping of the rotor movements is already achieved. However, the damping means are particularly effective if they are assigned to the outer circumferential surfaces of the magnetic rings of the stator-side magnetic ring packages 5, 7. In the embodiment according to FIG.
  • these damping means are formed by a sleeve 32 or 33 made of a material which is a good electrical conductor and which surround the magnet ring packages 5, 7.
  • the sleeves also have the effect of encapsulating the magnetic rings of the magnetic ring packages 5, 7. This protects the magnetic materials from aggressive gases (e.g. hydrogen in friction vacuum pumps).
  • tiered sleeves 32, 33 for the respective stationary ring packs 5, 7 are shown in FIG. They are connected gas-tight to the side of the ring packs with the associated receptacles, for example welded.
  • the rotating magnet ring packages 6, 8 can also be encapsulated in a similar manner.
  • the inner and outer rings of the ring packs 5, 6 and 7, 8 are preferably arranged in pairs. To improve the axial control, it may be useful to add 4 more rings to the outer, rotating ring assembly 8 of the axially active magnetic bearing. Variants of this type are shown in Figures 1 and 2.
  • the ring packet 8 has two rings more than the ring packet 7.
  • the two outer rings, labeled 29, have been added to package 8. These can be soft ferritic rings; but preferably two further magnetic rings are added.
  • a turbomolecular / molecular pump, 36 stator blades 37 are mounted in the housing 35 with the connecting flange 36.
  • the magnetically mounted rotor 2 carries rotor blades 38, which rotate between the stator blades 37 and cause the gases to be conveyed.
  • Pump 1 is a compound pump. On the with blades equipped section is followed by a molecular pump section 39.
  • the rotor 2 is suspended in the two magnetic bearings 3 and 4.
  • the magnetic bearing 3 is located on the high vacuum side.
  • the carrier 15 of the fixed magnetic ring package 5 with its receptacle 17 is part of a bearing star 41.
  • the magnetic bearing 4 is located on the fore-vacuum side of the pump 1. Both bearings have approximately the same stiffness.
  • the center of gravity of the rotating system 2 is designated 42.
  • the pump 1 is equipped with emergency run bearings or catch bearings 44, 45.
  • the high-vacuum catch bearing 44 is located in the rotor recess 11.
  • the fore-vacuum catch bearing 45 is arranged below the magnetic bearing 4 between the shaft end 20 and the fixed support 16.
  • a high-frequency motor with stator 47 and armature 48 is provided as the drive motor 46.
  • a stator tube 49 is further provided on the stator side, which seals the stator space 50 in a vacuum-tight manner to the fore-vacuum side.
  • the can 49 passes through the gap 28 between the coils 23 with their yoke components 24 and the rotating magnet ring package 8. It is therefore expediently made of non-magnetizable and electrically poorly conductive material, for example CFRP.
  • the tubular reinforcement 14 already described is provided on the rotor side. It not only reinforces the ring package 8 but also the motor armature 48.
  • the bearing 4 can be adjusted by means of adjusting screws 52 on which the carrier 16 of the stationary ring packet 7 rests. It is expedient to adjust so that the rotating system is axially in the unstable working point. At this point, the axial control takes place with little energy.
  • FIGS. 4 to 7 show different designs for the active magnetic bearing 4.
  • four magnetic rings each form the ring packs 7 and 8.
  • Only one coil 23 with its U-shaped one Yoke 24 is provided.
  • the distance between the end faces of the U-legs of the yoke 24 corresponds approximately to the axial dimension of a magnetic ring of the ring pack 8.
  • the end faces of the U-legs lie at the center of two adjacent magnetic rings of the ring pack 8. in the embodiment shown at the level of the centers of the two middle magnetic rings.
  • FIG. 6 only one coil 23 with its yoke 24 is also provided.
  • the absband of the end faces of the legs of the U-shaped yoke 24 facing the rings of the ring packet 8 corresponds approximately to twice the axial dimension of a magnetic ring.
  • Figure 7 shows a solution with five coils 23 and yokes 24.
  • the 'ring package 8 has six magnetic rings. The end faces of the six yoke legs are located approximately at the height of the centers of the magnetic rings.
  • the material of the spacer washers 31 consists of a material which is expedient for achieving the damping effect and has a high electrical conductivity, it may be expedient to improve the damping effect to reinforce the edges of the spacer washers 31 where the magnetic field enters the gap 9, e.g. B. continuously increasing outwards, and to adapt the shape of the magnetic rings to these edges.
  • This embodiment is shown in FIG.
  • the edge of the middle spacer disk 31 near the gap is designated 54. Because the magnetic fields flow through more conductive material, the counter forces generated by eddy currents, which cause the damping, become greater.
  • the magnetic rings of the ring packet 5 are coated on all sides (coating 55).
  • the spacer disks 31 have the function of the spacer disks 31 on the side, so that they have the effect of influencing and / or damping the magnetic field lines if the coating 55 is sufficiently thick and the material is selected appropriately.
  • the magnetic rings are protected against aggressive gases. This protection can also be achieved by providing a sleeve 32, be it step-like, as already described for FIG. 2, or cylindrical, as shown, for example, in FIG. 10 (ring packet 5).
  • the spacer rings 31 (or coating 55) of the magnetic rings must be sufficiently thick to fulfill their purposes, especially since the desired stiffness of the bearing also depends on the thickness of the spacers. In the case of medium-sized friction pumps, a thickness in the range of Proven 0.25 to 1 mm.
  • spirally wound film coils 23 has proven to be expedient since their space requirement is relatively small.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

L'invention concerne un système de palier magnétique pour machines à fréquence de rotation élevée (1), en particulier pour turbocompresseurs, pompes à vide à friction ou analogues, comprenant deux paliers (3, 4) comportant chacun un paquet de bagues magnétiques stator (5, 7) et un paquet de bagues magnétiques rotor (6, 8), ainsi que des moyens (31) d'amortissement du mouvement du rotor, de préférence, en direction radiale. En vue de simplifier les moyens d'amortissement, l'invention est caractérisée en ce que les paliers magnétiques sont constitués par des paquets de bagues magnétiques (5, 6 ; 7, 8) agencés concentriques entre eux, en ce que le paquet de bagues magnétiques fixe (5 ou 7) est monté à l'extérieur, et le paquet de bagues magnétiques en rotation (6 ou 8) est monté à l'intérieur, en ce que les moyens d'amortissement (32, 54, 55) sont associés aux surfaces périphériques extérieures d'au moins une partie des bagues magnétiques de chacun des paquets (5, 7) côté stator et sont constitués par un matériau non magnétisable et électriquement bon conducteur.
EP01936224A 2000-05-06 2001-04-11 Systeme de palier magnetique a amortissement Withdrawn EP1280997A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10022061 2000-05-06
DE10022061A DE10022061A1 (de) 2000-05-06 2000-05-06 Magnetlagerung mit Dämpfung
PCT/EP2001/004166 WO2001086151A2 (fr) 2000-05-06 2001-04-11 Systeme de palier magnetique a amortissement

Publications (1)

Publication Number Publication Date
EP1280997A2 true EP1280997A2 (fr) 2003-02-05

Family

ID=7640979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01936224A Withdrawn EP1280997A2 (fr) 2000-05-06 2001-04-11 Systeme de palier magnetique a amortissement

Country Status (5)

Country Link
US (1) US6833643B2 (fr)
EP (1) EP1280997A2 (fr)
JP (1) JP2003532838A (fr)
DE (1) DE10022061A1 (fr)
WO (1) WO2001086151A2 (fr)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323759B2 (ja) * 2002-05-27 2009-09-02 キヤノン株式会社 露光装置およびデバイス製造方法
US20050194683A1 (en) * 2004-03-08 2005-09-08 Chen-Hua Yu Bonding structure and fabrication thereof
GB0412667D0 (en) * 2004-06-07 2004-07-07 Boc Group Plc Vacuum pump impeller
EP1818553B1 (fr) * 2004-12-01 2010-03-03 JTEKT Corporation Palier d'atterrissage
HUP0500973A2 (en) 2005-10-25 2007-06-28 Janos Oroszi Magnetic bearing assembly
ES2855398T3 (es) * 2005-12-06 2021-09-23 Carrier Corp Sistema de lubricación para cojinetes de contacto de un compresor de cojinetes magnéticos
DE102006021498B4 (de) * 2006-05-09 2008-07-24 Universität Bremen Elektrische Wechselstrommaschine
CN100458198C (zh) * 2006-11-21 2009-02-04 浙江大学 一种自适应转子重量的永磁推力轴承
DE102007032443A1 (de) * 2007-07-10 2009-01-15 Voith Patent Gmbh Hybridlager und Verfahren zu dessen Herstellung
DE102008035891A1 (de) 2008-07-31 2010-02-04 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
RU2398977C1 (ru) * 2009-03-17 2010-09-10 Борис Иосифович Кантин Регулируемая магнитодинамическая опора вертикального ротора
DE102009055888A1 (de) * 2009-11-26 2011-06-01 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
US8803392B2 (en) * 2010-06-19 2014-08-12 Peter S. Aronstam Axial magnetic suspension
US8941278B2 (en) * 2010-07-19 2015-01-27 Peter S. Aronstam Method and apparatus for hybrid suspension system
GB2490863B (en) * 2011-05-06 2018-04-18 Edwards Ltd Magnetic bearing assembly
DE102012219982A1 (de) * 2012-10-31 2014-04-30 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102013100853A1 (de) * 2013-01-29 2014-07-31 Pfeiffer Vacuum Gmbh Verfahren zum Beschichten und/oder Lackieren von Magnetringen eines Rotor-Magnetlagers, Rotor-Magnetlager sowie Vakuumpumpe
US10125814B2 (en) * 2013-10-24 2018-11-13 Raymond James Walsh Passive magnetic bearing
NO335600B1 (no) * 2013-05-27 2015-01-12 Inst Energiteknik Magnetiske lagre
CN104295603A (zh) * 2013-07-15 2015-01-21 卓向东 永磁推力轴承及立式磁悬浮电动机
DE102014105581A1 (de) * 2014-04-17 2015-11-05 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102014116241B4 (de) * 2014-11-07 2020-05-28 Pfeiffer Vacuum Gmbh Vakuumpumpe
EP3088746B1 (fr) * 2015-04-30 2020-03-11 Pfeiffer Vacuum Gmbh Pompe à vide
DE202016003991U1 (de) * 2016-06-29 2017-10-02 Leybold Gmbh Vakuumpumpe
EP3376604A1 (fr) * 2017-03-17 2018-09-19 Siemens Aktiengesellschaft Système d'interconnexion sous-marin
CN108868892B (zh) * 2018-01-12 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN108708904A (zh) * 2018-06-26 2018-10-26 坎德拉(深圳)科技创新有限公司 永磁轴承
GB2578899B (en) * 2018-11-13 2021-05-26 Edwards Ltd Vacuum pump
US11670336B2 (en) * 2020-10-08 2023-06-06 Seagate Technology Llc Magnetic bearings for data storage devices
CN112412980B (zh) * 2020-11-16 2022-09-30 饶俊 永磁偏置径向磁轴承
GB2607339A (en) * 2021-06-04 2022-12-07 Edwards Ltd Holweck drag pump
JP2023125645A (ja) * 2022-02-28 2023-09-07 国立大学法人 岡山大学 磁気浮上式電動機および磁気浮上式ポンプ
GB2621345B (en) * 2022-08-09 2024-10-23 Leybold Gmbh Method of assembling a vacuum pump
GB2621344B (en) * 2022-08-09 2024-07-24 Leybold Gmbh Magnetic bearing and vacuum pump
GB2621346B (en) * 2022-08-09 2024-10-09 Leybold Gmbh Vacuum pump
EP4108930A1 (fr) * 2022-08-31 2022-12-28 Pfeiffer Vacuum Technology AG Pompe à vide dotée d'un support d'aimants réglable dans une direction axiale

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958842A (en) * 1975-02-03 1976-05-25 Hughes Aircraft Company Radial magnetic bearing
DE3239328C2 (de) * 1982-10-23 1993-12-23 Pfeiffer Vakuumtechnik Magnetisch gelagerte Turbomolekularpumpe mit Schwingungsdämpfung
US4471331A (en) * 1982-11-08 1984-09-11 At&T Technologies, Inc. Magnetically supported work fixture
EP0413851B1 (fr) * 1989-08-25 1994-10-26 Balzers und Leybold Deutschland Holding Aktiengesellschaft Anneau de palier pour palier magnétique
DE3931661A1 (de) * 1989-08-25 1991-04-04 Leybold Ag Magnetgelagerte vakuumpumpe
JPH03255220A (ja) 1990-03-06 1991-11-14 Osaka Shinku Kiki Seisakusho:Kk 磁気軸受装置
FR2659396B1 (fr) * 1990-03-07 1992-05-15 Cit Alcatel Pompe a vide pour vide moleculaire propre.
US5330967A (en) 1990-07-17 1994-07-19 Koyo Seiko Co., Ltd. Superconducting bearing device stabilized by trapped flux
JPH04219493A (ja) * 1990-08-10 1992-08-10 Ebara Corp ターボ分子ポンプ
US5196748A (en) * 1991-09-03 1993-03-23 Allied-Signal Inc. Laminated magnetic structure for superconducting bearings
JP2999607B2 (ja) * 1991-09-30 2000-01-17 日本精工株式会社 超電導軸受装置とその操作方法
JP3961032B2 (ja) * 1993-12-13 2007-08-15 シーメンス アクチエンゲゼルシヤフト 回転子軸の磁気軸受装置
DE4436831C2 (de) * 1993-12-13 1997-09-11 Siemens Ag Magnetische Lagerung einer Rotorwelle unter Verwendung von Hoch-T¶c¶-Supraleitermaterial
FR2715201B1 (fr) * 1994-01-19 1996-02-09 Inst Nat Polytech Grenoble Palier magnétique et ensemble comportant une partie statorique et une partie rotorique suspendue par un tel palier.
DE19727550C2 (de) * 1996-08-21 2002-05-08 Canders Wolf R Magnetische Lagerung eines Rotors in einem Stator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0186151A2 *

Also Published As

Publication number Publication date
JP2003532838A (ja) 2003-11-05
US20030155830A1 (en) 2003-08-21
WO2001086151A2 (fr) 2001-11-15
WO2001086151A3 (fr) 2002-03-21
US6833643B2 (en) 2004-12-21
DE10022061A1 (de) 2001-11-08

Similar Documents

Publication Publication Date Title
EP1280997A2 (fr) Systeme de palier magnetique a amortissement
EP1281007B1 (fr) Machine, notamment pompe a vide, dotee de paliers magnetiques
EP0332979B1 (fr) Support magnétique avec aimants permanents pour absorber des contraintes radiales de paliers
EP0646220B1 (fr) Pompe a vide a gaz et a friction
DE102007019766B3 (de) Lagereinrichtung mit einer magnetisch gegenüber einem Stator um eine Achse drehbar gelagerten Welle und einer Dämpfungsvorrichtung
EP1313951A1 (fr) Pompe a vide
WO1992015795A1 (fr) Cellule de palier magnetique
DE3931661A1 (de) Magnetgelagerte vakuumpumpe
DE2919236A1 (de) Magnetisches schwebelager fuer einen rotor
EP2884125B1 (fr) Système rotatif
DE10216447C1 (de) Abgasturbolader
EP0853735A1 (fr) Machine rotodynamique pour transporter un fluide
EP3150872B1 (fr) Procédé de réduction d'un champ vectoriel de dispersion magnétique d'une unité rotative à palier magnétique avec aimants pour une pompe à vide par un aimant de compensation, unité rotative et pompe à vide
WO2010136325A2 (fr) Ensemble palier pour un palier magnétique axial sans contact et tube à rayons x pourvu de ce palier
DE102017206762A1 (de) Rotor für einen elektromotor mit wärmeabschirmender beschichtung und verfahren zur herstellung
EP2508769B1 (fr) Dispositif de palier magnetique axial doté d'un remplissage en fer augmenté
EP3708843B1 (fr) Procédé de fabrication d'un moteur électrique ou d'un appareil a vide avec un tel moteur
EP3385961B1 (fr) Aimant permanent monolithique
EP3196471B1 (fr) Pompe a vide
EP3623654B1 (fr) Palier magnétique et accumulateur à volant d'inertie
DE102015205433A1 (de) Magnetohydrodynamisches Radialgleitlager
EP3683449A1 (fr) Palier magnétique et appareil sous vide
DE10216421A1 (de) Magnetführungseinrichtung
DE102017206759A1 (de) Rotor für einen elektromotor mit speziell geformtem rückschlusselement und verfahren zur herstellung
WO1999064753A1 (fr) Cellule de palier magnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021024

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060905