US20050194683A1 - Bonding structure and fabrication thereof - Google Patents

Bonding structure and fabrication thereof Download PDF

Info

Publication number
US20050194683A1
US20050194683A1 US10/795,736 US79573604A US2005194683A1 US 20050194683 A1 US20050194683 A1 US 20050194683A1 US 79573604 A US79573604 A US 79573604A US 2005194683 A1 US2005194683 A1 US 2005194683A1
Authority
US
United States
Prior art keywords
bonding structure
copper
protection layer
layer
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/795,736
Inventor
Chen-Hua Yu
Horng-Huei Tseng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US10/795,736 priority Critical patent/US20050194683A1/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSENG, HORNG-HUEI, YU, CHEN-YUA
Publication of US20050194683A1 publication Critical patent/US20050194683A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76867Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05681Tantalum [Ta] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05684Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48684Tungsten (W) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48747Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48763Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48784Tungsten (W) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

A bonding structure and the method of fabricating the same are disclosed. The bonding structure of the invention includes a copper-based pad formed in an insulator layer and a protection layer substantially covering top surface of the copper-based pad. The protection layer is self-aligned formed and the material thereof is selected from a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.

Description

    BACKGROUND
  • The present invention relates to a semiconductor structure and in particular to a copper-based bonding structure with a surface protection layer.
  • Conventional semiconductor devices typically comprise a semiconductor substrate, normally of doped monocrystalline silicon, and a plurality of sequentially formed inter-layer dielectrics and interconnected metallization layers defining conductive patterns. An integrated circuit is formed containing a plurality of conductive patterns comprising conductive lines separated by interwiring spacings, and a plurality of interconnect lines, such as bus lines, bit lines, word lines and logic interconnect lines. Typically, the conductive patterns on different metallization layers are electrically connected by a conductive plug filling with a via opening, while a conductive plug filling a contact opening establishes electrical contact with an active region on a semiconductor substrate, such as a source/drain region. Conductive lines are formed in trenches which typically extend substantially horizontal with respect to the semiconductor substrate. Semiconductor chips comprising five or more levels of metallization are becoming more prevalent as device geometries shrink to submicron levels.
  • Copper (Cu) and copper alloys have received considerable attention as a replacement material for aluminum (Al) in ultra large scale interconnection metalizations. Copper is relatively inexpensive, easy to process, has lower resistance than aluminum, and has improved electrical properties over tungsten (W), making copper a desirable metal for use as a conductive plug as well as conductive wiring.
  • In the formation of copper interconnects using a damascene metallization process, copper is exposed in a bonding pad area. The bonding pad area is located on the top surface of the integrated circuit structure formed on the semiconductor substrate. The bonding pad area is the region where wires make contact with bonding pads to form electrical connection with the Cu interconnects. In this case, where the copper interconnects are exposed in the bonding pad area, the copper can be designed to act as an interconnect as well as a bonding pad.
  • Conventional techniques for wire bonding, however, are not compatible with bonding pads comprising Cu. Existing bonding techniques such as wedge bonding and ultrasonic bonding require thermal agitation, that is, rubbing the wire against the bonding pad to form a bond therebetween. The existing technology works for the bonding of either gold wires or aluminum wires to aluminum pads. However, such technologies do not work for the bonding of gold wires or aluminum wires to copper pads, since copper is easily oxidized, forming copper oxide which is an insulator.
  • In U.S. Pat. No. 5,785,236 issued to Cheung et. al., methodology is disclosed for electrically connecting wires to a Cu interconnect by forming an intermediate Al pad on the Cu interconnect. In U.S. Pat. No. 6,239,494 issued to Besser et. al. another methodology is disclosed for electrically connecting wires to a Cu interconnect by forming an Al pad and an intermediate diffusion barrier on the Cu interconnect. In both described patents, uses the Al pad is used, however, disadvantageously, as it increases the resistance of the interconnection system.
  • A need therefore exists to form a reliable copper pad so that conventional wire bonding technology can be employed.
  • SUMMARY
  • Accordingly, an object of the invention is to provide a reliable bonding structure adopting copper pad, suitable for wire bonding technology or flip-chip bonding technology, with a protection layer to prevent the surface thereof from oxidizing.
  • In order to achieve the above object, the present invention provides a bonding structure, comprising a copper-based pad formed in an insulator layer and a protection layer substantially covering a top surface of the copper-based pad.
  • In one embodiment of the invention, a conductive bonding is further formed over the protection layer connected to connect the copper-based pad.
  • Another object of the invention is to provide a method of fabricating a copper bonding structure suitable for wire bonding technology or flip-chip bonding technology.
  • In order to achieve the above object, the present invention provides a method of fabricating a bonding structure, comprising the steps of forming an insulating layer over a substrate and forming a copper-based pad in the insulating layer. A protection layer is then formed substantially covering the top surface of the copper-based pad. A passivation layer is forming over the copper-based pad and the insulating layer and the passivation layer is then patterned to expose a portion of the protection layer.
  • In one embodiment of the invention, a conductive bonding is further formed over the exposed protection layer to connect the copper-based pad.
  • In another embodiment of the invention, the protection layer comprises a conductive material selected from a group consisting of metal nitride, copper alloy, copper compounds, and combinations thereof.
  • In another embodiment of the invention, the protection layer comprises refractory metal.
  • In another embodiment of the invention, the conductive bonding is a conductive bump or a conductive wire.
  • A detailed description is given in the following embodiments with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
  • FIGS. 1 to 4 are cross sections showing a process for forming a bonding structure of the invention.
  • DESCRIPTION
  • FIGS. 1 to 4 show cross sections of a process for fabricating a copper bonding structure of the invention.
  • In FIG. 1, an integrated circuit (IC) structure 100 having copper structures 108 formed therein is provided. The integrated circuit structure 100 may comprise a semiconductor substrate having integrated circuit devices and multilayer interconnection structures formed thereon. The integrated circuit devices can be active devices or passive devices formed on the semiconductor substrate and the multilayer interconnection structures can be multi metallization layers supported and spaced by inter-layer dielectric. The formed integrated circuit devices and multilayer interconnection structures, however, are not shown here in the integrated circuit structure 100, for simplicity.
  • The integrated circuit (IC) structure 100 having copper structures 108 can be fabricated by the following steps. First, a first and a second insulating layer 102 and 104 are sequentially formed on the structure 100. The material of insulating layers 102 and 104 can be oxide, nitride, polymers, spin-on glass, low-k dielectric or a combination thereof. The low-k dielectric can be either organic dielectric such as benzocyclobutene (BCB), SiLK, available from Dow Chemical, and Flare, available from AlliedSignal of Morristown or inorganic dielectric such as hydrogen silsesquioxane (HSQ), fluorocarbon silsesquioxane (FSQ), methylsilsesquioxane (MSQ), nanoglass, or the like. The dielectric constant of the insulating layers 102 and 104 are preferably less than 3.6. The insulating layers 102 and 104 are preferably formed using chemical vapor deposition (CVD) or spin-on coating, although other deposition techniques can be employed as well.
  • Next, two separate openings 106 a and 106 b are formed in the first and the second insulating layers 102 and 104 through a conventional dual damascene process, wherein each of the openings includes a narrow via opening in the lower portion for forming interconnects therein and a device opening in the upper portion for forming a conductive line or bonding pad. A copper layer 108 is then formed in the openings 106 a and 106 b. The copper layer 108 can be formed by blanketing a copper-based material over the second insulating layer 104 and filling the openings 106 a and 106 b. The copper-based material over the top surface of the second insulating layer 104 is then planarized through a proper etch-back step or a chemical mechanical polishing (CMP) step. The copper layer 108 is thus respectively left in these openings 106 a, 106 b and the top surfaces thereof are also exposed. The copper-based material of the copper layer 108 can be, for example, high purity elemental copper or copper-based alloys containing minor amounts of zinc (Zn), manganese (Mn), titanium (Ti), aluminum (Al) and germanium (Ge).
  • In FIG. 2, a protection layer 120 for preventing oxidation of the top surface of each copper layer 108 is formed on top surface of each copper layer 108. The thickness thereof is about 100 Å to 1000 Å. Here, the protection layer 120 in the present invention is preferably formed by a self-aligned process 122 such as selective chemical vapor deposition (CVD) while additional protective material such as tungsten (W) is formed. Conventional silicidation or nitridation processes (not shown) can also be adopted to form copper compounds such as copper silicde or copper nitride on the top surface of each copper layer 108. The copper compound can be formed by first depositing a metal layer (not shown) on the exposed surface of the copper layer 108 followed by a thermal treatment step. Finally, the un-reacted metal is selectively removed by proper an appropriate etching process to leave the copper compound on the exposed copper surface. The copper compounds can be also formed by exposing a copper surface to silane (SiH4) plasma to selectively form the copper silicide. Further, an electrochemical plating (ECP) process (not shown) can be also used to form copper alloys containing minor amounts of refractory metal such as zinc (Zn), manganese (Mn), titanium (Ti), aluminum (Al) germanium (Ge) on the top surface of each copper layer 108. Thus, the material of the protection layer 120 can be conductive material such as tantalum, tantalum nitride, tungsten, tungsten nitride, metal nitride, copper alloys, copper compounds or a combination thereof.
  • In addition, the copper-based material of the copper layer 108 can be further recessed with a depth d beneath the surface of adjacent second insulating layer 104. The depth d is about 100 Å to 1000 Å and can be achieved by an additional over-etch step of the etching back process or an is over polishing step of the CMP process during the planarizing of the copper layer 108. Next, the protection layer 120 can be formed by the described self-aligned process 122 and can be thus left in each recess above each copper layer 108 and shows a substantially planar surface, as shown in FIG. 3.
  • In FIG. 4, a passivation layer 124 is then formed over each second insulating layer 104 and covers the protection layers 120 to prevent the copper layers 108 from mechanical scratches and surrounding moisture. The material of the passivation layer 124 can be, for example, silicon oxide, silicon nitride, silicon oxynitride, spin-on glass (SOG) or a combination thereof. Next, the passivation layer 124 is patterned to form an opening therein, exposing a portion of the protection layer 120 as a bonding pad region 126 for the use of sequential wire bonding or flip-chip bonding. Due to the anti-oxidation protection provided to the bonding region 126 by the exposed protection layer 120, a conductive bump 128 such as solder bump or gold bump, can be then formed therein without oxidizing the copper layer 108 thereunder, thus ensuring the reliability of the copper-based bonding pad. Further, conductive wires such as gold wires or aluminum wires used in conventional wire bonding technology can be also formed therein.
  • As shown in FIG. 4, a copper bonding pad with a protection layer formed thereon is illustrated. In the invention, the protection layer 120 can be self-aligned formed on the underlying copper bonding pad (referring to one copper layer 108) without an additional photolithography process and can be thus easily fabricated. Moreover, the copper-based material of the bonding pad costs less than conventional aluminum bonding pad and the thickness of the copper bonding pad can be also reduced due to better conductivity of the copper-based material. Due to the anti-oxidation protection provided to the copper bonding pad by the protection layer, either conductive bumps for flip-chip bonding technique or conductive wires for conventional wire bonding technique can be formed on the copper bonding pad of the invention without oxidizing the copper layer therein and the reliability thereof can thus be ensured.
  • While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (27)

1. A bonding structure, comprising:
a copper-based pad formed in an insulator layer;
a protection layer substantially covering a top surface of the copper-based pad; and
a conductive bonding directly connecting the protection layer.
2. (canceled)
3. The bonding structure as claimed in claim 1, wherein the protection layer is a self-aligned protection layer.
4. The bonding structure as claimed in claim 1, wherein the insulating layer comprises organic low-k material and inorganic low-k material.
5. The bonding structure as claimed in claim 1, wherein the protection layer is a tungsten layer.
6. The bonding structure as claimed in claim 1, wherein the thickness of the protection layer is 100 Å to 1000 Å.
7. The bonding structure as claimed in claim 1, wherein the protection layer comprises a conductive material selected form a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
8. The bonding structure as claimed in claim 1, wherein the protection layer comprises refractory metal.
9. The bonding structure as claimed in claim 1, wherein the dielectric constant of the insulating layer is less than 3.6.
10-21. (canceled)
22. A bonding structure, comprising:
a copper-based pad over an interconnect thereunder formed in an insulator layer;
a protection layer substantially covering a top surface of the copper-based pad; and
a conductive bonding directly connecting the protection layer.
23. (canceled)
24. The bonding structure as claimed in claim 22, wherein the protection layer is a self-aligned protection layer.
25. The bonding structure as claimed in claim 22, wherein the insulating layer comprises organic low-k material.
26. The bonding structure as claimed in claim 22, wherein the insulating layer comprises inorganic low-k material.
27. The bonding structure as claimed in claim 22, wherein the thickness of the protection layer is 100 Å to 1000 Å.
28. The bonding structure as claimed in claim 22, wherein the protection layer comprises a conductive material selected from a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
29. The bonding structure as claimed in claim 22, wherein the protection layer comprises refractory metal.
30. The bonding structure as claimed in claim 22, wherein the dielectric constant of the insulating layer is less than 3.6.
31. A bonding structure, comprising:
a copper-based pad formed in an insulator layer, having a recession below a top surface of the insulator layer; and
a protection layer substantially filling the recession and leveling to a top surface of the insulator layer.
32. The bonding structure as claimed in claim 31, wherein the recession has a depth about 100-1000 Å.
33. The bonding structure as claimed in claim 31, wherein the protection layer is a self-aligned protection layer.
34. The bonding structure as claimed in claim 31, wherein the insulating layer comprises organic low-k material and inorganic low-k material.
35. The bonding structure as claimed in claim 31, wherein the protection layer is a tungsten layer.
36. The bonding structure as claimed in claim 31, wherein the protection layer comprises a conductive material selected form a group consisting of metal nitride, copper alloy, copper compounds, and a combination thereof.
37. The bonding structure as claimed in claim 31, wherein the protection layer comprises refractory metal.
38. The bonding structure as claimed in claim 31, wherein the dielectric constant of the insulating layer is less than 3.6.
US10/795,736 2004-03-08 2004-03-08 Bonding structure and fabrication thereof Abandoned US20050194683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/795,736 US20050194683A1 (en) 2004-03-08 2004-03-08 Bonding structure and fabrication thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/795,736 US20050194683A1 (en) 2004-03-08 2004-03-08 Bonding structure and fabrication thereof
TW093123077A TWI271808B (en) 2004-03-08 2004-08-02 Bonding structure and fabrication thereof
US11/964,195 US8034711B2 (en) 2004-03-08 2007-12-26 Bonding structure and fabrication thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/964,195 Division US8034711B2 (en) 2004-03-08 2007-12-26 Bonding structure and fabrication thereof

Publications (1)

Publication Number Publication Date
US20050194683A1 true US20050194683A1 (en) 2005-09-08

Family

ID=34912514

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/795,736 Abandoned US20050194683A1 (en) 2004-03-08 2004-03-08 Bonding structure and fabrication thereof
US11/964,195 Active US8034711B2 (en) 2004-03-08 2007-12-26 Bonding structure and fabrication thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/964,195 Active US8034711B2 (en) 2004-03-08 2007-12-26 Bonding structure and fabrication thereof

Country Status (2)

Country Link
US (2) US20050194683A1 (en)
TW (1) TWI271808B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197023A1 (en) * 2006-02-22 2007-08-23 Chartered Semiconductor Manufacturing, Ltd Entire encapsulation of Cu interconnects using self-aligned CuSiN film
US20090275195A1 (en) * 2006-04-04 2009-11-05 Chen-Hua Yu Interconnect Structure Having a Silicide/Germanide Cap Layer
US20090283913A1 (en) * 2008-05-16 2009-11-19 Kabushiki Kaisha Toshiba Semiconductor device and method for fabricating semiconductor device
US20100065964A1 (en) * 2008-09-15 2010-03-18 Abdalla Aly Naem Copper-topped interconnect structure that has thin and thick copper traces and method of forming the copper-topped interconnect structure
US7964934B1 (en) 2007-05-22 2011-06-21 National Semiconductor Corporation Fuse target and method of forming the fuse target in a copper process flow
US8030733B1 (en) 2007-05-22 2011-10-04 National Semiconductor Corporation Copper-compatible fuse target
US20130069231A1 (en) * 2011-09-16 2013-03-21 Chipmos Technologies Inc. Solder cap bump in semiconductor package and method of manufacturing the same
US20130112462A1 (en) * 2011-11-07 2013-05-09 International Business Machines Corporation Metal Alloy Cap Integration
US20170053879A1 (en) * 2015-08-21 2017-02-23 Infineon Technologies Ag Method, a semiconductor device and a layer arrangement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969197B2 (en) * 2012-05-18 2015-03-03 International Business Machines Corporation Copper interconnect structure and its formation
US8765602B2 (en) 2012-08-30 2014-07-01 International Business Machines Corporation Doping of copper wiring structures in back end of line processing

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436412A (en) * 1992-10-30 1995-07-25 International Business Machines Corporation Interconnect structure having improved metallization
US5785236A (en) * 1995-11-29 1998-07-28 Advanced Micro Devices, Inc. Advanced copper interconnect system that is compatible with existing IC wire bonding technology
US6114243A (en) * 1999-11-15 2000-09-05 Chartered Semiconductor Manufacturing Ltd Method to avoid copper contamination on the sidewall of a via or a dual damascene structure
US6239494B1 (en) * 1999-04-21 2001-05-29 Advanced Micro Devices, Inc. Wire bonding CU interconnects
US6265300B1 (en) * 1993-03-31 2001-07-24 Intel Corporation Wire bonding surface and bonding method
US6274933B1 (en) * 1999-01-26 2001-08-14 Agere Systems Guardian Corp. Integrated circuit device having a planar interlevel dielectric layer
US6378759B1 (en) * 2000-07-18 2002-04-30 Chartered Semiconductor Manufacturing Ltd. Method of application of conductive cap-layer in flip-chip, COB, and micro metal bonding
US6451681B1 (en) * 1999-10-04 2002-09-17 Motorola, Inc. Method of forming copper interconnection utilizing aluminum capping film
US6457234B1 (en) * 1999-05-14 2002-10-01 International Business Machines Corporation Process for manufacturing self-aligned corrosion stop for copper C4 and wirebond
US6635497B2 (en) * 2001-12-21 2003-10-21 Texas Instruments Incorporated Methods of preventing reduction of IrOx during PZT formation by metalorganic chemical vapor deposition or other processing
US20040084780A1 (en) * 1998-07-07 2004-05-06 Tri-Rung Yew Dual damascene structure for the wiring-line structures of multi-level interconnects in integrated circuit
US6835643B2 (en) * 1999-06-14 2004-12-28 Micron Technology, Inc. Method of improving copper interconnects of semiconductor devices for bonding
US6844631B2 (en) * 2002-03-13 2005-01-18 Freescale Semiconductor, Inc. Semiconductor device having a bond pad and method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223455A (en) * 1987-07-10 1993-06-29 Kabushiki Kaisha Toshiba Method of forming refractory metal film
US5243222A (en) * 1991-04-05 1993-09-07 International Business Machines Corporation Copper alloy metallurgies for VLSI interconnection structures
JPH05243402A (en) * 1992-03-03 1993-09-21 Nec Corp Manufacture of semiconductor device
US6166444A (en) * 1999-06-21 2000-12-26 United Microelectronics Corp. Cascade-type chip module
US7655555B2 (en) * 1999-08-27 2010-02-02 Texas Instruments Incorporated In-situ co-deposition of Si in diffusion barrier material depositions with improved wettability, barrier efficiency, and device reliability
TW420854B (en) 1999-08-30 2001-02-01 Taiwan Semiconductor Mfg Method for improving the bonding property between the gold (Au) connection wire and the copper (Cu) bonding-pad
TW526555B (en) 1999-09-17 2003-04-01 United Microelectronics Corp Etching method of inorganic low dielectric constant material layer
SG125881A1 (en) * 1999-12-03 2006-10-30 Lytle Steven Alan Define via in dual damascene process
DE10022061A1 (en) * 2000-05-06 2001-11-08 Leybold Vakuum Gmbh Magnetic bearing arrangement with damping device especially for turbo-compressor, has two bearings each including stator annular magnet stack and rotor annular magnet stack
JP2002110679A (en) * 2000-09-29 2002-04-12 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device
JP4340040B2 (en) 2002-03-28 2009-10-07 富士通マイクロエレクトロニクス株式会社 Manufacturing method of semiconductor device
US6740392B1 (en) * 2003-04-15 2004-05-25 Micron Technology, Inc. Surface barriers for copper and silver interconnects produced by a damascene process

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436412A (en) * 1992-10-30 1995-07-25 International Business Machines Corporation Interconnect structure having improved metallization
US6265300B1 (en) * 1993-03-31 2001-07-24 Intel Corporation Wire bonding surface and bonding method
US5785236A (en) * 1995-11-29 1998-07-28 Advanced Micro Devices, Inc. Advanced copper interconnect system that is compatible with existing IC wire bonding technology
US20040084780A1 (en) * 1998-07-07 2004-05-06 Tri-Rung Yew Dual damascene structure for the wiring-line structures of multi-level interconnects in integrated circuit
US6274933B1 (en) * 1999-01-26 2001-08-14 Agere Systems Guardian Corp. Integrated circuit device having a planar interlevel dielectric layer
US6239494B1 (en) * 1999-04-21 2001-05-29 Advanced Micro Devices, Inc. Wire bonding CU interconnects
US6457234B1 (en) * 1999-05-14 2002-10-01 International Business Machines Corporation Process for manufacturing self-aligned corrosion stop for copper C4 and wirebond
US20030072928A1 (en) * 1999-05-14 2003-04-17 Edelstein Daniel C. Self-aligned corrosion stop for copper C4 and wirebond
US6835643B2 (en) * 1999-06-14 2004-12-28 Micron Technology, Inc. Method of improving copper interconnects of semiconductor devices for bonding
US6451681B1 (en) * 1999-10-04 2002-09-17 Motorola, Inc. Method of forming copper interconnection utilizing aluminum capping film
US6114243A (en) * 1999-11-15 2000-09-05 Chartered Semiconductor Manufacturing Ltd Method to avoid copper contamination on the sidewall of a via or a dual damascene structure
US6378759B1 (en) * 2000-07-18 2002-04-30 Chartered Semiconductor Manufacturing Ltd. Method of application of conductive cap-layer in flip-chip, COB, and micro metal bonding
US6635497B2 (en) * 2001-12-21 2003-10-21 Texas Instruments Incorporated Methods of preventing reduction of IrOx during PZT formation by metalorganic chemical vapor deposition or other processing
US6844631B2 (en) * 2002-03-13 2005-01-18 Freescale Semiconductor, Inc. Semiconductor device having a bond pad and method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524755B2 (en) 2006-02-22 2009-04-28 Chartered Semiconductor Manufacturing, Ltd. Entire encapsulation of Cu interconnects using self-aligned CuSiN film
US20070197023A1 (en) * 2006-02-22 2007-08-23 Chartered Semiconductor Manufacturing, Ltd Entire encapsulation of Cu interconnects using self-aligned CuSiN film
US20090275195A1 (en) * 2006-04-04 2009-11-05 Chen-Hua Yu Interconnect Structure Having a Silicide/Germanide Cap Layer
US8143162B2 (en) * 2006-04-04 2012-03-27 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure having a silicide/germanide cap layer
US7964934B1 (en) 2007-05-22 2011-06-21 National Semiconductor Corporation Fuse target and method of forming the fuse target in a copper process flow
US8030733B1 (en) 2007-05-22 2011-10-04 National Semiconductor Corporation Copper-compatible fuse target
US7936070B2 (en) * 2008-05-16 2011-05-03 Kabushiki Kaisha Toshiba Semiconductor device and method for fabricating semiconductor device
US20090283913A1 (en) * 2008-05-16 2009-11-19 Kabushiki Kaisha Toshiba Semiconductor device and method for fabricating semiconductor device
US20100190332A1 (en) * 2008-09-15 2010-07-29 Abdalla Aly Naem Method of Forming a Copper Topped Interconnect Structure that has Thin and Thick Copper Traces
US7709956B2 (en) 2008-09-15 2010-05-04 National Semiconductor Corporation Copper-topped interconnect structure that has thin and thick copper traces and method of forming the copper-topped interconnect structure
US20100065964A1 (en) * 2008-09-15 2010-03-18 Abdalla Aly Naem Copper-topped interconnect structure that has thin and thick copper traces and method of forming the copper-topped interconnect structure
US8324097B2 (en) * 2008-09-15 2012-12-04 National Semiconductor Corporation Method of forming a copper topped interconnect structure that has thin and thick copper traces
US8431478B2 (en) * 2011-09-16 2013-04-30 Chipmos Technologies, Inc. Solder cap bump in semiconductor package and method of manufacturing the same
US20130069231A1 (en) * 2011-09-16 2013-03-21 Chipmos Technologies Inc. Solder cap bump in semiconductor package and method of manufacturing the same
US20130112462A1 (en) * 2011-11-07 2013-05-09 International Business Machines Corporation Metal Alloy Cap Integration
US20170053879A1 (en) * 2015-08-21 2017-02-23 Infineon Technologies Ag Method, a semiconductor device and a layer arrangement
CN106469710A (en) * 2015-08-21 2017-03-01 英飞凌科技股份有限公司 A kind of method, a kind of semiconductor device and a kind of layer arrangement
KR20170022918A (en) * 2015-08-21 2017-03-02 인피니언 테크놀로지스 아게 A method, a semiconductor device and a layer arrangement
KR101890987B1 (en) 2015-08-21 2018-08-22 인피니언 테크놀로지스 아게 A method, a semiconductor device and a layer arrangement

Also Published As

Publication number Publication date
US8034711B2 (en) 2011-10-11
US20080102198A1 (en) 2008-05-01
TWI271808B (en) 2007-01-21
TW200531193A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
US6037664A (en) Dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer
US6713835B1 (en) Method for manufacturing a multi-level interconnect structure
US6731007B1 (en) Semiconductor integrated circuit device with vertically stacked conductor interconnections
US6696222B2 (en) Dual damascene process using metal hard mask
US6509267B1 (en) Method of forming low resistance barrier on low k interconnect with electrolessly plated copper seed layer
US6998712B2 (en) Semiconductor device and method for manufacturing the same
US6821879B2 (en) Copper interconnect by immersion/electroless plating in dual damascene process
US8486823B2 (en) Methods of forming through via
US6740985B1 (en) Structure for bonding pad and method for its fabrication
US7338896B2 (en) Formation of deep via airgaps for three dimensional wafer to wafer interconnect
JP5096669B2 (en) Manufacturing method of semiconductor integrated circuit device
JP2004296515A (en) Semiconductor device and its manufacturing method
CN2720637Y (en) Internal on-line structure
US6214731B1 (en) Copper metalization with improved electromigration resistance
US7501347B2 (en) Semiconductor device and manufacturing method of the same
KR100652243B1 (en) Semiconductor device and manufacturing method thereof
US6982200B2 (en) Semiconductor device manufacturing method
US6727590B2 (en) Semiconductor device with internal bonding pad
US6245663B1 (en) IC interconnect structures and methods for making same
DE69737762T2 (en) Improvements in integrated circuits
KR19990029622A (en) Semiconductor integrated circuit device and manufacturing method thereof
KR100693960B1 (en) Semiconductor device
US20080277794A1 (en) semiconductor device and a method of manufacturing the same
US6515343B1 (en) Metal-to-metal antifuse with non-conductive diffusion barrier
US6528884B1 (en) Conformal atomic liner layer in an integrated circuit interconnect

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TAIW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YU, CHEN-YUA;TSENG, HORNG-HUEI;REEL/FRAME:015068/0250

Effective date: 20040225

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION