RU2398977C1 - Регулируемая магнитодинамическая опора вертикального ротора - Google Patents

Регулируемая магнитодинамическая опора вертикального ротора Download PDF

Info

Publication number
RU2398977C1
RU2398977C1 RU2009110366/11A RU2009110366A RU2398977C1 RU 2398977 C1 RU2398977 C1 RU 2398977C1 RU 2009110366/11 A RU2009110366/11 A RU 2009110366/11A RU 2009110366 A RU2009110366 A RU 2009110366A RU 2398977 C1 RU2398977 C1 RU 2398977C1
Authority
RU
Russia
Prior art keywords
magnet
rotor
thrust bearing
annular permanent
superconductivity
Prior art date
Application number
RU2009110366/11A
Other languages
English (en)
Inventor
Борис Иосифович Кантин (RU)
Борис Иосифович Кантин
Original Assignee
Борис Иосифович Кантин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Иосифович Кантин filed Critical Борис Иосифович Кантин
Priority to RU2009110366/11A priority Critical patent/RU2398977C1/ru
Priority to PCT/RU2010/000116 priority patent/WO2010107341A2/ru
Application granted granted Critical
Publication of RU2398977C1 publication Critical patent/RU2398977C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Изобретение относится к машиностроению и преимущественно к магнитным опорам высокооборотных роторов с вертикальной осью вращения, например роторов - накопителей энергии, центрифуг, гироскопов и подобных устройств. Опора включает подпятник на одном из концов ротора и магнитную систему, создающую знакопеременное периодически меняющееся в пространстве магнитное поле, например, на основе кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием с одной стороны, а с другой стороны систему ротора либо статора, содержащую элемент с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость. Образующая поверхность магнита, обращенная к элементу, имеет наклон под острым углом (0°<ά<90°) к нижнему торцу магнита необходимого направления усилия разгрузки подпятника вверх либо к верхнему торцу магнита необходимого направления усилия разгрузки подпятника вниз. Образующая поверхность элемента параллельна образующей поверхности магнита и имеет наклон под углом (90°-ά) к вертикальной оси ротора. Угол наклона образующей магнита (ά) определяется необходимой степенью разгрузки подпятника. Технический результат: значительное уменьшение давления на подпятник в динамике до любой требуемой степени разгрузки подпятника, вплоть до левитации ротора, гашение всех видов колебаний ротора, в том числе ориентированное на осевые колебания, высокая радиальная жесткость в динамике, простота конструкции и пригодность к серийному производству, повышение надежности и увеличение ресурса работы изделия. 4 з.п. ф-лы, 13 ил.

Description

Изобретение относится к магнитным опорам высокооборотных роторов с вертикальной осью вращения, посредством которых роторы удерживаются в вертикальном положении, например роторов - накопителей энергии, центрифуг, гироскопов и подобных устройств.
В верхних опорах высокооборотных роторов с вертикальной осью вращения для уменьшения давления на подпятник и стабилизации его вертикального положения применяют магнитные подшипники, повышающие надежность и долговечность работы опор.
Известна магнитная опора вертикального ротора, содержащая кольцевой постоянный магнит с двумя полюсными наконечниками, расположенными на рабочем торце, разнесенными по радиусу и направленными вниз, и установленный на роторе якорь в виде втулки с двумя ответными по отношению к полюсным наконечникам кольцевыми выступами, имеющими одинаковые с полюсными наконечниками размеры и отделенными от них осевым зазором. Опора снабжена также, по меньшей мере, одним диском, установленным на роторе между кольцевыми электрообмотками, для компенсации части веса ротора и его осевых отклонений (патент Великобритании №13379987, F16C 32/04, опубл. 08.01.75 г.). Эта магнитная опора разгружает подпятник ротора и стабилизирует его вертикальное положение. Однако она отличается сложной конструкцией, имеет увеличенные габариты вращающегося с ротором якоря, что неприемлемо для высокооборотных роторов.
Известна также магнитная опора ротора, содержащая ферромагнитную втулку, закрепленную соосно ротору на его верхней крышке, кольцевой аксиально намагниченный магнит, установленный в корпусе над втулкой соосно с ней, и полюсный наконечник, выполненный в виде кольца с радиальной полкой у торца, примыкающего к нижнему торцу магнита (патент ФРГ №1071593, В04В 9/12, опубл. 09.06.90 г.). Данная магнитная опора обеспечивает вращение ротора без механических контактов с элементами верхней части корпуса, разгружает подпятник действием осевой силы притяжения магнита и стабилизирует положение оси вращения ротора за счет радиальной жесткости, обусловленной действием симметричного магнитного поля. Однако конструкция элементов данной магнитной опоры не позволяет эффективно использовать энергию магнита для повышения несущей способности и радиальной жесткости опоры.
Известна магнитная опора вертикального ротора, содержащая ферромагнитную втулку, закрепленную соосно с ротором на его верхней крышке, кольцевой аксиально намагниченный магнит, установленный в корпусе над втулкой соосно с ней, и полюсный наконечник, выполненный в виде кольца с радиальной полкой у торца, примыкающему к нижнему торцу магнита, при этом ферромагнитная втулка в верхней части снабжена кольцевым радиальным выступом, толщина которого оптимизирована с шириной нижнего торца полюсного наконечника, а наружный диаметр наконечника оптимизирован со средним диаметром магнита (патент России №2054334, В04В 9/12 опубл. 20.02.96 г.). Данная магнитная опора позволяет одновременно повысить радиальную жесткость магнитной опоры на 10% и уменьшить давление на подпятник на 5%, однако этого недостаточно для более тяжелых роторов.
Ближайшим техническим решением к предложенному является магнитодинамический подшипник - демпфер, содержащий систему с периодическим знакопеременным магнитным полем на основе постоянного магнита либо электромагнита с одной стороны, а с другой стороны систему ротора либо статора, выполненную на основе материала с высокой электропроводностью, при этом отношение величины периода намагниченности знакопеременного магнитного либо электромагнитного поля к амплитуде колебаний ротора больше 1, а отношение амплитуды колебаний ротора к магнитному зазору меньше 0,8 (патент RU 2328632 С2 опубл. 10.07.08 г.). Данная опора позволяет значительно увеличивать радиальную жесткость в динамике, гасить колебания ротора и повысить надежность работы изделия. Однако данная опора не уменьшает давление на подпятник в тяжелых роторах, что может вызывать его износ и разрушение.
Технический результат изобретения заключается в значительном уменьшении давления на подпятник в динамике до любой требуемой степени разгрузки, вплоть до левитации ротора, в гашении всех видов колебаний ротора, в том числе ориентированном на осевые колебания, в высокой радиальной жесткости в динамике, в простоте конструкции и пригодности к серийному производству, в повышении надежности и увеличении ресурса работы изделия.
Поставленная задача достигается тем, что в регулируемой магнитодинамической опоре вертикального ротора, включающей подпятник на одном из концов ротора и магнитную систему, создающую знакопеременное периодически меняющееся в пространстве магнитное поле, например, на основе кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием с одной стороны, а с другой стороны систему ротора либо статора, содержащую элемент с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, образующая поверхность кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием, обращенная к элементу с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, имеет наклон под острым углом (0°<ά<90°) к нижнему торцу магнита в случае необходимого направления усилия разгрузки подпятника вверх либо к верхнему торцу магнита в случае необходимого направления усилия разгрузки подпятника вниз, а образующая поверхность элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, параллельна образующей поверхности кольцевого постоянного магнита и имеет наклон под углом (90°-ά) к вертикальной оси ротора, при этом угол наклона образующей поверхности кольцевого постоянного многополюсного магнита (ά) определяется необходимой степенью разгрузки подпятника. Кроме того, в регулируемой магнитодинамической опоре вертикального ротора магнитная система может быть составлена из двух или нескольких систем, расположенных по высоте ротора, например из указанной системы, состоящей из кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием и элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, и симметричной ей такой же системы относительно общей плоскости симметрии в единой конструкции, причем системы расположены либо вплотную друг к другу, либо разнесены по концам ротора, при этом образующие поверхности сопряженных кольцевых постоянных многополюсных магнитов с периодическим знакопеременным намагничиванием составляют тупой выпуклый угол или тупой вогнутый угол. Кроме того, под нижним торцом кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием может быть размещено упругое звено, например пружина, обеспечивающая усилие, большее, чем масса кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием, но меньшее, чем усилие взаимодействия кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием и элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость. Кроме того, регулируемая магнитодинамическая опора вертикального ротора может быть выполнена с кольцевым постоянным многополюсным магнитом с периодическим знакопеременным намагничиванием, набранным из колец разных толщин и диаметров. Кроме того, регулируемая магнитодинамическая опора вертикального ротора может быть выполнена с кольцевым постоянным многополюсным магнитом с периодическим знакопеременным намагничиванием, сформированным из отдельных сегментов, удерживаемых кольцевым магнитопроводом.
Изобретение поясняется чертежами.
На фиг.1 - продольный разрез ротора с магнитодинамической опорой.
На фиг.2 - вид А-А фиг.1.
На фиг.3 - трехмерный разрез ротора с разнесенными по концам магнитодинамическими опорами.
На фиг.4 - узел I фиг.1.
На фиг.5…9 - варианты выполнения опор.
На фиг.10 представлен качественный расчет распределения магнитной индукции многополюсной магнитной системы на фиг.9, включающей в себя кольцевой многополюсный магнит 16, магнитопровод 17 и элемент с высокой электропроводностью 5.
На фиг.11 представлен график значений магнитной индукции в пространстве между кольцевым многополюсным магнитом 16 и элементом с высокой электропроводностью 5 по расчету на фиг.10 (dB - изменение индукции в пределах рабочего зазора 0,25…0,42, т.е. более чем в 1,6 раза, при этом усилие взаимодействия изменяется в 3 раза - см. фиг.13).
На фиг.12 представлена эпюра распределения магнитных полей многополюсной магнитной системы фиг.9.
На фиг.13 представлен график зависимости усилия взаимодействия Fm |по модулю| (см. фиг.4) многополюсной магнитной системы и элемента с высокой электропроводностью при различных значениях отклонений ротора в динамике dr при длине зоны взаимодействия 10 мм.
На фиг.1 вертикальный ротор 1 опирается на подпятник 2 и в статике удерживается в вертикальном положении установочным магнитным подшипником в виде кольцевого постоянного магнита 3, установленного неподвижно, и ферромагнитной цапфы 4, закрепленной на роторе 1, при этом частично разгружается подпятник 2. На цапфе 4 ротора 1 установлен элемент с высокой электропроводностью (втулка 5) из немагнитного материала, находящийся внутри кольцевого постоянного многополюсного магнита 6 с периодическим знакопеременным намагничиванием соосно с ним, при этом образующая этого элемента (втулки 5) параллельна образующей магнита 6, имеющей наклон под углом (0°<ά<90°) к нижнему торцу кольцевого постоянного многополюсного магнита.
На фиг.5 магнитная система состоит из кольцевого постоянного многополюсного магнита 6 и симметричного ему относительно плоскости симметрии 0-0 магнита 7, сопряженные образующие которых составляют тупой выпуклый угол. Элементы с высокой электропроводностью 5 и 8 также симметричны относительно оси 0-0, а их образующие параллельны образующим магнитов 6 и 7.
На фиг.6 магнитная система состоит из кольцевого постоянного многополюсного магнита 11 и симметричного ему относительно плоскости симметрии 0-0 магнита 12, сопряженные образующие которых составляют тупой вогнутый угол. Элементы с высокой электропроводностью 9 и 10 также симметричны относительно оси 0-0, а их образующие параллельны образующим магнитов 11 и 12. Под нижним торцом магнита 12 размещено упругое звено, например, в виде пружины 13.
На фиг.7 - магнитная система по фиг.4 с упругим звеном в виде пружины 14 под нижним торцом магнита 6.
На фиг.8 - магнитная система с кольцевым постоянным многополюсным магнитом 15, набранным из колец разных толщин и диаметров, при этом образующей, создающей угол необходимой разгрузки, является прямая, соединяющая выступы колец.
На фиг.9 - кольцевой постоянный многополюсный магнит сформирован из отдельных сегментов 16, удерживаемых кольцевым магнитопроводом 17.
На фиг.10…13 представлены графики распределения индукций и сил взаимодействия в магнитных системах, полученные расчетным путем.
Регулируемая магнитодинамическая опора вертикального ротора работает следующим образом.
В статике ротор удерживается в вертикальном положении установочным магнитом 3 и цапфой 4, при этом частично разгружается подпятник 2 с усилием Fуст. При вращении ротора в элементе с высокой электропроводностью - втулке 5, находящейся внутри периодически намагниченного кольцевого магнита 6, возникают вихревые токи, поле которых направлено против отклоняющегося ротора при его колебаниях в квадратичной зависимости от изменения зазора и в пропорциональной от числа периодов магнита и от числа оборотов ротора. Поэтому можно достичь очень больших величин силы импульса, направленного против смещения ротора, и широкой возможности его регулировки и частично использовать эту силу для разгрузки подпятника. Для этого образующая поверхность кольцевого постоянного многополюсного магнита, обращенная к элементу с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, имеет наклон под острым углом (0°<ά<90°) к нижнему торцу магнита в случае направления усилия разгрузки вверх, а образующая поверхность элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, параллельна образующей магнита и имеет наклон под углом (90°-ά) к вертикальной оси ротора. Наоборот при необходимости направления усилия разгрузки вниз образующая поверхность магнита имеет наклон под острым углом к верхнему торцу магнита. При разгоне ротор может изменять свою длину и образующая элемента с высокой электропроводностью становится непараллельной образующей магнита, их взаимодействие нелинейно, а давление на подпятник растет. Для исключения этого под нижним торцом магнита размещено упругое звено, например пружина, обеспечивающая усилие, большее, чем масса кольцевого магнита, но меньшее, чем усилие взаимодействия магнита и элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость. При удлинении ротора пружина автоматически поднимает кольцо магнита и обеспечивает постоянство рабочего зазора X=Const (фиг.4 и фиг.7) и неизменность давления на подпятник. При этом пружина дополнительно демпфирует колебания ротора, включая осевые колебания.
При наклоне образующей магнита возникает осевая составляющая усилия взаимодействия многополюсного магнита и элемента с высокой электропроводностью, определяемая по формуле:
Fs=FmSinά, при этом
Fr=FmCosά - радиальная составляющая усилия, где ά - угол наклона образующей, Fm - усилие взаимодействия |по модулю|, полученное расчетным путем на длине взаимодействия 10 мм (см. график фиг.13).
Таким образом, необходимую величину разгрузки подпятника можно обеспечить, меняя угол наклона образующей кольца магнита. При этом одновременно происходит гашение всех колебаний ротора, в том числе ориентированно осевых колебаний.
При составлении двух магнитов вплотную (см. фиг.5 и фиг.6) либо разнесенными по концам ротора (см. фиг.3) при положении магнитов на оси 0-0 имеется равновесие усилий F=F1. При перемещении ротора вверх рабочий зазор в нижнем магните уменьшается, усилие от взаимодействия поля вихревых токов в нижнем элементе с высокой электропроводностью с нижним многополюсным магнитом возрастает в квадратичной зависимости от зазора и стремится вернуть ротор к положению 0-0. Наоборот при перемещении ротора вниз усилие от взаимодействия верхнего магнита с полем вихревых токов в верхнем элементе с высокой электропроводностью стремится вернуть ротор к нейтральному положению 0-0 (см. фиг.5).
При схеме расположения магнитов по фиг.6 при перемещении ротора вниз равновесие восстанавливает нижний магнит, а при перемещении вверх - верхний.
При установке под нижним торцом магнита упругого элемента - пружины, создающей усилие, равное массе ротора (Fпр.=Gрот) будет обеспечено условие левитации ротора. При задании усилия пружины, меньшего, чем масса ротора, может быть задана требуемая величина давления на подпятник, т.к. магниты «просядут» на пружине на величину, вызывающую изменение рабочего зазора, обеспечивающего требуемую разгрузку подпятника, вплоть до левитации ротора.
На представленных на фиг.8 и фиг.9 наборах колец упрощается процесс изготовления и намагничивания магнитов, что может быть выгодно при серийном производстве магнитных систем.
Предлагаемая регулируемая опора вертикального ротора обеспечивает значительное уменьшение давления на подпятник в динамике до любой требуемой степени разгрузки, вплоть до левитации ротора, гашение всех видов колебаний ротора, в том числе ориентированное на осевые колебания, высокую радиальную жесткость в динамике, простоту конструкции и пригодность к серийному производству, повышение надежности и увеличение ресурса работы изделия.

Claims (5)

1. Регулируемая магнитодинамическая опора вертикального ротора, включающая подпятник на одном из концов ротора и магнитную систему, создающую знакопеременное периодически меняющееся в пространстве магнитное поле, например, на основе кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием с одной стороны, а с другой стороны систему ротора либо статора, содержащую элемент с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, отличающаяся тем, что образующая поверхность кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием, обращенная к элементу с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, имеет наклон под острым углом (0°<ά<90°) к нижнему торцу магнита в случае необходимого направления усилия разгрузки подпятника вверх, либо к верхнему торцу магнита в случае необходимого направления усилия разгрузки подпятника вниз, а образующая поверхность элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость, параллельна образующей поверхности кольцевого постоянного магнита и имеет наклон под углом (90°-ά) к вертикальной оси ротора, при этом угол наклона образующей поверхности кольцевого постоянного многополюсного магнита (ά) определяется необходимой степенью разгрузки подпятника.
2. Регулируемая магнитодинамическая опора вертикального ротора по п.1, отличающаяся тем, что магнитная система может быть составлена из двух или нескольких систем, расположенных по высоте ротора, например из указанной системы, состоящей из кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием и элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость и симметричной ей такой же системы относительно общей плоскости симметрии в единой конструкции, причем системы расположены либо вплотную друг к другу, либо разнесены по концам ротора, при этом образующие поверхности сопряженных кольцевых постоянных многополюсных магнитов с периодическим знакопеременным намагничиванием составляют тупой выпуклый угол или тупой вогнутый угол.
3. Регулируемая магнитодинамическая опора вертикального ротора по п.1, отличающаяся тем, что под нижним торцом кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием может быть размещено упругое звено, например пружина, обеспечивающая усилие, большее, чем масса кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием, но меньшее, чем усилие взаимодействия кольцевого постоянного многополюсного магнита с периодическим знакопеременным намагничиванием и элемента с высокой электропроводностью, включая сверхпроводимость либо высокотемпературную сверхпроводимость.
4. Регулируемая магнитодинамическая опора вертикального ротора по п.1, отличающаяся тем, что магнитная система выполнена с кольцевым постоянным многополюсным магнитом с периодическим знакопеременным намагничиванием, набранным из колец разных толщин и диаметров.
5. Регулируемая магнитодинамическая опора вертикального ротора по п.1, отличающаяся тем, что магнитная система выполнена с кольцевым постоянным многополюсным магнитом с периодическим знакопеременным намагничиванием, сформированным из отдельных сегментов, удерживаемых кольцевым магнитопроводом.
RU2009110366/11A 2009-03-17 2009-03-17 Регулируемая магнитодинамическая опора вертикального ротора RU2398977C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2009110366/11A RU2398977C1 (ru) 2009-03-17 2009-03-17 Регулируемая магнитодинамическая опора вертикального ротора
PCT/RU2010/000116 WO2010107341A2 (ru) 2009-03-17 2010-03-15 Регулируемая магнитодинамическая опора вертикального ротора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009110366/11A RU2398977C1 (ru) 2009-03-17 2009-03-17 Регулируемая магнитодинамическая опора вертикального ротора

Publications (1)

Publication Number Publication Date
RU2398977C1 true RU2398977C1 (ru) 2010-09-10

Family

ID=42735416

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009110366/11A RU2398977C1 (ru) 2009-03-17 2009-03-17 Регулируемая магнитодинамическая опора вертикального ротора

Country Status (2)

Country Link
RU (1) RU2398977C1 (ru)
WO (1) WO2010107341A2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818208A (zh) * 2014-03-20 2014-05-28 重庆工商大学 一种汽车减振器
RU2585002C1 (ru) * 2015-01-12 2016-05-27 Закрытое акционерное общество "Центротех-СПб" Магнитная опора вертикального ротора
RU2697635C2 (ru) * 2017-01-27 2019-08-15 Олег Спартакович Черненко Магнитный опорный узел
CN112343196A (zh) * 2020-10-10 2021-02-09 广东省建筑设计研究院有限公司 一种多级变阻尼阻尼器
RU226128U1 (ru) * 2024-01-17 2024-05-21 Акционерное Общество "Гт Энерго" Газотурбинная установка

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811740A (en) * 1971-04-24 1974-05-21 Cnen Self-centering rotary magnetic suspension device
JP2999607B2 (ja) * 1991-09-30 2000-01-17 日本精工株式会社 超電導軸受装置とその操作方法
RU2054334C1 (ru) 1992-11-11 1996-02-20 Центральное конструкторское бюро машиностроения Магнитная опора ротора газовой центрифуги
WO1998047215A1 (en) * 1997-04-14 1998-10-22 Zornes David A Magnet coupler having enhanced electromagnetic torque
DE10022061A1 (de) * 2000-05-06 2001-11-08 Leybold Vakuum Gmbh Magnetlagerung mit Dämpfung
JP2005249089A (ja) * 2004-03-04 2005-09-15 Ebara Corp 磁気ダンパ
RU2328632C2 (ru) 2006-06-19 2008-07-10 Борис Алексеевич Базаров Способ демпфирования колебаний роторов и магнитодинамический подшипник-демпфер

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818208A (zh) * 2014-03-20 2014-05-28 重庆工商大学 一种汽车减振器
CN103818208B (zh) * 2014-03-20 2015-12-02 重庆工商大学 一种汽车减振器
RU2585002C1 (ru) * 2015-01-12 2016-05-27 Закрытое акционерное общество "Центротех-СПб" Магнитная опора вертикального ротора
RU2697635C2 (ru) * 2017-01-27 2019-08-15 Олег Спартакович Черненко Магнитный опорный узел
CN112343196A (zh) * 2020-10-10 2021-02-09 广东省建筑设计研究院有限公司 一种多级变阻尼阻尼器
CN112343196B (zh) * 2020-10-10 2022-05-17 广东省建筑设计研究院有限公司 一种多级变阻尼阻尼器
RU226128U1 (ru) * 2024-01-17 2024-05-21 Акционерное Общество "Гт Энерго" Газотурбинная установка

Also Published As

Publication number Publication date
WO2010107341A3 (ru) 2010-11-25
WO2010107341A2 (ru) 2010-09-23

Similar Documents

Publication Publication Date Title
US7876010B2 (en) Passive magnetic bearing configurations
RU2398977C1 (ru) Регулируемая магнитодинамическая опора вертикального ротора
US8803392B2 (en) Axial magnetic suspension
US4983870A (en) Radial magnetic bearing
US6806605B1 (en) Permanent magnetic bearing
US3909082A (en) Magnetic bearing devices
US9765815B2 (en) Method and apparatus for hybrid suspension system
US6213737B1 (en) Damper device and turbomolecular pump with damper device
JP2005188735A (ja) 磁気軸受システム
WO2003021122A1 (en) Passive magnetic bearing for a horizontal shaft
EP0829655B1 (en) Superconducting bearing device
US7755239B2 (en) Magnetic repulsion type bearing
JP7487217B2 (ja) 半径方向の安定化を図るフライホイールの回転子を浮上させるための磁気軸受
JP3577558B2 (ja) フライホイール装置
US2340781A (en) Magnetic bearing
US20050140229A1 (en) Magnetic suspension bearing
US10260558B2 (en) Rotary machine having magnetic and mechanical bearings
WO2014007851A1 (en) Active magnetic bearing assembly and arrangement of magnets therefor
WO2001084693A1 (en) Full levitation bearing system with improved passive radial magnetic bearings
EP3469691B1 (en) Halbach-array configuration
JPS6146683B2 (ru)
JPH08296645A (ja) 磁気軸受装置
JP5244744B2 (ja) 立形回転電機
RU2054334C1 (ru) Магнитная опора ротора газовой центрифуги
Chen et al. Rotordynamics of a Passive Magnet Bearing System

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110318

NF4A Reinstatement of patent

Effective date: 20120920

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140318