JP3961032B2 - 回転子軸の磁気軸受装置 - Google Patents

回転子軸の磁気軸受装置 Download PDF

Info

Publication number
JP3961032B2
JP3961032B2 JP33029794A JP33029794A JP3961032B2 JP 3961032 B2 JP3961032 B2 JP 3961032B2 JP 33029794 A JP33029794 A JP 33029794A JP 33029794 A JP33029794 A JP 33029794A JP 3961032 B2 JP3961032 B2 JP 3961032B2
Authority
JP
Japan
Prior art keywords
bearing
permanent magnet
rotor shaft
magnetic
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33029794A
Other languages
English (en)
Other versions
JPH07229517A (ja
Inventor
リース ギユンター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4436831A external-priority patent/DE4436831C2/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH07229517A publication Critical patent/JPH07229517A/ja
Application granted granted Critical
Publication of JP3961032B2 publication Critical patent/JP3961032B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、目標位置から回転子軸が偏位した際に半径方向および場合によっては軸線方向に戻す磁気力を有する回転子軸の磁気軸受装置に関する。このような磁気軸受装置は米国特許第5196748号明細書から公知である。
【0002】
【従来の技術】
磁気軸受は運動部分の無接触かつ無摩耗の軸受を可能にする。それらは潤滑剤を必要とせず、また低摩擦に構成することができる。その際に回転子ブロックは気密に、たとえば真空密にこのブロックを囲む外部空間から隔てられる。
【0003】
従来の通常の磁気軸受は固定子の固定電磁石とそれと一緒に回転する回転子ブロックの強磁性要素との間の磁気力を利用するものである。磁気力はこの軸受形式では常に吸引力である。その結果原理的には、すべての3つの空間方向での本質的に安定な軸受は達成され得ない(“Transactions of the Cambridge Philosophical Society”、第7巻、1982、第97〜120頁の“Earnshaw”理論を参照)。従ってこのような磁気軸受は、位置センサおよび調節回路を介して保持磁石の電流を制御し、また回転子ブロックの目標位置からの偏差を補償する能動的な位置調節を必要とする。マルチチャネルに構成すべき調節は費用のかさむパワーエレクトロニクスを必要とする。調節回路の突然の故障に対しては追加的に機械的な安全軸受が設けられていなければならない。このような磁気軸受はたとえばターボ分子ポンプ、超遠心、工作機械の高速回転スピンドルおよび回転陽極を有するX線管において使用される。電動機、発電機、タービンおよび圧縮機における使用も意図されている。
【0004】
超伝導体は新しい形式の磁気軸受を可能にする。軸受部分の1つはここでは、位置変化の際に超伝導体部分における磁界変化の結果として遮蔽電流を誘起する永久磁石要素により形成される。その結果生ずる力は反発力または吸引力であってよいが、常にそれらが目標位置からの偏位を補償するように向けられている。その際に従来の磁気軸受と異なり、本質的に安定な軸受が達成される(たとえば“Appl.Phys.Lett.”、第53巻、第16号、1988、第1554〜1556頁を参照)。従来の磁気軸受と比較して、ここでは費用がかさみまた故障しやすい調節は省略されるが、しかし超伝導材料の冷却が必要である。
【0005】
このような超伝導軸受部分はたとえば液体窒素により冷却される物質系Y‐Ba‐Cu‐Oをベースとする1987年以来公知の金属酸化物高TC 超伝導材料に対する最初の使用分野である。このような材料はこれまでマッシブな形態で多結晶でのみ製造されていた。
【0006】
冒頭に記載した米国特許第5196748号明細書から公知の軸受装置では、回転子軸に軸線方向に相前後して位置する多数の環板状の永久磁石要素が取付けられている。これらの要素は、軸線方向に見て交互の極性が生ずるようにされている。隣接する要素の間にそれぞれ比較的薄い金属(シム)要素が配置されている。これらの中間要素は先ず第一に、各中間要素にその軸受間隙のほうに向けられた側に実質的に無磁界の間隙が生ずるように、隣接する永久磁石要素の磁束線を空間的かつ磁気的に隔てる課題を有する。こうして構成された回転子ブロックはたとえばYBa2 Cu3 X のような高TC 超伝導材料から成る位置固定の中空円筒状の構造により囲まれている。この構造は液体窒素(LN2 により約77Kに保たれる。さらに上記の米国特許明細書には、高い透磁率を有する強磁性材料から成る回転子軸が示されている。従って、永久磁石要素から発せられた磁束は大部分がこの回転子軸を経て閉じることが認められた。その結果、主として永久磁石要素とそれらにそれぞれ対応付けられている中間要素との間の分離線に生ずる高TC 超伝導材料から成る中空円筒状の構造と相互作用する磁束は相応に弱められている。その場合、超伝導構造において生ずるべき遮蔽電流は、特により重い重量を有する回転子ブロックの安定な軸受を保証するためには小さ過ぎるおそれがある。
【0007】
【発明が解決しようとする課題】
従って本発明の課題は、冒頭に記載した特徴を有する軸受装置を、このようなおそれがもはや生じないように構成することにある。回転子軸のほぼ軸線方向および半径方向に安定で、無接触かつ無摩耗で、低摩擦の軸受が行われるべきである。その際に慣性力および軸受剛固性は、電動機、発電機、ポンプ、遠心機、フライホイールエネルギー蓄積装置のような機械における機械的軸受を置換し得るのに十分でなければならない。さらに、冷却装置の故障の際にも軸受装置が安全運転特性を有しているべきである。
【0008】
【課題を解決するための手段】
この課題は、本発明によれば、目標位置からの回転子軸の偏位の際に半径方向および場合によっては軸線方向に戻す磁気力を有する回転子軸の磁気軸受装置において、
回転子ブロックが回転子軸に結合された第1の軸受部分を含み、
回転子ブロックが位置固定の第2の軸受部分により囲まれ、
両軸受部分の一方が、強磁性材料から成る中間要素によりそれぞれ完全に満たされている中間空間により相互に間隔をあけられている多数の交互の極性の永久磁石要素を含み、各中間要素の軸線方向の厚みは各永久磁石要素の軸線方向の厚みよりも小さく、
両軸受部分の他方が高Tc超伝導材料を有する構造を有し
回転子軸が少なくとも第1の軸受部分に向けられた管状の縁範囲内で非磁性材料から成り
強磁性の中間要素が、永久磁石要素から発する磁束を、超伝導構造に向けられた側に集中させ
超伝導構造が高Tc超伝導材料から成る粒子を有し、その超伝導材料の結晶a‐b面の少なくとも大部分が回転子ブロックの外面に対してほぼ平行に向けられ、それらの粒子のうち多数はそれぞれ少なくとも各永久磁石要素の軸線方向の厚みよりも大きい平均直径を有することによって解決される。
【0009】
その際に本発明は、永久磁石要素から出る磁束がほぼ強磁性の要素を経て導かれ、従ってこれらの強磁性の要素の超伝導構造に向けられた端部に比較的大きい磁束が得られるという利点が生ずるという認識から出発する。従ってこれにより軸受剛固性が相応に高い。その際に磁気軸受装置は少なくとも1つのラジアル軸受として作用する。さらに、磁気軸受装置に対して磁気的に粒子状の高TC 超伝導材料のみが用意されればよいことは有利である。その磁気的特性は結晶粒の内部を循環して非可逆的磁化に通ずる循環電流により決定される(たとえばドイツ特許出願公開第3825710号明細書参照)。それによって、結晶粒界を経ての満足でない電流輸送の問題が回避され得る。そのために結晶粒は十分に大きい平均直径を有していなければならないことが認められた。その際に平均粒子直径は、好ましくは軸受間隙のほうに向けられた超伝導構造の表面に対して少なくとも近似的に平行に向けられるべき高TC 超伝導材料の結晶a‐b面内で考察される。その際に“粒子”(または同じ意味で結晶)とは、単位結晶配列を有する超伝導材料組織の、その縁で隣接する範囲と粒子境界を形成する結晶性範囲を意味する。
【0010】
軸受装置の特別な実施態様によれば、回転子軸と結合された第1の軸受部分は高TC 超伝導材料を有する構造を含んでいる。このような実施態様は、軸受装置が低温に冷却された常伝導または超伝導巻線を有し、その際に軸も低温状態にある発電機または電動機回転子の一部である場合に特に有利である。その際に無接触であるために、軸を経ての熱流入は生じない。
【0011】
軸受装置の別の特別な実施態様によれば、軸の軸線の方向に長く延びている永久磁石要素が周縁方向に見て交互の極性を有する。軸受装置のこのような実施態様は、軸を介して駆動電力が伝達されるべきときに特に有利である。すなわち、この軸受際置は結合特性を有する。その際に有利には永久磁石要素により回転子ブロックを囲む位置固定の軸受部分が形成される。しかし、相応の実施態様は回転子ブロックに対しても可能である。軸線方向に長く延びた永久磁石要素を有する特別な軸受装置は同じく有利には、冷却される巻線を有する発電機または電動機軸の冷却される軸に対しても設けることができる。
【0012】
【実施例】
以下、本発明の実施例を図面を参照して詳細に説明する。図面中で相応する部分には同一の符号が付されている。
【0013】
図1に全体として符号2を付して示されている軸受装置では、回転軸4と結合され多数のたとえば6個の環板状の永久磁石要素6aないし6fを有する第1の軸受部分5を有する回転子ブロックを含んでいる実施例が基礎とされている。これらの要素はそれぞれ、軸線Aの方向に見て極性が要素から要素へ逆向きにされているような極性にされている。個々の極性は図面中に矢線7により示されている。永久磁石要素6aないし6fの間に強磁性材料、たとえば鉄から成る環板状の要素8aないし8eが配置されている。さらに、外側の永久磁石要素6aおよび6fの端面側の外面には要素8aないし8eに相応の強磁性要素8fおよび8gが設けられている。これらの要素8aないし8gの強磁性材料は磁束を回転子ブロック3の円筒状の外面に集中させる役割をし、またそれにより軸受装置2の保持力を高める。同時に要素8aないし8gは一般に脆い材料から成る永久磁石要素6aないし6fを有する回転子ブロック3を機械的に強化する。すべての要素6aないし6fおよび8aないし8gはスタック状に相前後して回転軸4に取付けられている。回転軸4は有利には非磁性材料、たとえば特殊鋼から成っている。
【0014】
しかし永久磁石要素のスタックは、場合によっては強磁性の軸部分を囲む非磁性材料から成る管状の保持ブロックの上に載せられていてもよい。その場合に軸の中空円筒状の縁範囲をなすこの保持ブロックの壁厚は、磁極の軸線方向の厚みの少なくとも半分、すなわち(d1+d2)/2であるべきであろう。しかし一般に回転子軸全体は非磁性材料から成っている。
【0015】
強磁性要素8aないし8gの外側輪郭および場合によっては永久磁石要素6aないし6fの外側輪郭はスタックおよび固定の後にたとえば接着技術により、または研磨または旋盤加工により均等な円筒状の形態にもたらされる。強磁性材料により磁界は回転対称であり、その際に同時に永久磁石要素の磁界内の不均等性が補正される。
【0016】
要素6aないし6fの永久磁石材料は少なくとも20MGOeの最大エネルギー積(B×H)maxを有するべきであり、また特にネオジム(Nd)‐鉄(Fe)‐ホウ素(B)合金または場合によってはサマリウム(Sm)‐コバルト(Co)合金から成っている。最高可能な磁気軸受圧力pmは、超伝導体が理想的でありかつ回転子ブロック3とそれを囲む固定子との間に構成される軸受間隙10が零であるという仮定のもとに、pm=μ0×H2/2である。
【0017】
この軸受圧力は、固定子に対して用いられている超伝導体材料によらずに、軸受間隙10内に達成可能な磁界Hにより予め定められる。そのために重要なパラメータは永久磁石材料の保磁力HC である。従って永久磁石材料としては特にNdFeBが考慮の対象になる。なぜならばそれは比較的高い保磁力HC を有するからである。SmCoは室温にくらべて77Kでは約10%高い保磁力HC を有し、その場合にNdFeBの保磁力HC と比較可能になる。従って場合によっては永久磁石材料の冷却も考慮の対象になる。
【0018】
環板状の永久磁石要素の半径方向の広がりは軸線方向のその厚みd1の少なくとも2倍であることが有利である。それにくらべて強磁性中間要素8aないし8gの各々の軸線方向の厚みd2は厚みd1よりも小さく選ばれるのが有利である。特に厚みd2は厚みd1の1/10ないし2/10に選ばれる。
【0019】
図2には、磁極幅Lの個々の磁極において発生される界線fの分布が図1による回転子ブロック3の一部を通る縦断面図で示されている。図2からわかるように、隣接する永久磁石要素(たとえば6d、6e)から生ずる磁束はほぼ共通の強磁性中間要素(8d)に集中され、またこうして高い磁束密度でこの中間要素を経て幅wの軸受間隙内に出る。この軸受間隙内で磁束はそれぞれ隣接する中間要素(8cまたは8e)に向かって閉じる。回転子ブロック3を囲み軸受間隙10を形成する位置固定の超伝導構造は符号12を付して示されており、そのなかに個々の磁極により発生された磁束に相応する電流が誘起される。回転子軸4の側で磁束は軸の非磁性材料の範囲内で閉じる。それによってそこで有利なことに、軸受間隙10内に出る磁束の減少に通ずるであろう磁気短絡の発生が回避される。図2に示されている磁界分布に対しては、3.4mmの軸線方向の厚みd1および15mmの半径方向の広がりを有するNdFeB(Hc≒9×105A/m)から成る永久磁石要素と、0.6mmの軸線方向の厚みd1および0.4mmの間隙幅wを有する軟鉄から成る中間要素とが仮定されている。その際に超伝導構造12はその結晶(粒子)内に約105A/cm2の臨界的電流密度を有した。
【0020】
回転子ブロック3は、軸受間隙10により隔てられて、中空円筒状の第2の位置固定の軸受部分11により囲まれており、その際に間隙幅wは強磁性中間材料8aないし8gの厚みd2のオーダーである。固定子を形成する軸受部分11はその回転子ブロック3に向けられた内側に、LN2 冷却を許す公知の高TC 超伝導材料の一つから成る超伝導材料を有する。
【0021】
高TC 超伝導材料の結晶の有限な粒子の大きさ、超伝導材料内の不十分な結晶組織ならびに永久磁石要素の制限された半径方向の広がりは磁気的な軸受力を制限し得る。最大の保持力は、結晶粒界電流密度(個々の粒子内の電流密度)jC に対して下記の両条件が成り立つときにのみ達成される。
1)jC >>HC /L
ここでLは強磁性中間要素の中心からそれに隣接する要素までの磁極幅である。従ってL=d1+d2である。
2)高TC 超伝導材料から成る結晶粒の大部分は、所望の超伝導電流が生じ得るように、軸受間隙10に向けられた超伝導構造12の表面に対して少なくとも近似的に平行にその平均粒径が厚みd1よりも、好ましくは永久磁石要素のスタック内の磁極幅Lよりも大きくなければならない。さもなければ、永久磁石材料ではなく超伝導材料が保持力を制限する。条件2)のゆえに、本発明による軸受装置に対して、結晶(粒子)の多数(すなわち50%以上)が軸受間隙10に対して少なくとも近似的に平行に少なくとも永久磁石要素の軸線方向の厚みd1よりも大きい広がりを有する高TC 超伝導材料が用いられると有利である。好ましくは結晶の広がりはL=d1+d2よりも大きい。
【0022】
上記の条件1)および2)をほぼ満足するため、超伝導材料として特に組織化されたYBa2 Cu3 7-X が考慮の対象となる。その際に結晶a‐b面が回転子ブロック3の外面に対してほぼ平行に向けられていると有利である。超伝導材料には有利にはYBa2 CuO5 の細かく分布した析出が存在していてもよい。相応の材料はたとえば急冷‐融解‐成長法(“Supercond.Sci.Technnol.”、第5巻、1992年、第185〜203頁参照)により製造され、また77Kにおいて数104 A/cm2 の臨界電流密度を有するべきであろう。その際に結晶の平均的粒子の大きさ(粒径)は永久磁石要素の軸線方向の厚みよりも大きくなければならず、その際に粒子の大きさは結晶a‐b面内で考察される。
【0023】
軸受部分11の超伝導部分は、図3によれば、保持ブロック13内の複数個の扇状の中空円筒状部分から1つの構造12として構成され、またその内側輪郭が軸受間隙10の円筒形状を形成するように加工することができる。図面に示されている断面図では高TC 超伝導材料からなる8つの扇状部分12i(1≦i≦8)が固定子として設けられている。その際に超伝導結晶の結晶学的基本面は、個々の扇状部分内で軸受間隙10の表面にほぼ平行に向けられるように、約±30°の角度内に向けられている。強磁性の中間要素8aないし8gの端部にわたり超伝導材料内に誘起される高い遮蔽電流の結果として磁界は超伝導材料内にわずかしか入り込まず、またこうして相応に高い軸受力および軸受の高い剛固性に通ずる。超伝導材料は回転子軸の軸線のまわりの均等な回転の際に強磁性材料により比較的小さい交番磁界振幅ΔHしか受けず、このことは相応に制限された磁化損失P(ΔH3 に比例)に通じ、またこうして相応に小さい軸受摩擦に通ずる。
【0024】
さらに図1からわかるように、扇状部分12i内の超伝導材料は構造12の外側において保持ブロック13内の冷却溝14を介して外部貯蔵容器からの液体窒素(LN2 )により冷却される。充満状態報知器が予め定められたしきい以下への冷却剤の低下の際に、軸受装置の保持作用が温度上昇の結果として減少する前に、遮断信号を発する。
【0025】
回転子ブロック3の範囲の外側に軸受装置2は、超伝導材料がその作動温度以上にあるかぎり、軸受力を停止の際に受け持つ沈下可能な保持および中心合わせ装置15を有する。この装置は、回転子ブロック3がその頂点においてほぼまたは完全に超伝導構造12に接触するまで、軸4を持ち上げる。同時に軸受位置が軸線方向および横方向に中心合わせされる。この中心合わせは、図1からわかるように、たとえば軸線Aにおける溝17および刃状の台18により行われる。冷却の後に装置15は軸4を沈下させる。それと結び付けられる超伝導材料内の磁界変化の結果としてそのなかに電流が誘起される。こうして、増大する電磁力が回転子ブロック3とそれを囲む固定子との間に生じ、この電磁力は、回転子ブロック3が軸受間隙10のほぼ中心に自由に浮くまで、運動方向に逆に作用する。その際に磁気力は下側軸受範囲内では反発作用し、他方において上側軸受範囲内では吸引力が加わる。このことは、回転子ブロック3がより大きい距離から沈下させられ、またそこで反発力のみが生ずる公知の軸受にくらべての利点である。本発明による軸受装置によれば、10バールまでの軸受圧力と、半径方向および軸線方向の回転子のずれに対する軸受装置の優れた剛固性とが達成される。
【0026】
図1に示されている軸受装置の実施例では、磁気力がそれぞれ軸4を環状に囲む永久磁石力6aないし6fにより発生されることを前提条件にしている。図4に示されている本発明による別の軸受装置20の実施例では、周縁方向に見て交互の極性の永久磁石要素21i、21j(1≦i≦n、1≦j≦n)およびそれらの間に延びている軸線平行なストリップの形態の強磁性要素22k(1≦k≦2n)が中空円筒状に軸4のまわりに組立てられている。隣接する永久磁石要素21iと21jとの間の周縁方向に交互の極性は図面中に同様に再び矢線により示されている。こうして形成された要素21i、21j、21kから成る第1の軸受部分5を有する暖かい回転子ブロック24は同じく、超伝導の中空円筒状の構造12を有する冷たい第2の軸受部分11および保持ブロック13により囲まれている。図4に示されている装置20はラジアル軸受として、また同時に無接触の磁気カップリングとして作用する。すなわち、同時に軸線方向の回転モーメントを伝達することができる。例として超伝導の巻線を有する回転子が駆動側でこのような軸受により、また反対側で前記のようなラジアル軸受により軸受されて固定子内で完全に無接触に回転する。超伝導構造12の上面の薄いスリーブは、外側範囲に対する熱的絶縁を保証するため、真空密の囲いのなかに収めることができる。
【0027】
本発明による軸受装置2または20の図1ないし4に示されている実施例では、それぞれ暖かい(第1の)軸受部分が固定子としての冷たい(第2の)軸受部分により囲まれている回転子ブロック3または24に一体化されることを前提としている。しかし同じく良好に、高TC 超伝導材料を有する冷たい軸受部分を一緒に回転させ、また永久磁石材料を有する暖かい軸受部分を固定子として構成することも可能である。軸受装置のこのような実施例においても環板状の永久磁石要素(図1に相応)または軸線方向の永久磁石要素(図3に相応)が設けられる。図5にはこのような軸線方向の永久磁石要素27i、27j(1≦i≦j;1≦j≦n)を有する軸受装置26の実施例が示されている。これらの要素はそれぞれ強磁性材料から成るストリップ状の要素28kを介して間隔をあけられており、またこれらと共に位置固定の中空円筒状の(第2の)軸受部分29を形成する。この軸受部分は高TC 超伝導材料を有する中空円筒状の超伝導構造32を含んでいる他方の(第1の)軸受部分31を有する回転子ブロック30を囲む。この実施例では非磁性材料から成る回転子軸34は同時に少なくとも1つの特に中央の冷却材溝35を有する。冷たい回転子ブロックを有する相応の軸受装置は有利なことに、高TC 超伝導材料から成る巻線を有する発電機または電動機回転子の一部分とすることができる。その際に軸も低温状態にある。無接触性の結果として軸を経ての熱流入は生じない。
【図面の簡単な説明】
【図1】本発明による軸受装置の第1の実施例の斜視図。
【図2】この装置の一部分における磁界線分布図。
【図3】この装置の超伝導構造を示す概略図。
【図4】本発明による軸受装置の別の実施例の斜視図。
【図5】本発明による軸受装置の更に別の実施例の断面図。
【符号の説明】
2、20、26 軸受装置
3、24、30 回転子ブロック
4、34 回転子軸
5、31 第1の軸受部分
6a〜6f、21i、21j、27i、27j 永久磁石要素
8a〜8e、22k 中間要素
11、29 第2の軸受部分
12、32 超伝導構造

Claims (7)

  1. 目標位置からの回転子軸の偏位の際に半径方向および場合によっては軸線方向に戻す磁気力を有する回転子軸(4、34)の磁気軸受装置(2、20、26)において、
    回転子ブロック(3、24、30)が回転子軸(4、34)に結合された第1の軸受部分(5、31)を含み、
    回転子ブロック(3、24、30)が位置固定の第2の軸受部分(11、29)により囲まれ、
    両軸受部分の一方が、強磁性材料から成る中間要素(8a〜8e;22k)によりそれぞれ完全に満たされている中間空間により相互に間隔をあけられている多数の交互の極性の永久磁石要素(6a〜6f;21i、21j)を含み、各中間要素(8a〜8e;22k)の軸線方向の厚み(d2)は各永久磁石要素(6a〜6f;21i、21j)の軸線方向の厚み(d1)よりも小さく、
    両軸受部分の他方が高Tc超伝導材料を有する構造(12、32)を有し、
    回転子軸(4、34)が少なくとも第1の軸受部分に向けられた管状の縁範囲内で非磁性材料から成り、
    強磁性の中間要素(8a〜8e;22k)が、永久磁石要素(6a〜6f;21i、21j)から発する磁束を、超伝導構造(12、32)に向けられた側に集中させ、
    超伝導構造(12、32)が高Tc超伝導材料から成る粒子を有し、その超伝導材料の結晶a‐b面の少なくとも大部分が回転子ブロック(3、24、30)の外面に対してほぼ平行に向けられ、それらの粒子のうち多数はそれぞれ少なくとも各永久磁石要素(6a〜6f;21i、21j)の軸線方向の厚み(d1)よりも大きい平均直径を有する
    ことを特徴とする回転子軸の磁気軸受装置。
  2. 高Tc超伝導材料から成る粒子の平均粒子直径が永久磁石要素(6a〜6f;21i、21j)の軸線方向の厚み(d1)と強磁性の中間要素(8a〜8e;22k)の軸線方向の厚み(d2)との和よりも大きいことを特徴とする請求項1記載の装置。
  3. 回転子軸(4)に結合された第1の軸受部分(5)が永久磁石要素(6a〜6f;21i、21j)を含んでいることを特徴とする請求項1または2記載の装置。
  4. 回転子軸(34)に結合された第1の軸受部分(31)が高Tc超伝導材料を有する構造(32)を含んでいることを特徴とする請求項1または2記載の装置。
  5. 回転子軸(34)内に高Tc超伝導材料を冷却する冷却材に対する少なくとも1つの冷却材溝(35)が設けられていることを特徴とする請求項4記載の装置。
  6. 永久磁石要素(6a〜6f)が回転子軸(4)の軸線(A)の方向に相前後して配置されていることを特徴とする請求項1ないし5の1つに記載の装置。
  7. 周縁方向に見て交互の極性を有する永久磁石要素(21i、21j;27i、27j)が回転子軸(4)の軸線(A)の方向に長く延びていることを特徴とする請求項1ないし5の1つに記載の装置。
JP33029794A 1993-12-13 1994-12-07 回転子軸の磁気軸受装置 Expired - Fee Related JP3961032B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4342477.5 1993-12-13
DE4342477 1993-12-13
DE4436831.3 1994-10-14
DE4436831A DE4436831C2 (de) 1993-12-13 1994-10-14 Magnetische Lagerung einer Rotorwelle unter Verwendung von Hoch-T¶c¶-Supraleitermaterial

Publications (2)

Publication Number Publication Date
JPH07229517A JPH07229517A (ja) 1995-08-29
JP3961032B2 true JP3961032B2 (ja) 2007-08-15

Family

ID=25932031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33029794A Expired - Fee Related JP3961032B2 (ja) 1993-12-13 1994-12-07 回転子軸の磁気軸受装置

Country Status (2)

Country Link
US (1) US5710469A (ja)
JP (1) JP3961032B2 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
SE508442C2 (sv) * 1997-01-28 1998-10-05 Magnetal Ab Elektrodynamiskt magnetlager
JP3348038B2 (ja) * 1998-04-08 2002-11-20 韓国電力公社 強い浮上力の高温超伝導ベアリング、および、フライホイールエネルギー貯蔵装置
US6416215B1 (en) 1999-12-14 2002-07-09 University Of Kentucky Research Foundation Pumping or mixing system using a levitating magnetic element
JP2004507068A (ja) * 1999-04-27 2004-03-04 ゲビュルダー デッカー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト シリコンウェハーを処理するための装置
DE19955829A1 (de) 1999-11-20 2001-05-23 Schlafhorst & Co W Offenend-Spinnvorrichtung
US6758593B1 (en) 2000-10-09 2004-07-06 Levtech, Inc. Pumping or mixing system using a levitating magnetic element, related system components, and related methods
US7720833B1 (en) 2000-02-02 2010-05-18 Ebay Inc. Method and system for automatically updating search results on an online auction site
DE10022061A1 (de) * 2000-05-06 2001-11-08 Leybold Vakuum Gmbh Magnetlagerung mit Dämpfung
DE10034922C2 (de) 2000-07-18 2003-01-16 Atlas Copco Energas Magnetische Lagerung
DE10042962C1 (de) * 2000-08-31 2002-05-02 Siemens Ag Magnetlager zur Lagerung einer drehbaren Welle unter Verwendung von Hoch-T¶c¶-Supraleitermaterial
DE10124193A1 (de) * 2000-09-26 2002-04-11 Siemens Ag Magnetlager
DE50102009D1 (de) * 2000-10-09 2004-05-19 Siemens Ag Einrichtung mit rotor und magnetlager zur berührungslosen lagerung des rotors
DE10050371A1 (de) * 2000-10-11 2002-05-02 Siemens Ag Vorrichtung mit im kryogenen Temperaturbereich ferromagnetischem und mechanisch belastbarem Bauteil
JP2003013957A (ja) * 2001-04-24 2003-01-15 Ferrotec Corp 磁性流体を使用したhdd用ピボット軸受
DE10236471C2 (de) * 2001-11-07 2003-10-16 Siemens Ag Magnetische Lagerung einer Rotorwelle gegen einen Stator unter Verwendung eines Hoch-T¶c¶-Supraleiters
DE10333733A1 (de) * 2003-07-23 2005-02-24 Forschungszentrum Jülich GmbH Magnetisches Lagerelement
DE20318389U1 (de) * 2003-11-27 2004-02-26 Nexans Magnetische Lagerung
US7453166B2 (en) * 2006-06-06 2008-11-18 Oceana Energy Company System for generating electricity from fluid currents
US8314527B2 (en) * 2007-06-20 2012-11-20 Beacon Power, Llc Advanced flywheel and method
US7679247B2 (en) * 2007-06-20 2010-03-16 Beacon Power Corporation Lift magnet mechanism for flywheel power storage systems
DE102008028588A1 (de) 2008-06-18 2009-12-24 Schaeffler Kg Magnetlager mit Hochtemperatur-Supraleiterelementen
US20110101697A1 (en) * 2008-07-01 2011-05-05 Oceana Energy Company Systems and methods for supporting underwater energy conversion devices
US9359991B2 (en) 2009-10-29 2016-06-07 Oceana Energy Company Energy conversion systems and methods
JP5275957B2 (ja) * 2009-11-02 2013-08-28 公益財団法人鉄道総合技術研究所 超電導磁気軸受付きフライホイール蓄電装置
CN107074453B (zh) * 2014-07-02 2020-07-14 费斯托股份两合公司 具有带有超导的磁性轴承的滚筒的输送系统
DE112014006578A5 (de) * 2014-08-11 2017-03-23 Festo Ag & Co. Kg Führungseinrichtung
WO2016023567A1 (de) * 2014-08-11 2016-02-18 Festo Ag & Co. Kg Führungseinrichtung
US10138938B2 (en) 2015-07-13 2018-11-27 Lawrence Livermore National Security, Llc Passive magnetic bearing elements and configurations utilizing alternative polarization and Amperian current direction
DE102016202506B4 (de) 2016-02-18 2018-03-22 Festo Ag & Co. Kg Trenneinrichtung und Verfahren zur trennenden Bearbeitung eines Werkstücks
EP3273078A1 (de) * 2016-07-19 2018-01-24 Siemens Aktiengesellschaft Aktives magnetlager und verfahren zur kühlung eines aktiven magnetlagers
EP3376604A1 (en) * 2017-03-17 2018-09-19 Siemens Aktiengesellschaft Subsea interconnection system
RU2659661C1 (ru) * 2017-08-17 2018-07-03 Акционерное общество "Научно-производственный центр газотурбостроения" "Салют" (АО НПЦ газотурбостроения "Салют") Магнитная опора на высокотемпературных сверхпроводниках для горизонтальных валов
US10636612B2 (en) * 2018-09-28 2020-04-28 Varex Imaging Corporation Magnetic assist assembly having heat dissipation
US11670336B2 (en) 2020-10-08 2023-06-06 Seagate Technology Llc Magnetic bearings for data storage devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072370A (en) * 1976-08-24 1978-02-07 Spectra-Flux, Inc. Radial magnetic bearing
DE3825710A1 (de) * 1987-11-02 1989-05-11 Siemens Ag Supraleitender permanentmagnetischer koerper
DE3744143A1 (de) * 1987-12-24 1989-07-13 Kernforschungsanlage Juelich Magnetische lagerung eines rotors an einem stator
US5177387A (en) * 1990-12-04 1993-01-05 University Of Houston-University Park High temperature superconducting magnetic bearings
JPH0510329A (ja) * 1991-07-03 1993-01-19 Nippon Seiko Kk 超電導軸受装置
US5196748A (en) * 1991-09-03 1993-03-23 Allied-Signal Inc. Laminated magnetic structure for superconducting bearings
EP0629789A4 (en) * 1992-02-14 1996-04-10 Seiko Epson Corp SUPERCONDUCTIVE BEARING.
US5557155A (en) * 1994-05-23 1996-09-17 University Of Chicago Optimization of superconducting tiling pattern for superconducting bearings

Also Published As

Publication number Publication date
JPH07229517A (ja) 1995-08-29
US5710469A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP3961032B2 (ja) 回転子軸の磁気軸受装置
CA2103143C (en) Magnet-superconductor systems having high thrust and high stability
US8362863B2 (en) System and method for magnetization of rare-earth permanent magnets
JP2004512473A (ja) 磁気軸受
WO1999039424A1 (en) A combination of a passive magnetic bearing element and generator/motor
US6737777B2 (en) Magnetic bearing and use thereof
US5763971A (en) Superconducting bearing device
GB2462532A (en) Brushless motor/generator with trapped-flux superconductors
JPH0549191A (ja) 電力貯蔵装置
US8110955B2 (en) Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements
JP3554070B2 (ja) 超電導磁気軸受装置
JP3665878B2 (ja) 軸受装置およびその始動方法
US5517071A (en) Superconducting levitating bearing
JPH10136609A (ja) モータとこれを用いた蓄電装置
JPH09501761A (ja) 薄膜超電導体磁気軸受
JP2020080628A (ja) 回転機
EP1909374A1 (en) Axial motor
JP3554054B2 (ja) 超電導軸受装置
JPH11355980A (ja) フライホイール電力貯蔵装置
JP2006173639A (ja) バルク超電導体の着磁装置、着磁方法及び超電導同期機
JPH08298745A (ja) フライホイール装置
US6404794B1 (en) Excimer laser apparatus
JPH0681845A (ja) 超電導軸受装置
JPH09233803A (ja) 高速回転機器用制動装置
JP3663472B2 (ja) 永久磁石使用軸受装置および永久磁石回転装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees