EP1280381A2 - Dispositif et procédé de chauffage inductif de billettes à l'aide d'une bobine de chauffage de billettes - Google Patents

Dispositif et procédé de chauffage inductif de billettes à l'aide d'une bobine de chauffage de billettes Download PDF

Info

Publication number
EP1280381A2
EP1280381A2 EP02011226A EP02011226A EP1280381A2 EP 1280381 A2 EP1280381 A2 EP 1280381A2 EP 02011226 A EP02011226 A EP 02011226A EP 02011226 A EP02011226 A EP 02011226A EP 1280381 A2 EP1280381 A2 EP 1280381A2
Authority
EP
European Patent Office
Prior art keywords
temperature
block heating
converter
heating coil
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02011226A
Other languages
German (de)
English (en)
Other versions
EP1280381A3 (fr
Inventor
Stefan Dipl.-Ing. Beer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I A S Induktions- Anlage and Service & Co KG GmbH
Original Assignee
I A S Induktions- Anlage and Service & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10206269A external-priority patent/DE10206269A1/de
Application filed by I A S Induktions- Anlage and Service & Co KG GmbH filed Critical I A S Induktions- Anlage and Service & Co KG GmbH
Publication of EP1280381A2 publication Critical patent/EP1280381A2/fr
Publication of EP1280381A3 publication Critical patent/EP1280381A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power

Definitions

  • the invention relates to a device for inductive block heating with a single or multi-layer block heating coil according to the preamble of claim 1 and also relates to such a method.
  • block heating systems consist of a block heating coil in a single or multi-layer design, a transport device for the heated blocks or bolts and an electrical switching device for temperature control.
  • the block heating coil consists of one or more galvanically isolated zones. These are arranged one after the other in such a way that the block or stud column is completely in the zones of the block heating coil when heated.
  • the electrical switching device supplies the individual zones of the block heating coil with electrical energy via switching elements such as furnace contactors or thyristor controllers.
  • switching elements such as furnace contactors or thyristor controllers.
  • the switching elements both the furnace contactors and the thyristor controllers, have a limited number of switching cycles per unit of time. In contrast to the furnace contactors, thyristor controllers work without wear.
  • the electrical energy usually supplied from the three-phase network is converted into energy of the magnetic field in the coil with a certain degree of efficiency and is thus transmitted to the insert (bolt or block) by induction.
  • the energy of the magnetic field is converted into heat in the bolt.
  • the temperature is measured on the surface of the bolt.
  • the power of the assigned zone is activated by a temperature control. If the surface of the bolt has reached the target temperature, the power is switched off. With this 2-point control, the available power is either switched on or completely switched off. In order to reduce the number of switching cycles per time unit of the switching elements, a temperature hysteresis is necessary with this type of control. Switching back on takes place at a time interval only when the temperature on the surface of the bolt has dropped to a predetermined value.
  • the temperature hysteresis of the 2-point control has a major influence on the temperature accuracy of the heating on the stud.
  • the abrupt switching on and off of the power causes grid effects in the form of inrush currents.
  • Influencing the radial temperature distribution on the bolt or block is only possible to a limited extent due to the inertia due to the compensation time.
  • the bolt remains either in the coil or externally in a compensation furnace during the compensation time.
  • the invention has for its object to avoid these inaccuracies and difficulties in inductive block heating with the aim of a precise design of the temperature field in the bolt for the most uniform and energy-saving radial and axial distribution of the temperature in the bolt and thus for a higher temperature accuracy and better Repeatability of the desired temperature profile, taking into account the permissible temperature gradients in the bolt, furthermore for the fastest and most efficient heating possible with low energy consumption without the need for a temperature measurement during the heating phase.
  • the temperature should only be checked after heating.
  • the block heating coil is made up of a plurality of synchronously controlled ones with regard to frequency and phase of the inductive field Zones exist, and that a converter with variable frequency and modular structure is provided for the current feed to each zone of the block heating coil, which consists of several self-contained units with DS network feed and synchronization of phase and frequency of the output voltage.
  • claims 2 to 7 Particularly advantageous developments of such a device are characterized in claims 2 to 7, while claims 8 and 9 are directed to a method for inductive block heating with such a device.
  • the inductive block heating system is designed with several zones Z1 to Zn. It comprises a multi-zone and multi-layer block heating coil in a water-cooled version and compensation capacitors connected to it. In each zone there is a temperature measuring device, namely pneumatically operated measuring tips or an optical pyrometer T1 to Tn corresponding to the number of n zones (FIG. 2).
  • a converter with a modular design All converter modules M1 to Mn form self-contained units in terms of performance. Common to the modules is the DS network feed and synchronization of the phase and frequency of the output voltage.
  • the control takes place on a PLC basis with a process visualization system, in which the control behavior of the converter modules is implemented using a mathematical algorithm.
  • zones Z1 to Zn of the block heating coil is regulated on the basis of the assigned measured zone temperatures.
  • the material values (and their temperature dependency), the geometry of the bolt and the energy absorption capacity of the bolt (dP / dt) are included.
  • the aim of the control is to achieve a predetermined temperature profile (within the tolerance range) in the shortest heating time, this criterion simultaneously determining the maximum heating efficiency.
  • the control will determine the optimal frequency for the operation of the multi-layer inductive block heating coil.
  • the limit values for the temperature-dependent temperature gradients in the stud limit the time course of the measured temperature on the stud surface.
  • the time behavior dP / dt per converter module (energy absorption capacity of the bolt) provides feedback about the actual temperature gradients. The information about the actual temperature gradients in the bolt and the temperature on the surface of the bolt allow the temperature field in the bolt to be determined.
  • the procedure applies in connection with multi-layer block heating coils and a converter.
  • the power section shown in Fig. 1 and the control structure of an inductive block heating system 1 consists of a three-phase converter 2 in a modular structure, which is connected to the three-phase network.
  • the converter 2 in turn consists of a supply module 3 with line connections L1, L2, L3 and several converter modules M1 to Mn.
  • the feed module 3 contains a circuit breaker and a control unit that synchronizes the work of the individual converter modules M1 to Mn.
  • Each converter module M1 to Mn forms a self-contained unit, consisting of a line filter (optional), a rectifier, an intermediate circuit (smoothing choke and DC capacitor battery), an inverter (based on a half or full bridge) and a converter control.
  • a block heating coil 4 is connected to the converter modules M1 to Mn and consists of several, for example three, four or more, zones Z1, Z2, Z3 to Zn arranged one after the other.
  • Each individual zone Z1 to Zn of the block heating coil is connected to an associated converter module M1 to Mn.
  • the individual converter modules M1 to Mn are synchronized so that the field generated under each zone Z1, Z2, Z3 to Zn is in phase with the neighboring fields (synchronization of the converter modules).
  • the peculiarity lies in the control of the individual converter modules, which form separate units and are synchronized in such a way that the induction field generated in each coil zone has no phase shift with respect to the induction fields of the adjacent zones, regardless of the power of the converter module.
  • a temperature control of the system superordinate to the converter modules M1 to Mn, with temperature measuring points at each zone Z1, Z2 to Zn of the block heating coil 4 controls the individual converter modules or
  • each zone Z1, Z2 to Zn of the block heating coil 4 is assigned a temperature measuring point for determining the temperature values T1, T2 to Tn.
  • the lower part of the illustration shows the uniform temperature profile over the length of the bolt 5 from the value TB1 at the beginning of the bolt to the value TB2 at the end of the bolt.
  • FIG. 3 shows the electrical circuit of an individual converter module M1 to Mn from FIGS. 1 and 2 and the connection of a partial coil of the block heating system, each converter module having its own controller, so that a redundant system is provided here.
  • a converter module M1 to Mn forms a self-contained unit and consists of a rectifier 11, a DC intermediate circuit 12 and an inverter 13.
  • the rectifier 11 is constructed on the basis of a 3-phase full bridge.
  • the electrical energy which is obtained from the three-phase network with the network connections L1, L2, L3 is thus converted to an energy of the direct current in the DC intermediate circuit 12.
  • This energy is stored in a DC capacitor bank 14.
  • a DC link choke 15 minimizes the mutual influence of the inverter 13 and the rectifier 11.
  • the inverter 11, designed as a transistor full bridge converts the DC energy into an AC energy with the required frequency and voltage (power).
  • Fig. 4 is a temperature-time diagram of a known block heating system with 2-point control and thyristor controller (ON / OFF with maximum power). From the course of the temperature curves on the surface and in the core of the feed material and the resulting radial temperature difference, it is clear that the 2-point control negatively affects the accuracy of the temperature (temperature hysteresis) by constantly switching the full power on and off Bolzens, affects. The temperature difference between the pin core and its surface is difficult to influence. This also applies to influencing the radial temperature gradients in the bolt, which is just as difficult to achieve due to the constant power value.
  • FIG. 5 shows an end view of a block to be heated with the relevant temperature measuring ranges in the bolt core and on the surface of the bolt 5.
  • FIG. 6 shows the temperature profile during operation of a block heating system according to the invention.
  • the uniform course of the temperature curves on the surface and in the core of the bolt and the resulting radial temperature difference makes it clear that surprisingly a particularly uniform and energy-saving radial and axial temperature distribution in the bolt and thus an overall higher temperature accuracy with a faster and more efficient Warming can be achieved with lower energy consumption.
  • the temperature difference between the bolt core and the bolt surface can be minimized.
  • the optimization can take into account the boundary conditions listed above under "C”.
  • Fig. 7 shows an example of a power curve when operating such a system with continuous power control with setpoints 0..100%, which can be steplessly controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
EP02011226A 2001-07-25 2002-05-22 Dispositif et procédé de chauffage inductif de billettes à l'aide d'une bobine de chauffage de billettes Withdrawn EP1280381A3 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10135396 2001-07-25
DE10135396 2001-07-25
DE10206269 2002-02-15
DE10206269A DE10206269A1 (de) 2001-07-25 2002-02-15 Vorrichtung und Verfahren zur induktiven Blockerwärmung mit einer Blockerwärmungsspule

Publications (2)

Publication Number Publication Date
EP1280381A2 true EP1280381A2 (fr) 2003-01-29
EP1280381A3 EP1280381A3 (fr) 2005-12-21

Family

ID=26009742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02011226A Withdrawn EP1280381A3 (fr) 2001-07-25 2002-05-22 Dispositif et procédé de chauffage inductif de billettes à l'aide d'une bobine de chauffage de billettes

Country Status (2)

Country Link
US (1) US6815649B2 (fr)
EP (1) EP1280381A3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3790180A1 (fr) * 2019-09-04 2021-03-10 IAS GmbH Dispositif et procédé de chauffage inductif de l'article métallique

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004420A1 (fr) * 2002-06-26 2004-01-08 Mitsui Engineering & Shipbuilding Co.,Ltd. Procede de chauffage par induction et unite de chauffage correspondante
DE10323796B3 (de) * 2003-05-23 2005-02-10 Thyssenkrupp Nirosta Gmbh Vorrichtung zum Erwärmen eines Metallbandes sowie mit einer derartigen Vorrichtung ausgestattete Anlagen zum Erzeugen von warmgewalztem Metallband
JP4295141B2 (ja) * 2004-03-12 2009-07-15 株式会社吉野工作所 ワーク加熱装置及びワーク加熱方法
US7582851B2 (en) * 2005-06-01 2009-09-01 Inductotherm Corp. Gradient induction heating of a workpiece
US7683288B2 (en) * 2005-08-12 2010-03-23 Thermatool Corp. System and method of computing the operating parameters of a forge welding machine
US20070095878A1 (en) * 2005-11-03 2007-05-03 Paul Scott Method and system for monitoring and controlling characteristics of the heat affected zone in a weld of metals
CN101438620B (zh) * 2006-04-24 2011-12-07 感应加热有限公司 管状材料端部的电感应加热处理
DE102007050341A1 (de) * 2007-10-12 2009-04-23 E.G.O. Commercial Electronics Ag Induktionsmodul, Anordnung mehrerer Induktionsmodule und Verfahren zur Einrichtung eines solchen Induktionsmoduls
KR101524023B1 (ko) * 2007-11-03 2015-06-01 인덕터썸코포레이션 서셉터 용기내 재료의 전기 유도 가열 및 용융을 위한 전력 시스템
EP2236005B1 (fr) * 2007-12-27 2017-03-01 Inductoheat, Inc. Chauffage par induction électrique contrôlé d'une pièce à travailler dans une bobine solénoïde avec compensateurs de flux
DE202008012597U1 (de) * 2008-09-22 2009-01-15 Extrutec Gmbh Vorrichtung zur Erwärmung stangenartiger Werkstücke
FR2951606B1 (fr) * 2009-10-19 2012-01-06 Electricite De France Procede de chauffage par induction mis en oeuvre dans un dispositif comprenant des inducteurs couples magnetiquement
US10973368B2 (en) * 2012-12-12 2021-04-13 The Vollrath Company, L.L.C. Three dimensional induction rethermalizing stations and control systems
WO2015120216A1 (fr) 2014-02-07 2015-08-13 Gojo Industries, Inc. Compositions et procédés efficaces contre les spores et autres organismes
US9677700B2 (en) 2014-10-27 2017-06-13 Ajax Tocco Magnethermic Corporation Pipe heating apparatus and methods for uniform end heating and controlled heating length

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307276A (en) * 1976-07-30 1981-12-22 Nippon Steel Corporation Induction heating method for metal products
DE3040820A1 (de) * 1980-10-30 1982-05-13 Aeg-Elotherm Gmbh, 5630 Remscheid Einrichtung zur induktiven beheizung eines werkstuecks mittels mehrerer induktoren und mehrerer umrichterstromquellen zur speisung der induktoren
DE3246273A1 (de) * 1982-12-14 1984-06-14 Naučno-proizvodstvennoe ob"edinenie po technologii mašinostroenija CNIITMAŠ, Moskva Anlage zur induktionsheizung von erzeugnissen
EP0143144A2 (fr) * 1983-11-26 1985-06-05 AEG - Elotherm GmbH Installation et procédé de chauffage de pièces, en particulier tubes et barres par induction avec plusieurs inducteurs
DE3710085A1 (de) * 1987-03-27 1988-10-13 Asea Brown Boveri Einrichtung zur induktiven erwaermung eines werkstueckes mittels mehrerer induktoren
US4845332A (en) * 1987-09-16 1989-07-04 National Steel Corp. Galvanneal induction furnace temperature control system
JP2000040580A (ja) * 1998-07-21 2000-02-08 Mitsubishi Electric Corp 誘導加熱装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161219A (ja) 1986-12-22 1988-07-04 Mikio Umeoka 基礎杭及びその建て込み方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307276A (en) * 1976-07-30 1981-12-22 Nippon Steel Corporation Induction heating method for metal products
DE3040820A1 (de) * 1980-10-30 1982-05-13 Aeg-Elotherm Gmbh, 5630 Remscheid Einrichtung zur induktiven beheizung eines werkstuecks mittels mehrerer induktoren und mehrerer umrichterstromquellen zur speisung der induktoren
DE3246273A1 (de) * 1982-12-14 1984-06-14 Naučno-proizvodstvennoe ob"edinenie po technologii mašinostroenija CNIITMAŠ, Moskva Anlage zur induktionsheizung von erzeugnissen
EP0143144A2 (fr) * 1983-11-26 1985-06-05 AEG - Elotherm GmbH Installation et procédé de chauffage de pièces, en particulier tubes et barres par induction avec plusieurs inducteurs
DE3710085A1 (de) * 1987-03-27 1988-10-13 Asea Brown Boveri Einrichtung zur induktiven erwaermung eines werkstueckes mittels mehrerer induktoren
US4845332A (en) * 1987-09-16 1989-07-04 National Steel Corp. Galvanneal induction furnace temperature control system
JP2000040580A (ja) * 1998-07-21 2000-02-08 Mitsubishi Electric Corp 誘導加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 05, 14. September 2000 (2000-09-14) -& JP 2000 040580 A (MITSUBISHI ELECTRIC CORP; TOYOTA MOTOR CORP), 8. Februar 2000 (2000-02-08) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3790180A1 (fr) * 2019-09-04 2021-03-10 IAS GmbH Dispositif et procédé de chauffage inductif de l'article métallique

Also Published As

Publication number Publication date
US20030019868A1 (en) 2003-01-30
EP1280381A3 (fr) 2005-12-21
US6815649B2 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
EP1280381A2 (fr) Dispositif et procédé de chauffage inductif de billettes à l'aide d'une bobine de chauffage de billettes
EP3715001B1 (fr) Dispositif de chauffage destiné au chauffage inductif d'une bande d'acier plan dans un laminoir à chaud
EP2947766A1 (fr) Alimentation électrique pour une charge non linéaire dotée de convertisseurs matriciels à plusieurs niveaux
DE69021940T2 (de) Induktionsschmelzen.
WO2010031503A1 (fr) Dispositif pour chauffer des pièces de type barre
EP3790180B1 (fr) Dispositif et procédé de chauffage inductif de l'article métallique
DE19711453C2 (de) Verfahren zur Regelung bzw. Steuerung eines Schmelzprozesses in einem Drehstrom-Lichtbogenofen
EP3513625B1 (fr) Four à arc électrique alimenté par onduleur avec système de condensateurs dans le circuit secondaire
DE4443551A1 (de) Anordnung zur Leistungsversorgung eines elektrischen Verbrauchers, insbesondere Röntgen-Apparat
DE69022854T2 (de) Einrichtung zur Flimmerkompensation für einen Gleichstromlichtbogenofen.
DE3415967C2 (fr)
DE10206269A1 (de) Vorrichtung und Verfahren zur induktiven Blockerwärmung mit einer Blockerwärmungsspule
EP2133983A2 (fr) Procédé de déchargement d'une capacité de déparasitage à la sortie d'un dispositif d'onduleur et dispositif d'onduleur
EP0562471B1 (fr) Procédé pour l'excitation des valves de deux ou plus convertisseurs avec des circuits oscillants parallèles alimentés d'un courant continu d'une source commune chaque convertisseur muni avec un four à induction chaque fois et un arrangement pour l'exécution du procédé
EP0143144B1 (fr) Installation et procédé de chauffage de pièces, en particulier tubes et barres par induction avec plusieurs inducteurs
DE2914304C2 (fr)
CH642505A5 (en) Device for the inductive heating of elongated workpieces
DE1185744B (de) Induktionsanlage mit mindestens zwei ueber eine Sammelschiene gespeisten Heizstationen mit mehreren aufeinanderfolgenden, mit verschiedenen Leistungen und unterschiedlichen Frequenzen arbeitenden Erwaermungszonen zum regelbaren Erwaermen von metallischen Werkstuecken
DE69914573T2 (de) Magnetische Beheizungssystem
WO2024115750A1 (fr) Dispositif de chauffage par induction, système, ligne de production, procédé et utilisation
DE4415727A1 (de) Verfahren zur Regelung des Schmelzprozesses in einem Drehstrom-Lichtbogenofen
DE19514537B4 (de) Verfahren zur Ansteuerung der Stromrichterventile von gleichstromseitig in Reihe geschalteten Parallelschwingkreiswechselrichtern
EP3753082B1 (fr) Circuit électrique de compensation de puissance réactive
DE3331641C2 (de) Elektrometallurgische Ofenanlage
EP4398474A1 (fr) Ensemble électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 05B 6/40 B

Ipc: 7H 05B 6/06 B

Ipc: 7H 05B 6/04 B

Ipc: 7H 05B 6/44 A

18W Application withdrawn

Effective date: 20051122