EP1273774B1 - Gicleur de refroidissement à piston - Google Patents

Gicleur de refroidissement à piston Download PDF

Info

Publication number
EP1273774B1
EP1273774B1 EP20020356115 EP02356115A EP1273774B1 EP 1273774 B1 EP1273774 B1 EP 1273774B1 EP 20020356115 EP20020356115 EP 20020356115 EP 02356115 A EP02356115 A EP 02356115A EP 1273774 B1 EP1273774 B1 EP 1273774B1
Authority
EP
European Patent Office
Prior art keywords
piston
bore
cooling
downstream
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP20020356115
Other languages
German (de)
English (en)
Other versions
EP1273774A1 (fr
Inventor
Christophe Bontaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bontaz Centre SA
Original Assignee
Bontaz Centre SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8865247&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1273774(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bontaz Centre SA filed Critical Bontaz Centre SA
Publication of EP1273774A1 publication Critical patent/EP1273774A1/fr
Application granted granted Critical
Publication of EP1273774B1 publication Critical patent/EP1273774B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/265Plural outflows
    • Y10T137/2663Pressure responsive

Definitions

  • the present invention relates to the cooling nozzles of the pistons of an internal combustion engine, for projecting a cooling fluid such as oil against the piston bottom, that is to say against the outer piston face to the explosion chamber, or in a piston gallery.
  • the piston cooling nozzles usually used are inserts attached to the crankcase and communicating with a coolant supply port.
  • the position of the nozzle is precisely determined to achieve a jet of cooling fluid directed to a specific area of the piston bottom or the piston gallery.
  • the cooling nozzles generally include a valve, for inhibiting the circulation of cooling fluid until the pressure of the cooling circuit has exceeded a determined threshold value.
  • Spray structures are generally used, the valve of which is made by a ball, pushed by a compression spring towards a seat to close a passage of cooling fluid. These structures are short and compact.
  • the inventors have found that the valve cooling nozzles used until now function properly and are satisfactory for a limited time, after which time appear phenomena of wear that disturb the sealing of the valve and its proper operation.
  • the correct operating time is shorter as the nominal pressure of the coolant in the cooling lines is high.
  • the wear mainly modifies the opening characteristics of the valve, ie the fluid pressure necessary to trigger it: at nine, the valve opens at a correct nominal pressure; after wear, the valve opens at a lower pressure, up to half the correct nominal pressure, therefore below the idle speed of the engine. This results in a disturbance of the general pressure of the fluid in the engine.
  • the invention results from the observation that the phenomena of wear are inevitable because of the very structure of the ball valve: under high pressure, there are phenomena of oscillation and vibration of the ball, phenomena that cause wear defects.
  • the valve comprises a piston pushed against a seat by a spring and sliding in an axial bore communicating with a radial fluid passage.
  • the structure is long and cumbersome, because the opening of the valve requires to move and guide the piston downstream of the radial fluid passage.
  • the problem proposed by the present invention is to design a new valve sprinkler structure, capable of functioning properly for a significantly longer period, in particular without significant wear.
  • a piston valve does not have the disadvantages of oscillation and vibration of the ball valves, so that satisfactory use can be achieved for a much longer period of time.
  • Another problem that the invention proposes to solve is to reduce the size of the nozzle in the engine cylinder.
  • the piston valves of JP 07 317519 A lead to a relatively large size, and in particular a relatively large length downstream of the valve outlet orifices for guiding the piston. Too long a length downstream of the outlet ports of the valve is a risk of collision with the rotating elements of the engine such as the crankshaft or against the weight of crankshaft.
  • the invention aims to reduce the total length of the nozzle, and in particular the nozzle length protruding into the engine cylinder downstream of the outlet radial fluid passage structure and outlet tube.
  • the invention provides a piston cooling nozzle of an internal combustion engine, having a penetrating nozzle body shaped to engage a bore of the engine and to receive a coolant fluid arriving through said bore, having an internal valve for modulating the fluid flow rate as a function of its pressure, and having a radial fluid passage outlet structure in the nozzle body and outlet tube, adapted to transmit the cooling fluid exiting the inner valve and for directing it against the bottom of the engine piston to be cooled;
  • the internal valve comprises a piston, having a downstream section with a cylindrical lateral guide surface engaged longitudinally in a guide bore integral with the nozzle body, having a closure head oriented upstream in the direction of flow of the cooling fluid to come wear selectively against an annular sealing seat secured to the nozzle body and traversed by the cooling fluid
  • the inner valve comprises a helical compression spring, axially engaged between a downstream surface integral with the nozzle body and a downstream surface of the piston for biasing the piston upstream against the annular sealing seat.
  • Such a structure has a great endurance, a great stability, which reduces the oscillations and very substantially reduces the phenomena of wear.
  • the guide bore in which the piston slides is essentially inside an upstream section of the nozzle body, upstream of the radial fluid passage, and fluid conduction passages axially conduct the fluid. from the downstream of the annular sealing seat to the radial fluid passage as soon as the piston moves away from the annular closure seat, so that, in the open state of the internal valve, the piston is essentially in upstream of the radial fluid passage.
  • downstream piston section comprises a downstream coaxial housing in which engages and is guided the upstream end portion of the coil compression spring.
  • the nozzle body comprises a through axial bore, in which is engaged without play and held in position a tubular liner with axial bore, a downstream section forms the guide bore receiving the downstream piston section, the jacket tubular having an internal intermediate shoulder forming the annular sealing seat, at least one radial hole being provided in the tubular liner wall immediately downstream of the annular sealing seat to conduct the fluid radially towards one or more peripheral passages provided between the outer surface of the tubular liner and the surface of the axial through bore of the nozzle body, said peripheral passages being adapted to axially drive the coolant from the radial hole (s) to the radial fluid passage in the jet body .
  • the piston is upstream of the radial fluid outlet passage.
  • peripheral passage or passages are made by a larger diameter axial through-bore section, while the tubular liner has a substantially constant outer diameter leaving an annular intermediate space through which the cooling fluid flows.
  • the tubular liner is made of sintered steel, while the piston is made of steel. This considerably promotes sliding between the piston and the liner, thus reducing the phenomena of wear and the risk of galling.
  • the piston comprises, between its downstream section with cylindrical lateral guide surface and the closure head, an external annular recess defining, with the wall of the guide bore, an annular housing communicating by radial holes.
  • piston piston with an axial piston bore open downstream in the axial through bore of the body which conducts the cooling fluid to the radial fluid passage in the nozzle body. In this way, in the open state of the valve, the piston is clearly upstream of the radial fluid outlet passage.
  • the annular sealing seat may be an annular ring reported in the axial bore passing through the nozzle body.
  • a piston cooling nozzle for an internal combustion engine comprises a nozzle body 1, an internal valve 2, and an outlet structure 3 adapted to transmit the cooling fluid exiting the valve. and to direct it in jet at least against the bottom of a piston to cool.
  • the nozzle body 1 comprises a penetrating portion 4, shaped to engage in a bore of the engine and to receive a cooling fluid arriving through said bore of the engine.
  • the nozzle body 1 has a projecting portion 5, intended to protrude into the engine cylinder and to carry the outlet structure 3.
  • the internal valve 2 comprises a piston 6, having a downstream section 7 with a lateral cylindrical guide surface 8 engaged longitudinally in a groove. guide bore 9 secured to the nozzle body 1.
  • the piston 6 comprises a closure head 10, directed upstream in the direction of flow of the cooling fluid to come selectively to bear against an annular closure seat 11 secured to of the nozzle body 1 and having a seat bore 12 to be traversed by the cooling fluid.
  • the internal valve 2 further comprises a helical compression spring 13, engaged axially between a downstream bearing 14 secured to the nozzle body 1 and a downstream surface 15 of the piston 6, to bias the piston 6 upstream against the annular seat of the piston. shutter 11.
  • the outlet structure 3 comprises at least one radial fluid passage 17 in the nozzle body 1, and at least one outlet tube 18 having a first end fitted into the corresponding radial fluid passage 17.
  • the piston 6 slides in the guide bore 9 inside an upstream section 16 of nozzle body 1, upstream of the radial fluid passage 17, between a valve closing position and an opening position of valve. In the valve opening position, the piston 6 remains essentially upstream of the radial fluid passage 17.
  • the piston sliding sealingly in the guide bore 9 is opposed a priori to the passage of fluid between the annular sealing seat 11 and the radial fluid passage 17.
  • the invention provides, in either of the illustrated embodiments, fluid conduction passages leading the fluid axially from the downstream of the annular sealing seat 11 to the radial fluid passage 17 as soon as the piston s
  • the fluid conduction passages will be described hereinafter and have different structures in either of the illustrated embodiments.
  • the downstream section 7 of the piston 6 has a coaxial housing downstream 19 in which engages and is guided the part Upstream end 20 of the compression coil spring 13.
  • the nozzle body 1 comprises a through axial bore 21, along the axis I-I of the nozzle body 1, in which the piston 6 slides axially.
  • a tubular liner 22 is engaged without play and held in position in the axial through bore 21, in the protruding portion 5 of the nozzle, being engaged between a downstream plug 39 and a ring 40.
  • the tubular liner 22 comprises an axial bore 23, a downstream portion of which forms the guide bore 9 receiving the downstream portion of the piston 6.
  • the tubular liner 22 comprises an internal intermediate shoulder forming the annular sealing seat 11.
  • At least one radial hole 24 is provided in the wall of the tubular liner 22, immediately downstream of the annular sealing seat 11, for radially conducting the fluid to one or more peripheral passages provided between the outer surface of the tubular liner 22. and the surface of the axial through bore 21 of the nozzle body 1.
  • the peripheral passages 25 are adapted to axially drive the cooling fluid from the radial hole (s) 24 to the radial fluid passage 17 in the nozzle body 1 .
  • the piston 6 can be arranged permanently upstream of the radial fluid passage 17 in the nozzle body 1, and the protruding portion 5 can thus have a reduced volume.
  • peripheral passages 25 are made by a through-bore axial bore section 21 of larger diameter, while the tubular liner 22 has a substantially constant outer diameter, leaving an annular intermediate space by which flows the cooling fluid.
  • the tubular liner 22 may advantageously be made of sintered steel, while the piston 6 is made of steel. This results in a very low coefficient of friction, and good lubrication between the piston 6 and the tubular liner 22, facilitating piston movements without wear and reducing the risk of galling.
  • This first embodiment further promotes the stability of the valve, in that the valve is subjected upstream to the cooling fluid pressure, while it is subjected downstream only to the air pressure and to the return force of the spring.
  • the valve is either open when the fluid pressure is greater than the spring force, or closed in the opposite case, but never vibrates between the two positions.
  • the piston 6 comprises, between its downstream section 7 with lateral cylindrical guide surface 8 and the closure head 10, an external annular recess 26 defining, with the wall of the guide bore 9, an annular housing communicating by radial piston holes 27 with an axial bore of piston 28 open downstream in the axial through bore 21 of the body which conducts the cooling fluid to the radial fluid passage 17 in the body of jet 1.
  • This second structure also makes it possible to place the piston 6 permanently upstream of the radial fluid passage 17 in the nozzle body 1, by ensuring the axial conduction of the fluid from the annular sealing seat 11 to the radial fluid passage 17 .
  • vent 29 downstream of the housing containing the compression coil spring 13, the vent 29 allowing the passage of air into and out of the spring housing during the movements of the piston 6.
  • the vent 29 is formed in the downstream plug 39.
  • the annular sealing seat 11 is an annular ring 30, attached in the axial through bore 21 of the nozzle body.
  • the cooling fluid arrives through the upstream end 31 in a bore of the engine block.
  • the pressure of the cooling fluid is greater than a predetermined threshold, the fluid pushes the piston 6 against the return force exerted by the compression coil spring 13, so that the cooling fluid can pass between the shutter head 10 and the annular shutter seat 11.
  • the cooling fluid passes radially through the radial holes 24, then axially along the peripheral passages 25, to reach the radial fluid passage 17 and exit through the outlet tubes 18.
  • the cooling fluid passes between the annular sealing seat 11 and the sealing head 10, is distributed in the outer annular recess 26, passes radially towards the center by the radial holes piston 27, then moves axially in the axial piston bore 28 and in the axial through bore 21 of the body which conducts the cooling fluid to the radial fluid passage 17 and the outlet tube 18.
  • Figure 7 illustrates the implantation of a nozzle according to the invention in an internal combustion engine.
  • the figure illustrates a motor part, comprising a motor half-cylinder.
  • the nozzle 32 is attached to the wall of the cylinder housing 33, inside the engine, to take cooling fluid circulating in a cooling pipe 34 and to project the cooling fluid into the cylinder motor against the bottom 35 of the engine piston 36, that is to say against the face of the engine piston which is external to the explosion chamber 37.
  • the penetrating portion 4 of the nozzle 32 is engaged in a corresponding bore of the cylinder housing 33, communicating with the cooling pipe 34.
  • the nozzle is thus fixed by any known means, for example force-fitted or screwed into the corresponding bore of the Cylinder case 33.
  • the protruding portion 5 of the nozzle 32 protrudes into the interior of the engine cylinder.
  • An internal combustion engine can thus advantageously comprise piston cooling nozzles according to the invention, as described above, fixed in the piston chamber or chambers and adapted to each project the cooling fluid in a concentrated jet against the bottom of the piston. 'A piston.
  • the present invention is not limited to the embodiments that have been explicitly described, but includes the various variants thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Compressor (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Surgical Instruments (AREA)
  • Medicinal Preparation (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)

Description

  • La présente invention concerne les gicleurs de refroidissement des pistons d'un moteur à combustion interne, permettant de projeter un fluide de refroidissement tel que de l'huile contre le fond de piston, c'est-à-dire contre la face de piston extérieure à la chambre d'explosion, ou dans une galerie de piston.
  • Les gicleurs de refroidissement de piston habituellement utilisés sont des pièces rapportées, fixées sur le carter moteur et communiquant avec un orifice d'amenée de fluide de refroidissement. La position du gicleur est déterminée avec précision pour réaliser un jet de fluide de refroidissement dirigé vers une zone précise du fond de piston ou de la galerie de piston.
  • Les gicleurs de refroidissement comportent généralement un clapet, permettant d'inhiber la circulation de fluide de refroidissement tant que la pression du circuit de refroidissement n'a pas dépassé une valeur de seuil déterminée.
  • On utilise généralement des structures de gicleur dont le clapet est réalisé par une bille, repoussée par un ressort de compression vers un siège pour obturer un passage de fluide de refroidissement. Ces structures sont courtes et peu encombrantes.
  • Les inventeurs ont pu constater que les gicleurs de refroidissement à clapet utilisés jusqu'à présent fonctionnent correctement et donnent satisfaction pendant une durée limitée, durée après laquelle apparaissent des phénomènes d'usure qui perturbent l'étanchéité du clapet et son fonctionnement correct. La durée de fonctionnement correct est d'autant plus courte que la pression nominale du fluide de refroidissement régnant dans les canalisations de refroidissement est élevée. L'usure modifie principalement les caractéristiques d'ouverture du clapet, c'est-à-dire la pression de fluide nécessaire pour le déclencher : à neuf, le clapet ouvre à une pression nominale correcte ; après usure, le clapet ouvre à une pression inférieure, pouvant atteindre la moitié de la pression nominale correcte, donc au dessous du régime ralenti du moteur. Il en résulte une perturbation de la pression générale du fluide dans le moteur.
  • L'invention résulte de l'observation selon laquelle les phénomènes d'usure sont inévitables à cause de la structure même du clapet à bille : sous haute pression, il se produit des phénomènes d'oscillation et de vibration de la bille, phénomènes qui engendrent les défauts d'usure.
  • On connaît par ailleurs du document JP 07 317519 A un gicleur pour refroidissement de moteur dont le clapet comprend un piston repoussé contre un siège par un ressort et coulissant dans un alésage axial communiquant avec un passage radial de fluide. La structure est longue et encombrante, car l'ouverture du clapet nécessite de déplacer et de guider le piston en aval du passage radial de fluide.
  • Le problème proposé par la présente invention est de concevoir une nouvelle structure de gicleur à clapet, susceptible de fonctionner de façon correcte pendant une durée nettement plus longue, en particulier sans usure sensible.
  • De façon surprenante, selon l'invention, on peut avantageusement remplacer le clapet à bille par un clapet à piston. Dans des conditions d'utilisation similaires, à haute pression, un clapet à piston ne présente pas les inconvénients d'oscillation et de vibration des clapets à bille, de sorte qu'une utilisation satisfaisante peut être obtenue pendant une durée nettement plus longue.
  • Un autre problème que l'invention se propose de résoudre est de réduire l'encombrement du gicleur dans le cylindre moteur. En effet, les clapets à piston du document JP 07 317519 A conduisent à un encombrement relativement important, et notamment une longueur relativement importante en aval des orifices de sortie du clapet pour le guidage du piston. Une longueur trop importante en aval des orifices de sortie du clapet fait courir un risque de collision avec les éléments rotatifs du moteur tels que le vilebrequin ou le contre-poids de vilebrequin.
  • Ainsi, l'invention vise à réduire la longueur totale du gicleur, et notamment la longueur de gicleur dépassant dans le cylindre moteur en aval de la structure de sortie à passage radial de fluide et à tube de sortie.
  • Pour atteindre ces objets ainsi que d'autres, l'invention prévoit un gicleur de refroidissement de piston d'un moteur à combustion interne, comportant un corps de gicleur à partie pénétrante conformée pour s'engager dans un alésage du moteur et pour recevoir un fluide de refroidissement arrivant par ledit alésage, comportant un clapet interne pour moduler le débit de fluide en fonction de sa pression, et comportant une structure de sortie à passage radial de fluide dans le corps de gicleur et à tube de sortie, adaptée pour transmettre le fluide de refroidissement sortant du clapet interne et pour le diriger en jet contre le fond du piston de moteur à refroidir ; le clapet interne comprend un piston, ayant un tronçon aval à surface latérale cylindrique de guidage engagée à coulissement longitudinal dans un alésage de guidage solidaire du corps de gicleur, ayant une tête d'obturation orientée vers l'amont dans le sens d'écoulement du fluide de refroidissement pour venir porter sélectivement contre un siège annulaire d'obturation solidaire du corps de gicleur et traversé par le fluide de refroidissement, et le clapet interne comprend un ressort hélicoïdal de compression, engagé axialement entre une portée aval solidaire du corps de gicleur et une surface aval du piston pour solliciter le piston vers l'amont contre le siège annulaire d'obturation.
  • Une telle structure présente une grande endurance, une grande stabilité, qui réduit les oscillations et réduit très sensiblement les phénomènes d'usure.
  • Selon l'invention, l'alésage de guidage dans lequel le piston coulisse est essentiellement à l'intérieur d'un tronçon amont du corps de gicleur, en amont du passage radial de fluide, et des passages de conduction de fluide conduisent axialement le fluide depuis l'aval du siège annulaire d'obturation jusqu'au passage radial de fluide dès que le piston s'écarte du siège annulaire d'obturation, de façon que, à l'état ouvert du clapet interne, le piston se situe essentiellement en amont du passage radial de fluide.
  • On peut avantageusement prévoir que le tronçon aval de piston comporte un logement coaxial aval dans lequel s'engage et est guidée la partie d'extrémité amont du ressort hélicoïdal de compression.
  • Dans une première réalisation, le corps de gicleur comprend un alésage axial traversant, dans lequel est engagée sans jeu et maintenue en position une chemise tubulaire à alésage axial dont un tronçon aval forme l'alésage de guidage recevant le tronçon aval de piston, la chemise tubulaire ayant un épaulement intermédiaire interne formant le siège annulaire d'obturation, au moins un trou radial étant prévu dans la paroi de chemise tubulaire immédiatement en aval du siège annulaire d'obturation pour conduire radialement le fluide vers un ou plusieurs passages périphériques prévus entre la surface externe de la chemise tubulaire et la surface de l'alésage axial traversant du corps de gicleur, lesdits passages périphériques étant adaptés pour conduire axialement le fluide de refroidissement depuis le ou les trous radiaux jusqu'au passage radial de fluide dans le corps de gicleur. De la sorte, à l'état ouvert du clapet, le piston se trouve en amont du passage radial de sortie de fluide.
  • Par exemple, le ou les passages périphériques sont réalisés par un tronçon d'alésage axial traversant de plus grand diamètre, tandis que la chemise tubulaire a un diamètre externe sensiblement constant laissant un espace intermédiaire annulaire par lequel s'écoule le fluide de refroidissement.
  • De préférence, la chemise tubulaire est réalisée en acier fritté, tandis que le piston est en acier. On favorise ainsi considérablement le glissement entre le piston et la chemise, réduisant ainsi les phénomènes d'usure et les risques de grippage.
  • Selon une autre réalisation, le piston comporte, entre son tronçon aval à surface latérale cylindrique de guidage et la tête d'obturation, un évidement annulaire externe définissant, avec la paroi de l'alésage de guidage, un logement annulaire communiquant par des trous radiaux de piston avec un alésage axial de piston ouvert vers l'aval dans l'alésage axial traversant de corps qui conduit le fluide de refroidissement jusqu'au passage radial de fluide dans le corps de gicleur. De la sorte, à l'état ouvert du clapet, le piston est nettement en amont du passage radial de sortie de fluide.
  • Le siège annulaire d'obturation peut être une bague annulaire rapportée dans l'alésage axial traversant du corps de gicleur.
  • D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:
    • la figure 1 est une vue en perspective éclatée d'une structure de gicleur selon un premier mode de réalisation de la présente invention ;
    • la figure 2 est une vue en perspective en section partielle du gicleur de la figure 1, assemblé ;
    • la figure 3 est une vue de face en coupe longitudinale du gicleur des figures 1 et 2, illustrant le fonctionnement ;
    • la figure 4 est une vue en perspective éclatée d'un gicleur selon un second mode de réalisation de la présente invention ;
    • la figure 5 est une vue en perspective en section partielle du gicleur de la figure 4, assemblé ;
    • la figure 6 est une vue de face en coupe longitudinale du gicleur des figures 4 et 5, illustrant le fonctionnement ; et
    • la figure 7 illustre un gicleur selon l'invention incorporé dans un moteur à combustion interne.
  • Dans les deux modes de réalisation illustrés sur les figures, un gicleur de refroidissement de piston pour moteur à combustion interne comporte un corps de gicleur 1, un clapet interne 2, et une structure de sortie 3 adaptée pour transmettre le fluide de refroidissement sortant du clapet et pour le diriger en jet au moins contre le fond d'un piston à refroidir.
  • Le corps de gicleur 1 comprend une partie pénétrante 4, conformée pour s'engager dans un alésage du moteur et pour recevoir un fluide de refroidissement arrivant par ledit alésage du moteur. Le corps de gicleur 1 comporte une partie dépassante 5, destinée à dépasser dans le cylindre moteur et à porter la structure de sortie 3.
  • Dans les deux modes de réalisation, le clapet interne 2 comprend un piston 6, ayant un tronçon aval 7 à surface latérale 8 cylindrique de guidage engagée à coulissement longitudinal dans un alésage de guidage 9 solidaire du corps de gicleur 1. Le piston 6 comprend une tête d'obturation 10, orientée vers l'amont dans le sens d'écoulement du fluide de refroidissement pour venir porter sélectivement contre un siège annulaire d'obturation 11 solidaire du corps de gicleur 1 et comportant un alésage de siège 12 pour être traversé par le fluide de refroidissement.
  • Le clapet interne 2 comprend en outre un ressort hélicoïdal de compression 13, engagé axialement entre une portée aval 14 solidaire du corps de gicleur 1 et une surface aval 15 du piston 6, pour solliciter le piston 6 vers l'amont contre le siège annulaire d'obturation 11.
  • On comprend que, dans ses déplacements le long de l'axe longitudinal I-I du gicleur, le piston 6 est parfaitement guidé, ce qui évite tout risque d'oscillation et d'instabilité, de sorte que le gicleur présente une plus grande endurance et une plus faible usure.
  • La structure de sortie 3 comprend au moins un passage radial de fluide 17 dans le corps de gicleur 1, et au moins un tube de sortie 18 ayant une première extrémité emmanchée dans le passage radial de fluide 17 correspondant.
  • Le piston 6 coulisse dans l'alésage de guidage 9 à l'intérieur d'un tronçon amont 16 de corps de gicleur 1, en amont du passage radial de fluide 17, entre une position de fermeture de clapet et une position d'ouverture de clapet. En position d'ouverture de clapet, le piston 6 reste essentiellement en amont du passage radial de fluide 17.
  • Ainsi, le piston coulissant de façon étanche dans l'alésage de guidage 9 s'oppose a priori au passage de fluide entre le siège annulaire d'obturation 11 et le passage radial de fluide 17. Pour assurer le passage du fluide, l'invention prévoit, dans l'un et l'autre des modes de réalisation illustrés, des passages de conduction de fluide conduisant le fluide axialement depuis l'aval du siège annulaire d'obturation 11 jusqu'au passage radial de fluide 17 dès que le piston s'écarte du siège annulaire d'obturation 11. Les passages de conduction de fluide seront décrits ci-après, et présentent des structures différentes dans l'un et l'autre des modes de réalisation illustrés.
  • Pour utiliser un ressort hélicoïdal de compression 13 de grande longueur sans augmenter la longueur de la partie dépassante 5 du gicleur dans le cylindre moteur, le tronçon aval 7 du piston 6 comporte un logement coaxial aval 19 dans lequel s'engage et est guidée la partie d'extrémité amont 20 du ressort hélicoïdal de compression 13.
  • Dans les deux modes de réalisation, le corps de gicleur 1 comprend un alésage axial traversant 21, selon l'axe I-I du corps de gicleur 1, dans lequel coulisse axialement le piston 6.
  • Dans le mode de réalisation des figures 1 à 3, une chemise tubulaire 22 est engagée sans jeu et maintenue en position dans l'alésage axial traversant 21, dans la partie dépassante 5 du gicleur, en étant engagée entre un bouchon aval 39 et une bague amont 40. La chemise tubulaire 22 comprend un alésage axial 23 dont un tronçon aval forme l'alésage de guidage 9 recevant le tronçon aval du piston 6.
  • La chemise tubulaire 22 comprend un épaulement intermédiaire interne formant le siège annulaire d'obturation 11.
  • On prévoit au moins un trou radial 24 dans la paroi de la chemise tubulaire 22, immédiatement en aval du siège annulaire d'obturation 11, pour conduire radialement le fluide à un ou plusieurs passages périphériques 25 prévus entre la surface externe de la chemise tubulaire 22 et la surface de l'alésage axial traversant 21 du corps de gicleur 1. Les passages périphériques 25 sont adaptés pour conduire axialement le fluide de refroidissement depuis le ou les trous radiaux 24 jusqu'au passage radial de fluide 17 dans le corps de gicleur 1.
  • De la sorte, on peut disposer le piston 6 en permanence en amont du passage radial de fluide 17 dans le corps de gicleur 1, et la partie dépassante 5 peut ainsi avoir un volume réduit.
  • Dans la réalisation illustrée sur les figures 1 à 3, les passages périphériques 25 sont réalisés par un tronçon d'alésage axial traversant 21 de plus grand diamètre, tandis que la chemise tubulaire 22 a un diamètre externe sensiblement constant, laissant un espace intermédiaire annulaire par lequel s'écoule le fluide de refroidissement.
  • Dans ce même mode de réalisation illustré, la chemise tubulaire 22 peut avantageusement être réalisée en acier fritté, tandis que le piston 6 est en acier. Il en résulte un très faible coefficient de frottement, et une bonne lubrification entre le piston 6 et la chemise tubulaire 22, facilitant les mouvements du piston sans usure et diminuant les risques de grippage.
  • Ce premier mode de réalisation favorise encore la stabilité du clapet, par le fait que le clapet est soumis en amont à la pression de fluide de refroidissement, alors qu'il n'est soumis en aval qu'à la pression de l'air et à la force de rappel du ressort. Le clapet est donc soit ouvert quand la pression de fluide est supérieure à la force du ressort, soit fermé dans le cas contraire, mais ne vibre jamais entre les deux positions.
  • Dans le mode de réalisation des figures 4 à 6, on retrouve un corps de gicleur 1 ayant les mêmes moyens essentiels que ceux du mode de réalisation précédent, ces moyens étant repérés par les mêmes références numériques, de sorte qu'il est superflu de les décrire à nouveau. On se référera pour cela aux dessins.
  • Dans ce second mode de réalisation, le piston 6 comporte, entre son tronçon aval 7 à surface latérale 8 cylindrique de guidage et la tête d'obturation 10, un évidement annulaire externe 26 définissant, avec la paroi de l'alésage de guidage 9, un logement annulaire communiquant par des trous radiaux de piston 27 avec un alésage axial de piston 28 ouvert vers l'aval dans l'alésage axial traversant 21 de corps qui conduit le fluide de refroidissement jusqu'au passage radial de fluide 17 dans le corps de gicleur 1.
  • Cette seconde structure permet également de placer le piston 6 en permanence en amont du passage radial de fluide 17 dans le corps de gicleur 1, en assurant la conduction axiale du fluide depuis le siège annulaire d'obturation 11 jusqu'au passage radial de fluide 17.
  • Dans le premier mode de réalisation des figures 1 à 3, on prévoit un évent 29 en aval du logement contenant le ressort hélicoïdal de compression 13, l'évent 29 permettant le passage d'air dans et hors du logement du ressort lors des mouvements du piston 6. L'évent 29 est réalisé dans le bouchon aval 39.
  • Par contre, dans le second mode de réalisation des figures 4 à 6, il n'est pas nécessaire de prévoir un évent en aval du ressort hélicoïdal de compression 13, l'échappement de fluide se faisant par les passages de conduction de fluide de refroidissement.
  • Dans ce même second mode de réalisation, le siège annulaire d'obturation 11 est une bague annulaire 30, rapportée dans l'alésage axial traversant 21 du corps de gicleur.
  • Le fonctionnement du gicleur est expliqué sur les figures 3 et 6.
  • Le fluide de refroidissement arrive par l'extrémité amont 31, dans un alésage du bloc moteur. Lorsque la pression du fluide de refroidissement est supérieure à un seuil prédéterminé, le fluide repousse le piston 6 à l'encontre de l'effort de rappel exercé par le ressort hélicoïdal de compression 13, de sorte que le fluide de refroidissement peut passer entre la tête d'obturation 10 et le siège annulaire d'obturation 11.
  • Dans le mode de réalisation de la figure 3, le fluide de refroidissement passe radialement à travers les trous radiaux 24, puis axialement le long des passages périphériques 25, pour atteindre le passage radial de fluide 17 et sortir par les tubes de sortie 18.
  • Dans le mode de réalisation de la figure 6, le fluide de refroidissement passe entre le siège annulaire d'obturation 11 et la tête d'obturation 10, se répartit dans l'évidement annulaire externe 26, passe radialement vers le centre par les trous radiaux de piston 27, puis se déplace axialement dans l'alésage axial de piston 28 puis dans l'alésage axial traversant 21 du corps qui conduit le fluide de refroidissement jusqu'au passage radial de fluide 17 et au tube de sortie 18.
  • La figure 7 illustre l'implantation d'un gicleur selon l'invention dans un moteur à combustion interne. La figure illustre une partie de moteur, comprenant un demi-cylindre moteur.
  • Le gicleur 32 est rapporté sur la paroi du carter de cylindre 33, à l'intérieur du moteur, pour prélever du fluide de refroidissement circulant dans une canalisation de refroidissement 34 et pour projeter le fluide de refroidissement dans le cylindre moteur contre le fond 35 du piston 36 de moteur, c'est-à-dire contre la face du piston de moteur qui est extérieure à la chambre d'explosion 37.
  • La partie pénétrante 4 du gicleur 32 est engagée dans un alésage correspondant du carter de cylindre 33, communiquant avec la canalisation de refroidissement 34. Le gicleur est ainsi fixé par tout moyen connu, par exemple emmanché en force ou vissé dans l'alésage correspondant du carter de cylindre 33. La partie dépassante 5 du gicleur 32 dépasse dans l'intérieur du cylindre moteur. On distingue le tube de sortie 18, qui est cintré de façon que son orifice de sortie 38 soit dirigé vers le haut contre le fond 35 du piston 36.
  • Un moteur à combustion interne peut ainsi comprendre avantageusement des gicleurs de refroidissement à piston selon l'invention, tels que décrits précédemment, fixés dans la ou les chambres de piston et adaptés pour projeter chacun le fluide de refroidissement en un jet concentré contre le fond d'un piston.
  • La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes.

Claims (8)

  1. Gicleur (32) de refroidissement de piston (36) d'un moteur à combustion interne, comportant un corps de gicleur (1) à partie pénétrante (4) conformée pour s'engager dans un alésage du moteur et pour recevoir un fluide de refroidissement arrivant par ledit alésage, comportant un clapet interne (2) pour moduler le débit de fluide en fonction de sa pression, et comportant une structure de sortie (3) à passage radial de fluide (17) dans le corps de gicleur (1) et à tube de sortie (18), adaptée pour transmettre le fluide de refroidissement sortant du clapet interne (2) et pour le diriger en jet au moins contre le fond (35) du piston (36) de moteur à refroidir, le clapet interne (2) comprenant un piston (6), ayant un tronçon aval (7) à surface latérale (8) cylindrique de guidage engagée à coulissement longitudinal dans un alésage de guidage (9) solidaire du corps de gicleur (1), ayant une tête d'obturation (10) orientée vers l'amont dans le sens d'écoulement du fluide de refroidissement pour venir porter sélectivement contre un siège annulaire d'obturation (11) solidaire du corps de gicleur (1) et traversé par le fluide de refroidissement, et le clapet interne (2) comprenant un ressort hélicoïdal de compression (13), engagé axialement entre une portée aval (14) solidaire du corps de gicleur (1) et une surface aval (15) du piston (6) pour solliciter le piston (6) vers l'amont contre le siège annulaire d'obturation (11),
    caractérisé en ce que l'alésage de guidage (9) dans lequel le piston (6) coulisse est essentiellement à l'intérieur d'un tronçon amont (16) du corps de gicleur (1), en amont du passage radial de fluide (17), et des passages de conduction de fluide (24, 25 ; 26, 27, 28) conduisent axialement le fluide depuis l'aval du siège annulaire d'obturation (11) jusqu'au passage radial de fluide (17) dès que le piston (6) s'écarte du siège annulaire d'obturation (11), de façon que, à l'état ouvert du clapet interne (2), le piston (6) se situe essentiellement en amont du passage radial de fluide (17).
  2. Gicleur de refroidissement selon la revendication 1, caractérisé en ce que le tronçon aval (7) de piston (6) comporte un logement coaxial aval (19) dans lequel s'engage et est guidée la partie d'extrémité amont (20) du ressort hélicoïdal de compression (13).
  3. Gicleur de refroidissement selon l'une des revendications 1 ou 2, caractérisé en ce que le corps de gicleur (1) comprend un alésage axial traversant (21), dans lequel est engagée sans jeu et maintenue en position une chemise tubulaire (22) à alésage axial (23) dont un tronçon aval forme l'alésage de guidage (9) recevant le tronçon aval de piston (6), la chemise tubulaire (22) ayant un épaulement intermédiaire interne formant le siège annulaire d'obturation (11), au moins un trou radial (24) étant prévu dans la paroi de chemise tubulaire (22) immédiatement en aval du siège annulaire d'obturation (11) pour conduire radialement le fluide vers un ou plusieurs passages périphériques (25) prévus entre la surface externe de la chemise tubulaire (22) et la surface de l'alésage axial traversant (21) du corps de gicleur (1), lesdits passages périphériques (25) étant adaptés pour conduire axialement le fluide de refroidissement depuis le ou les trous radiaux (24) jusqu'au passage radial de fluide (17) dans le corps de gicleur (1).
  4. Gicleur de refroidissement selon la revendication 3, caractérisé en ce que le ou les passages périphériques (25) sont réalisés par un tronçon d'alésage axial traversant (21) de plus grand diamètre, tandis que la chemise tubulaire (22) a un diamètre externe sensiblement constant laissant un espace intermédiaire annulaire par lequel s'écoule le fluide de refroidissement.
  5. Gicleur de refroidissement selon l'une des revendications 3 ou 4, caractérisé en ce que la chemise tubulaire (22) est réalisée en acier fritté, tandis que le piston (6) est en acier.
  6. Gicleur de refroidissement selon l'une des revendications 1 ou 2, caractérisé en ce que le piston (6) comporte, entre son tronçon aval (7) à surface latérale (8) cylindrique de guidage et la tête d'obturation (10), un évidement annulaire externe (26) définissant, avec la paroi de l'alésage de guidage (9), un logement annulaire communiquant par des trous radiaux de piston (27) avec un alésage axial de piston (28) ouvert vers l'aval dans l'alésage axial traversant (21) de corps qui conduit le fluide de refroidissement jusqu'au passage radial de fluide (17) dans le corps de gicleur.
  7. Gicleur de refroidissement selon la revendication 6, caractérisé en ce que le siège annulaire d'obturation (11) est une bague annulaire (30) rapportée dans l'alésage axial traversant (21) du corps de gicleur (1).
  8. Moteur à combustion interne comprenant au moins un gicleur à piston selon l'une quelconque des revendications 1 à 7.
EP20020356115 2001-07-04 2002-06-21 Gicleur de refroidissement à piston Revoked EP1273774B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0109046A FR2827009B1 (fr) 2001-07-04 2001-07-04 Gicleur de refroidissement a piston
FR0109046 2001-07-04

Publications (2)

Publication Number Publication Date
EP1273774A1 EP1273774A1 (fr) 2003-01-08
EP1273774B1 true EP1273774B1 (fr) 2006-09-13

Family

ID=8865247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020356115 Revoked EP1273774B1 (fr) 2001-07-04 2002-06-21 Gicleur de refroidissement à piston

Country Status (9)

Country Link
US (1) US6672262B2 (fr)
EP (1) EP1273774B1 (fr)
CN (1) CN100404812C (fr)
AT (1) ATE339605T1 (fr)
BR (1) BR0202521B1 (fr)
DE (1) DE60214626T2 (fr)
ES (1) ES2271205T3 (fr)
FR (1) FR2827009B1 (fr)
PT (1) PT1273774E (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214830A1 (de) * 2002-04-04 2004-01-08 Mahle Gmbh Öleinlass für einen mit Kühlkanal versehenen Kolben eines Verbrennungsmotors
FR2844003B1 (fr) 2002-09-02 2006-06-16 Bontaz Centre Sa Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs
FR2844002B1 (fr) * 2002-09-02 2006-03-31 Bontaz Centre Sa Gicleur a projections multiples pour refroidissement de moteur, et moteurs equipes de tels gicleurs
DE10261180A1 (de) * 2002-12-20 2004-07-01 Daimlerchrysler Ag Temperaturgeregelte Ölspritzdüse zur Kolbenkühlung
US7152623B2 (en) 2003-09-09 2006-12-26 Metaldyne Company, Llc Fluid jet for providing fluid under pressure to a desired location
US7086354B2 (en) 2003-10-29 2006-08-08 Deere & Company Cooling nozzle mounting arrangement
US7063049B2 (en) * 2004-03-03 2006-06-20 Deere & Company Directed spray jet and installation tool
US20060169331A1 (en) * 2004-08-09 2006-08-03 Neto Jose C Fluid jet with noise reducing sleeve
EP1834118B1 (fr) * 2004-12-21 2014-02-12 Metaldyne, LLC Jet de fluide comprenant un manchon reduisant le bruit
FR2885170B1 (fr) 2005-05-02 2007-09-21 Bontaz Ct Sa Clapet a fuite controlee pour gicleur de refroidissement de piston
FR2913723B1 (fr) 2007-03-16 2009-06-12 Bontaz Ct Soc Par Actions Simp Gicleur de refroidissement a clapet
US8397749B2 (en) * 2007-09-07 2013-03-19 Metaldyne Company Llc Piston cooling jet with tracking ball orifice
EP2282089B1 (fr) 2009-08-05 2019-02-20 HAWE Hydraulik SE Soupape hydraulique
CN101865015B (zh) * 2010-06-02 2011-11-16 奇瑞汽车股份有限公司 一种活塞冷却喷嘴
JP5827164B2 (ja) * 2012-04-04 2015-12-02 トヨタ自動車株式会社 オイルジェット
US8875668B2 (en) * 2012-08-31 2014-11-04 Honda Motor Co., Ltd. Apparatus configured to shelter oil-jet device from inadvertent installation damage
JP5680601B2 (ja) * 2012-09-29 2015-03-04 大豊工業株式会社 ピストンクーリングジェット
JP6148111B2 (ja) * 2013-08-09 2017-06-14 トヨタ自動車株式会社 オイルジェット
JP6030585B2 (ja) 2014-01-17 2016-11-24 トヨタ自動車株式会社 オイルジェットバルブの取付方法
GB201519640D0 (en) * 2015-11-06 2015-12-23 Gm Global Tech Operations Inc Piston cooling jet for an internal combustion engine
CN105736112B (zh) * 2016-02-05 2018-04-24 重庆科克发动机技术有限公司 一种发动机冷却润滑油喷嘴
DE102016202643A1 (de) * 2016-02-22 2017-08-24 Mahle International Gmbh Kolben einer Brennkraftmaschine
CN106762079A (zh) * 2016-12-09 2017-05-31 重庆小康工业集团股份有限公司 发动机活塞冷却机构
CN106499493B (zh) * 2016-12-09 2020-03-10 重庆小康工业集团股份有限公司 发动机活塞冷却用喷油头
FR3067437B1 (fr) 2017-06-13 2019-08-02 Bontaz Centre R & D Gicleur de fluide axial a clapet evente
US10704450B2 (en) * 2017-06-16 2020-07-07 Illinois Tool Works Inc. Piston cooling jet assembly
EP3649333B1 (fr) * 2017-07-07 2023-06-14 Volvo Truck Corporation Buse pour refroidir des pistons de moteur
DE102017223465A1 (de) 2017-12-20 2019-06-27 Volkswagen Aktiengesellschaft Kolbenkühldüse
US11333140B2 (en) * 2019-06-11 2022-05-17 Caterpillar Inc. Cooling block for multi-cylinder air compressor
USD921044S1 (en) * 2019-08-02 2021-06-01 Transportation Ip Holdings, Llc Piston cooling apparatus
USD928201S1 (en) * 2019-08-02 2021-08-17 Transportation Ip Holdings, Llc Piston cooling apparatus
CN110682213A (zh) * 2019-11-13 2020-01-14 浙江方圆机床制造有限公司 砂轮修整器
FR3103244B1 (fr) * 2019-11-15 2022-12-23 Bontaz Centre R&D Clapet à piston compact
WO2021224903A1 (fr) * 2020-05-03 2021-11-11 Yaacobi Amnon Procédé et système de commande de la température d'un moteur
DE102021115936A1 (de) * 2020-07-08 2022-01-13 Transportation Ip Holdings, Llc Kolbenkühldüse
USD965029S1 (en) * 2020-09-11 2022-09-27 Transportation Ip Holdings, Llc Piston cooling jet
DE102022105567A1 (de) 2022-03-09 2023-09-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Einspritzventil und Elektromaschine mit einem Einspritzventil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800119A (en) * 1955-05-05 1957-07-23 Maschf Augsburg Nuernberg Ag Arrangement for cooling the piston of internal combustion engines
DE2141518A1 (de) * 1971-08-19 1973-02-22 Kloeckner Humboldt Deutz Ag Hubkolbenbrennkraftmaschine mit innerer kuehlung der arbeitskolben durch schmieroel
DE4018363A1 (de) * 1990-06-08 1991-12-12 Wahler Gmbh & Co Gustav Drucksteuerventil, insbesondere fuer oelspritzduesen fuer brennkraftmaschinen
FR2719868B1 (fr) * 1994-05-10 1996-06-21 Bontaz Centre Gicleur de refroidissement de piston pour moteur à combustion interne.
JP3106058B2 (ja) * 1994-05-20 2000-11-06 株式会社ユニシアジェックス 内燃機関における潤滑・冷却装置
CN2272493Y (zh) * 1996-05-22 1998-01-14 杭州汽车发动机厂 四缸柴油机用活塞冷却装置
EP0947285A1 (fr) * 1998-03-31 1999-10-06 Senior Engineering Investments AG Dispositif à tube de pulvérisation pour moteur de véhicule automobile et procédé de fabrication

Also Published As

Publication number Publication date
FR2827009B1 (fr) 2003-12-12
PT1273774E (pt) 2007-01-31
EP1273774A1 (fr) 2003-01-08
DE60214626D1 (de) 2006-10-26
CN1395031A (zh) 2003-02-05
DE60214626T2 (de) 2007-10-04
ATE339605T1 (de) 2006-10-15
ES2271205T3 (es) 2007-04-16
US20030005893A1 (en) 2003-01-09
US6672262B2 (en) 2004-01-06
BR0202521A (pt) 2003-05-13
FR2827009A1 (fr) 2003-01-10
BR0202521B1 (pt) 2011-03-09
CN100404812C (zh) 2008-07-23

Similar Documents

Publication Publication Date Title
EP1273774B1 (fr) Gicleur de refroidissement à piston
EP1980729B1 (fr) Gicleur de refroidissement à clapet
EP1728981A2 (fr) Clapet à fuite controlée pour gicleur de refroidissement de piston
CA2864629C (fr) Injecteur de carburant pour une turbomachine
EP2006587B1 (fr) Système de clapet d'étanchéité
EP3638936B1 (fr) Gicleur de fluide axial a clapet evente
FR2800691A1 (fr) Amortisseur de direction pour une direction assistee hydraulique
FR2519074A1 (fr) Regleur hydraulique pour culbuterie de moteur a combustion interne
FR2466688A1 (fr) Soupape anti-a-coup pour dispositif hydraulique de blocage et dispositif hydraulique de blocage
FR3045735A1 (fr) Pompe de pressurisation de fluide et systeme de pressurisation de fluide
CA1233051A (fr) Frein de recul hydropneumatique a recuperation d'energie pour pieces d'artillerie et armes a feu
EP0682175A1 (fr) Gicleur de refroidissement de piston pour moteur à combustion interne
EP1937983B1 (fr) Valve a ouverture amortie
EP0269471B1 (fr) Joint hydraulique tournant annulaire à température stabilisée
EP2104780A1 (fr) Moteur thermique de vehicule automobile comportant un conduit de degazage de pompe a eau
EP1229245B1 (fr) Dispositif d'échange pour un circuit fermé
EP1183467B1 (fr) Pompe a haute pression a etancheite perfectionnee
EP0785344B1 (fr) Gicleur de refroidissement à emmanchement
EP1171724B1 (fr) Dispositif formant amortisseur dissymetrique pour une suspension de vehicule automobile
FR2803005A1 (fr) Tendeur hydraulique pour lien sans fin, systeme de distribution comprenant un tel tendeur et moteur equipe d'un tel systeme de distribution
FR2655702A1 (fr) Dispositif formant vanne de regulation pour circuit de lubrification d'un moteur thermique.
FR2660394A1 (fr) Valve d'alimentation d'une capacite puis de decharge brutale de cette capacite.
EP1004843A1 (fr) Dispositif de régulation de la vitesse de rentrée en batterie d'un canon d'artillerie en fonction de la température
FR2720468A1 (fr) Clapet à bille avec butée.
FR2714137A1 (fr) Dispositif de sécurité automatique formant robinet d'arrêt.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030704

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060913

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60214626

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20061124

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2271205

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BING POWER SYSTEMS GMBH

Effective date: 20070612

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: BONTAZ CENTRE

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080530

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080527

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20080617

Year of fee payment: 7

Ref country code: PT

Payment date: 20080528

Year of fee payment: 7

Ref country code: IT

Payment date: 20080626

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080627

Year of fee payment: 7

Ref country code: IE

Payment date: 20080526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080618

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080630

Year of fee payment: 7

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20090113

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20090113

REG Reference to a national code

Ref country code: PT

Ref legal event code: MP4A

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913