EP1269132A1 - Optisches verfahren und vorrichtung zum berührungsfreien messen der temperatur einer strömenden flüssigkeit - Google Patents

Optisches verfahren und vorrichtung zum berührungsfreien messen der temperatur einer strömenden flüssigkeit

Info

Publication number
EP1269132A1
EP1269132A1 EP01913981A EP01913981A EP1269132A1 EP 1269132 A1 EP1269132 A1 EP 1269132A1 EP 01913981 A EP01913981 A EP 01913981A EP 01913981 A EP01913981 A EP 01913981A EP 1269132 A1 EP1269132 A1 EP 1269132A1
Authority
EP
European Patent Office
Prior art keywords
measurement
temperature
liquid
tracer
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01913981A
Other languages
English (en)
French (fr)
Inventor
Fabrice Lemoine
Pascal La Vieille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National Polytechnique de Lorraine
Original Assignee
Institut National Polytechnique de Lorraine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Polytechnique de Lorraine filed Critical Institut National Polytechnique de Lorraine
Publication of EP1269132A1 publication Critical patent/EP1269132A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials

Definitions

  • the present invention relates to a laser source optical method and device for the non-intrusive measurement of the temperature in a flowing liquid.
  • Laser source measuring devices are already used, for example that of application EP 345188, based on the observation of interference fringes created inside a fluid flowing in a pipe, at the outlet of two optical fibers transporting light from an external laser source
  • patent application FR 2 579 320 describes a measurement method by ultrasonic wave intended for the thermal monitoring of nuclear reactors. This technique only allows knowledge of only one parameter of the fluid, namely its temperature
  • the inventors turned to optical methods, and in particular to a laser-induced fluorescence method already studied in the laboratory by the inventors to determine the concentration of a fluid and the principle of which is recalled below.
  • Fluorescence physical phenomenon known for many years, is the consequence of deactivation of an excited state of a fluorescent species to a ground state by spontaneous emission
  • the excited state can be induced by a laser radiation having a wavelength coincides with the absorption spectrum of the fluorescent species
  • the time between absorption and emission of a photon is of the order of a few nanoseconds, which makes the technique applicable to the study of rapidly variable phenomena. temporal resolution can reach a few tens of kHz
  • the intensity of fluorescence can be expressed by the relation
  • I fluo K-opt K sp ec CV c I 0 e "/ where K op V c , I 0 , C, are respectively, the coefficient characterizing the optical chain, the volume of collection of fluorescence photons, the laser intensity incident, the molecular concentration of the fluorescent tracer K spec and? are constants depending only on the characteristics of the molecule used as fluorescent tracer The application of this principle makes it possible to obtain the temperature in simple situations where the volume, the concentration and the laser intensity are well controlled or remain constant
  • the concentrations of each of the two tracers must be controlled
  • the emission spectra of the two tracers must be sufficiently separated, in order to be able to separate the fluorescent emissions from each of the tracers using a set of interference filters which is difficult to achieve in practice
  • the two-color fluorescence method according to the invention uses ultra-fast photophysical principles in relation to phenomena of electronic transition and collisional deactivation and not the kinetics of a chemical reaction induced by irradiation
  • the response time of the technique is considerably improved
  • French patent application FR 2 484 639 is also known.
  • the method described in this document is an intrusive method since it requires the presence of sensors at various measurement locations, while the method according to the invention is a non-intrusive method.
  • the fluorescent material used is a solid state material (page 8 lines 2-3) while the tracer according to the invention is a tracer in molecular solution in the liquid whose temperature is measured
  • the Patent Abstract of Japan is also known from the summary provided, the method consists of seeding in fluorescent particles and not in a tracer in molecular solution, and uses irradiation in UV light and not laser radiation.
  • the invention consists of an optical method for the non-intrusive measurement of the temperature of a flowing liquid, characterized by the use of fluorescence induced by laser radiation in a measurement volume of the liquid, and characterized in that it consists in using a single fluorescent tracer sensitive to temperature and at least two separate spectral detection windows on this same tracer, after molecular dilution of said tracer in said liquid medium
  • the method preferably comprises the following steps reception of the optical signal and elimination of any diffusion or reflection of the excitatory laser component, separation of the optical signal into several light signals, creation of a detection window on each light signal obtained after the previous separation, amplification of said light signals collected in the detection windows and transformation of these into as many electrical signals, acquisition, processing and display of the previous electrical signals
  • the invention also consists of a device for the non-intrusive measurement of the temperature of a flowing liquid by using fluorescence induced by laser radiation in a liquid measurement volume, characterized in that it is designed for setting up opens the method according to the invention and in that it mainly comprises a single reception channel with
  • a holographic band rejection filter a set of separation of the optical signal into two light signals on each optical measurement channel "a filter to create a measurement window
  • an amplifier device to amplify and transform light signals into electrical signals
  • laser radiation is chosen from the whole (single laser beam, double laser beam, laser sheet)
  • the filter creating the measurement window can be chosen from the set (interference filter, bandpass, high pass filter, low pass filter)
  • an interferential band pass filter of bandwidth ⁇ L, crossed by the first signal, centered on a wavelength ⁇ ⁇ has been chosen and, for a second measurement channel, a pass filter high crossed by the second signal allowing the optical intensity to pass from a threshold wavelength ⁇
  • Rhodamine B (C 28 H 31 CN 2 O 3 ) It is reputed to be particularly sensitive to temperature In addition, the temperature sensitivity of this tracer is different depending on the spectral band of the fluorescence spectrum considered
  • the invention proposes according to a first example of use a single plotter and two separate spectral detection windows on the same plotter
  • the resulting sensitivity of the method as used in the invention is of the order of 2% variation in the fluorescence signal per ° C, which, taking into account the signal-to-noise ratio observed, leads to precision on the temperature below 1 ° C
  • the detection is therefore done on two pre-defined spectral windows and not on the study of complete spectra, which does not require the use of spectrometer, but only simple photodetectors (photodiodes , photomultipliers, CCD cameras)
  • the inventors have produced a device (1) based on the fluorescence induced by laser radiation (2) in a measurement volume (3) of a flowing liquid and allowing the separation of the signals and their detection
  • the laser radiation can be in the form of one or two laser beams, or even a laser sheet.
  • the use of two laser beams intersecting a point defining the measurement volume allows a joint measurement of the speed at using a commercial bicycle chain
  • the device mainly but not limited to
  • a holographic filter (6) rejecting a band making it possible to eliminate any scattering or reflection of the exciting laser component (12) * A set of separation (4) of the optical signal (5) into at least two light signals, equal or not ( 5a, 5b) for example two, by means of two neutral separators (4a, 4b) to be defined according to the desired power on each "On each optical measurement channel:
  • a filter which can be a band pass interference filter, a high pass or low pass filter to create a measurement window suitable for the tracer used
  • HERE Rhodamine B in solution in ethanol
  • An interference filter (7) pass band crossed by the signal (5a) and allowing to obtain the first measurement window (10) visible on the graph of the figure (2)
  • the filter (7) is centered on a wavelength K ⁇ ⁇ ⁇ i, preferably 530 n ⁇ 5nm -
  • a high pass filter (8), crossed by the second signal (5b) and letting the optical intensity pass from a wavelength ⁇ 2 threshold, preferably ⁇ 590 nm approximately -
  • the essential criterion for choosing wavelengths is to have different temperature sensitivities
  • the windows and wavelengths are chosen according to the temperature response curve of the tracer , or of the tracer-solvent mixture Cost criteria may also be involved in the choice of filters.
  • the term "window" is understood in its general sense, a window being able to be composed of one or more interven wavelength ranges, bounded or not, the same term
  • “Distinct” does not exclude any partial overlapping or the inclusion of windows and the expressions “measurement window” or “detection window” have equivalent meaning •: • An amplifying device (9a, 9b) for amplifying and transforming the light signals (5a, 5b) into electrical signals for example a photomultiphcator, a photodiode, a CCD sensor These amplifying devices ensure the precise measurement, with a short response time, of the fluorescence intensities "A computer system (11), with software It receives the electrical signals by an acquisition system, not shown, processes them and displays the results on a screen
  • K is a constant depending only on the optical chain used and on the spectroscopic properties of the molecule used as a fluorescent tracer This ratio has the advantage of being independent of the concentration of fluorescent tracer, of the exciting laser intensity, and of the excited fluorescent volume
  • the device constant (K) is determined by a simple initial calibration point at a known temperature T 0
  • the equation (E,) is thus transformed
  • the concentration of the liquid or the measurement volume can be obtained simultaneously (3)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
EP01913981A 2000-03-09 2001-03-12 Optisches verfahren und vorrichtung zum berührungsfreien messen der temperatur einer strömenden flüssigkeit Withdrawn EP1269132A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0003005A FR2806159B1 (fr) 2000-03-09 2000-03-09 Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement
PCT/FR2001/000723 WO2002073145A1 (fr) 2000-03-09 2001-03-12 Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement

Publications (1)

Publication Number Publication Date
EP1269132A1 true EP1269132A1 (de) 2003-01-02

Family

ID=8847890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913981A Withdrawn EP1269132A1 (de) 2000-03-09 2001-03-12 Optisches verfahren und vorrichtung zum berührungsfreien messen der temperatur einer strömenden flüssigkeit

Country Status (4)

Country Link
US (1) US7059766B2 (de)
EP (1) EP1269132A1 (de)
FR (1) FR2806159B1 (de)
WO (1) WO2002073145A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796144B2 (en) * 2001-05-30 2004-09-28 Battelle Memorial Institute System and method for glass processing and temperature sensing
DE102005007872B3 (de) * 2005-02-21 2006-06-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Temperaturmessung in einem mikrofluidik Kanal einer Mikrofluidikvorrichtung
US7182510B2 (en) * 2005-04-04 2007-02-27 David Gerard Cahill Apparatus and method for measuring thermal conductivity
US7846390B2 (en) * 2006-03-30 2010-12-07 King Fahd University Of Petroleum And Minerals Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence
US7789556B2 (en) * 2006-11-16 2010-09-07 University Of South Florida Thermally compensated dual-probe fluorescence decay rate temperature sensor and method of use
WO2008113015A1 (en) * 2007-03-14 2008-09-18 Entegris, Inc. System and method for non-intrusive thermal monitor
WO2008128213A1 (en) * 2007-04-12 2008-10-23 Regents Of The University Of Minnesota Systems and methods for analyzing a particulate
CN100543460C (zh) * 2007-05-24 2009-09-23 泰州动态通量生命科学仪器有限公司 一种高通量实时微量多功能荧光检测仪
DE102007035499B3 (de) * 2007-07-28 2008-11-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Bestimmung von Temperaturen in einer Gasströmung
DE102008009660A1 (de) 2008-02-18 2009-08-27 Rational Ag Berührungsloser Garsensor
DE102008056329B3 (de) * 2008-11-07 2010-01-07 Forschungszentrum Karlsruhe Gmbh Verfahren zur Bestimmung eines Temperaturfelds
WO2010148332A2 (en) * 2009-06-19 2010-12-23 Regents Of The University Of Minnesota Systems and methods for analyzing a particulate
US8330961B1 (en) 2010-07-15 2012-12-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical multi-species gas monitoring sensor and system
US8350585B2 (en) * 2011-05-31 2013-01-08 Primestar Solar, Inc. Simultaneous QE scanning system and methods for photovoltaic devices
NL2007149C2 (nl) * 2011-07-20 2013-01-22 Lely Patent Nv Sensorsysteem, sensorinrichting daarmee, en melkdierbehandelingsinrichting daarmee.
DE102013205848B3 (de) * 2013-04-03 2014-07-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Optisches Temperatursensorsystem
WO2015015010A1 (en) * 2013-08-02 2015-02-05 Koninklijke Philips N.V. Apparatus and method for controlling food temperature
US9964455B2 (en) * 2014-10-02 2018-05-08 General Electric Company Methods for monitoring strain and temperature in a hot gas path component
CN105300563B (zh) * 2015-11-19 2017-10-03 哈尔滨工业大学 一种上转换荧光强度比测温技术的修正方法
CN105466592B (zh) * 2015-11-19 2017-11-03 哈尔滨工业大学 一种下转换荧光强度比测温技术的修正方法
DE102018203048A1 (de) * 2018-03-01 2019-09-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Messen einer Temperatur eines Fluids zur Verwendung mit einer mikrofluidischen Analysevorrichtung und mikrofluidische Analysevorrichtung mit einer Vorrichtung
CN110186587B (zh) * 2019-07-12 2021-02-26 南昌航空大学 一种荧光测温方法
US11285477B2 (en) 2019-08-29 2022-03-29 Robert Bosch Gmbh Method and apparatus for measuring a temperature of a fluid for use with a microfluidic analysis apparatus, and microfluidic analysis apparatus comprising an apparatus
CN111289484A (zh) * 2020-03-11 2020-06-16 哈尔滨工业大学(威海) 一种基于罗丹明b荧光特性的冷表皮检测方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA70655B (en) * 1969-08-02 1971-04-28 Impulsphysik Gmbh Appliance for measuring the concentration of fluorescing material in air and water in great dilutions
US3960753A (en) * 1974-05-30 1976-06-01 Rca Corporation Fluorescent liquid crystals
US4061578A (en) * 1976-04-05 1977-12-06 Marcos Kleinerman Infrared detection and imaging, method and apparatus
US4215275A (en) * 1977-12-07 1980-07-29 Luxtron Corporation Optical temperature measurement technique utilizing phosphors
SE438048B (sv) * 1980-06-16 1985-03-25 Asea Ab Fiberoptisk temperaturgivare baserad pa fotoluminiscens hos ett fast material, som er utsatt for den temperatur som skall metas
US4459044A (en) * 1981-02-09 1984-07-10 Luxtron Corporation Optical system for an instrument to detect the temperature of an optical fiber phosphor probe
US4708494A (en) * 1982-08-06 1987-11-24 Marcos Kleinerman Methods and devices for the optical measurement of temperature with luminescent materials
US4791585A (en) * 1985-02-27 1988-12-13 The Regents Of The University Of California Cryogenic thermometer employing molecular luminescence
FR2579320B1 (fr) 1985-03-19 1987-11-20 Framatome Sa Procede de mesure de la temperature d'un fluide dans une enceinte a l'aide d'une onde ultrasonore et dispositif pour la mise en oeuvre de ce procede
US4613237A (en) * 1985-08-22 1986-09-23 United Technologies Corporation Method for determining the temperature of a fluid
FR2632406B1 (fr) 1988-06-03 1990-09-21 Karlsruhe Augsburg Iweka Ensemble de detection et de mesure simultanees de la pression et de la temperature dans un fluide sous pression
US4885633A (en) * 1988-06-13 1989-12-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment
US5377004A (en) * 1993-10-15 1994-12-27 Kaiser Optical Systems Remote optical measurement probe
FR2713768B1 (fr) * 1993-12-10 1996-02-09 Sextant Avionique Procédé et appareil de mesure optique de la température d'un mélange gazeux.
GB9508427D0 (en) * 1995-04-26 1995-06-14 Electrotech Equipments Ltd Temperature sensing methods and apparatus
JPH09126837A (ja) * 1995-10-27 1997-05-16 Osaka Gas Co Ltd 流体の流れの計測と該流体の温度の測定とを同時に行なう方法
US5788374A (en) * 1996-06-12 1998-08-04 The United States Of America As Represented By The Secretary Of Commerce Method and apparatus for measuring the temperature of a liquid medium
EP1391708B1 (de) * 2002-08-14 2007-12-26 Sony Deutschland GmbH Verfahren zur Bestimmung der Temperatur eines Systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02073145A1 *

Also Published As

Publication number Publication date
WO2002073145A8 (fr) 2003-02-13
WO2002073145A1 (fr) 2002-09-19
FR2806159A1 (fr) 2001-09-14
US7059766B2 (en) 2006-06-13
FR2806159B1 (fr) 2003-03-07
US20030048831A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
EP1269132A1 (de) Optisches verfahren und vorrichtung zum berührungsfreien messen der temperatur einer strömenden flüssigkeit
EP1166099B1 (de) Detektor für laser-induzierte fluoreszenz und anwendungsverfahren für dieses gerät
EP0637742B1 (de) Vorrichtung und Verfahren zur Messung der Konzentration von Glukose mittels Lichtstreuung
CA2622487C (fr) Materiau nanoporeux d'aldehydes a transduction optique directe
FR3038723B1 (fr) Procede d’estimation d’une quantite d’analyte dans un liquide
Hankus et al. Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application
FR2963101A1 (fr) Detecteur de particules et procede de realisation d'un tel detecteur
EP3559641A1 (de) Vereinfachte vorrichtung zur erkennung der bildung von gashydraten
FR3024236A1 (fr) Capteur et dispositif pour la detection de fongicides en milieu hydro-alcoolique
WO2013045807A1 (fr) Systeme de detection et/ou de quantification in vitro par fluorimetrie
WO2010043824A1 (fr) Procede de determination de la phase solide/liquide
EP1664735B1 (de) Online-messung charakteristischer merkmale eines durchfluss-dispersionssystems
EP0522988B1 (de) Verfahren und Vorrichtungen zum Infrarot-Nachweis von Verschmutzungen in wässerigen Medien
CA2765198A1 (fr) Dispositif et procede de determination de la concentration d'un compose dans une phase aqueuse ou gazeuse
Scholten et al. Vapor discrimination by dual-laser reflectance sensing of a single functionalized nanoparticle film
EP3094405B1 (de) Mikrofluidische-vorrichtung zur analyse von schadstoffen im umlauf
TWI435068B (zh) Crystal fiber, Raman spectrometer with crystal fiber and its detection method
WO2003010523A1 (fr) Dispositif et procede de mesure d'un echantillon par spectroscopie par correlation
EP2344865A1 (de) Bestimmung der salzkonzentration einer wässrigen lösung
Siebenhofer et al. Transient absorption spectroscopy on spiropyran monolayers using nanosecond pump–probe Brewster angle reflectometry
WO2010136728A1 (fr) Dispositif de spectroscopie et procédé pour sa mise en oeuvre
Mittenzwey et al. An improved lidar method for monitoring surface waters: experiments in the laboratory
Jiang et al. An Optofluidic Nanoplasmonic Sensor for Aerosols
FR3044766A1 (fr) Systeme de mesure optique et son utilisation
FR3112387A1 (fr) Procédé pour caractériser des particules biologiques sous forme d’aérosol par spectrométrie de plasma induit par laser et système associé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LA VIEILLE, PASCAL

Inventor name: LEMOINE, FABRICE

17Q First examination report despatched

Effective date: 20080523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150616