WO2002073145A1 - Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement - Google Patents
Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement Download PDFInfo
- Publication number
- WO2002073145A1 WO2002073145A1 PCT/FR2001/000723 FR0100723W WO02073145A1 WO 2002073145 A1 WO2002073145 A1 WO 2002073145A1 FR 0100723 W FR0100723 W FR 0100723W WO 02073145 A1 WO02073145 A1 WO 02073145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- temperature
- liquid
- tracer
- fluorescence
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/20—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
Definitions
- the present invention relates to a laser source optical method and device for the non-intrusive measurement of the temperature in a flowing liquid.
- Laser source measuring devices are already used, for example that of application EP 345188, based on the observation of interference fringes created inside a fluid flowing in a pipe, at the outlet of two optical fibers transporting light from an external laser source
- patent application FR 2 579 320 describes a measurement method by ultrasonic wave intended for the thermal monitoring of nuclear reactors. This technique only allows knowledge of only one parameter of the fluid, namely its temperature
- the inventors turned to optical methods, and in particular to a laser-induced fluorescence method already studied in the laboratory by the inventors to determine the concentration of a fluid and the principle of which is recalled below.
- Fluorescence physical phenomenon known for many years, is the consequence of deactivation of an excited state of a fluorescent species to a ground state by spontaneous emission
- the excited state can be induced by a laser radiation having a wavelength coincides with the absorption spectrum of the fluorescent species
- the time between absorption and emission of a photon is of the order of a few nanoseconds, which makes the technique applicable to the study of rapidly variable phenomena. temporal resolution can reach a few tens of kHz
- the intensity of fluorescence can be expressed by the relation
- I fluo K-opt K sp ec CV c I 0 e "/ where K op V c , I 0 , C, are respectively, the coefficient characterizing the optical chain, the volume of collection of fluorescence photons, the laser intensity incident, the molecular concentration of the fluorescent tracer K spec and? are constants depending only on the characteristics of the molecule used as fluorescent tracer The application of this principle makes it possible to obtain the temperature in simple situations where the volume, the concentration and the laser intensity are well controlled or remain constant
- the concentrations of each of the two tracers must be controlled
- the emission spectra of the two tracers must be sufficiently separated, in order to be able to separate the fluorescent emissions from each of the tracers using a set of interference filters which is difficult to achieve in practice
- the two-color fluorescence method according to the invention uses ultra-fast photophysical principles in relation to phenomena of electronic transition and collisional deactivation and not the kinetics of a chemical reaction induced by irradiation
- the response time of the technique is considerably improved
- French patent application FR 2 484 639 is also known.
- the method described in this document is an intrusive method since it requires the presence of sensors at various measurement locations, while the method according to the invention is a non-intrusive method.
- the fluorescent material used is a solid state material (page 8 lines 2-3) while the tracer according to the invention is a tracer in molecular solution in the liquid whose temperature is measured
- the Patent Abstract of Japan is also known from the summary provided, the method consists of seeding in fluorescent particles and not in a tracer in molecular solution, and uses irradiation in UV light and not laser radiation.
- the invention consists of an optical method for the non-intrusive measurement of the temperature of a flowing liquid, characterized by the use of fluorescence induced by laser radiation in a measurement volume of the liquid, and characterized in that it consists in using a single fluorescent tracer sensitive to temperature and at least two separate spectral detection windows on this same tracer, after molecular dilution of said tracer in said liquid medium
- the method preferably comprises the following steps reception of the optical signal and elimination of any diffusion or reflection of the excitatory laser component, separation of the optical signal into several light signals, creation of a detection window on each light signal obtained after the previous separation, amplification of said light signals collected in the detection windows and transformation of these into as many electrical signals, acquisition, processing and display of the previous electrical signals
- the invention also consists of a device for the non-intrusive measurement of the temperature of a flowing liquid by using fluorescence induced by laser radiation in a liquid measurement volume, characterized in that it is designed for setting up opens the method according to the invention and in that it mainly comprises a single reception channel with
- a holographic band rejection filter a set of separation of the optical signal into two light signals on each optical measurement channel "a filter to create a measurement window
- an amplifier device to amplify and transform light signals into electrical signals
- laser radiation is chosen from the whole (single laser beam, double laser beam, laser sheet)
- the filter creating the measurement window can be chosen from the set (interference filter, bandpass, high pass filter, low pass filter)
- an interferential band pass filter of bandwidth ⁇ L, crossed by the first signal, centered on a wavelength ⁇ ⁇ has been chosen and, for a second measurement channel, a pass filter high crossed by the second signal allowing the optical intensity to pass from a threshold wavelength ⁇
- Rhodamine B (C 28 H 31 CN 2 O 3 ) It is reputed to be particularly sensitive to temperature In addition, the temperature sensitivity of this tracer is different depending on the spectral band of the fluorescence spectrum considered
- the invention proposes according to a first example of use a single plotter and two separate spectral detection windows on the same plotter
- the resulting sensitivity of the method as used in the invention is of the order of 2% variation in the fluorescence signal per ° C, which, taking into account the signal-to-noise ratio observed, leads to precision on the temperature below 1 ° C
- the detection is therefore done on two pre-defined spectral windows and not on the study of complete spectra, which does not require the use of spectrometer, but only simple photodetectors (photodiodes , photomultipliers, CCD cameras)
- the inventors have produced a device (1) based on the fluorescence induced by laser radiation (2) in a measurement volume (3) of a flowing liquid and allowing the separation of the signals and their detection
- the laser radiation can be in the form of one or two laser beams, or even a laser sheet.
- the use of two laser beams intersecting a point defining the measurement volume allows a joint measurement of the speed at using a commercial bicycle chain
- the device mainly but not limited to
- a holographic filter (6) rejecting a band making it possible to eliminate any scattering or reflection of the exciting laser component (12) * A set of separation (4) of the optical signal (5) into at least two light signals, equal or not ( 5a, 5b) for example two, by means of two neutral separators (4a, 4b) to be defined according to the desired power on each "On each optical measurement channel:
- a filter which can be a band pass interference filter, a high pass or low pass filter to create a measurement window suitable for the tracer used
- HERE Rhodamine B in solution in ethanol
- An interference filter (7) pass band crossed by the signal (5a) and allowing to obtain the first measurement window (10) visible on the graph of the figure (2)
- the filter (7) is centered on a wavelength K ⁇ ⁇ ⁇ i, preferably 530 n ⁇ 5nm -
- a high pass filter (8), crossed by the second signal (5b) and letting the optical intensity pass from a wavelength ⁇ 2 threshold, preferably ⁇ 590 nm approximately -
- the essential criterion for choosing wavelengths is to have different temperature sensitivities
- the windows and wavelengths are chosen according to the temperature response curve of the tracer , or of the tracer-solvent mixture Cost criteria may also be involved in the choice of filters.
- the term "window" is understood in its general sense, a window being able to be composed of one or more interven wavelength ranges, bounded or not, the same term
- “Distinct” does not exclude any partial overlapping or the inclusion of windows and the expressions “measurement window” or “detection window” have equivalent meaning •: • An amplifying device (9a, 9b) for amplifying and transforming the light signals (5a, 5b) into electrical signals for example a photomultiphcator, a photodiode, a CCD sensor These amplifying devices ensure the precise measurement, with a short response time, of the fluorescence intensities "A computer system (11), with software It receives the electrical signals by an acquisition system, not shown, processes them and displays the results on a screen
- K is a constant depending only on the optical chain used and on the spectroscopic properties of the molecule used as a fluorescent tracer This ratio has the advantage of being independent of the concentration of fluorescent tracer, of the exciting laser intensity, and of the excited fluorescent volume
- the device constant (K) is determined by a simple initial calibration point at a known temperature T 0
- the equation (E,) is thus transformed
- the concentration of the liquid or the measurement volume can be obtained simultaneously (3)
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002572360A JP2004535553A (ja) | 2001-03-12 | 2001-03-12 | 流体温度を非侵入で測定するための光学的方法と装置 |
EP01913981A EP1269132A1 (fr) | 2000-03-09 | 2001-03-12 | Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement |
US10/239,683 US7059766B2 (en) | 2000-03-09 | 2001-03-12 | Optical device and method for the non-intrusive measuring of the temperature of a flowing liquid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR00/03005 | 2000-03-09 | ||
FR0003005A FR2806159B1 (fr) | 2000-03-09 | 2000-03-09 | Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002073145A1 true WO2002073145A1 (fr) | 2002-09-19 |
WO2002073145A8 WO2002073145A8 (fr) | 2003-02-13 |
Family
ID=8847890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2001/000723 WO2002073145A1 (fr) | 2000-03-09 | 2001-03-12 | Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement |
Country Status (4)
Country | Link |
---|---|
US (1) | US7059766B2 (fr) |
EP (1) | EP1269132A1 (fr) |
FR (1) | FR2806159B1 (fr) |
WO (1) | WO2002073145A1 (fr) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6796144B2 (en) * | 2001-05-30 | 2004-09-28 | Battelle Memorial Institute | System and method for glass processing and temperature sensing |
DE102005007872B3 (de) * | 2005-02-21 | 2006-06-22 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zur Temperaturmessung in einem mikrofluidik Kanal einer Mikrofluidikvorrichtung |
US7182510B2 (en) * | 2005-04-04 | 2007-02-27 | David Gerard Cahill | Apparatus and method for measuring thermal conductivity |
US7846390B2 (en) | 2006-03-30 | 2010-12-07 | King Fahd University Of Petroleum And Minerals | Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence |
US7789556B2 (en) * | 2006-11-16 | 2010-09-07 | University Of South Florida | Thermally compensated dual-probe fluorescence decay rate temperature sensor and method of use |
TW200846639A (en) * | 2007-03-14 | 2008-12-01 | Entegris Inc | System and method for non-intrusive thermal monitor |
US8409509B2 (en) * | 2007-04-12 | 2013-04-02 | Regents Of The University Of Minnesota | Systems and methods for analyzing a particulate |
CN100543460C (zh) * | 2007-05-24 | 2009-09-23 | 泰州动态通量生命科学仪器有限公司 | 一种高通量实时微量多功能荧光检测仪 |
DE102007035499B3 (de) * | 2007-07-28 | 2008-11-27 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Bestimmung von Temperaturen in einer Gasströmung |
DE102008009660A1 (de) | 2008-02-18 | 2009-08-27 | Rational Ag | Berührungsloser Garsensor |
DE102008056329B3 (de) * | 2008-11-07 | 2010-01-07 | Forschungszentrum Karlsruhe Gmbh | Verfahren zur Bestimmung eines Temperaturfelds |
WO2010148332A2 (fr) * | 2009-06-19 | 2010-12-23 | Regents Of The University Of Minnesota | Systèmes et procédés pour analyser une particule |
US8330961B1 (en) | 2010-07-15 | 2012-12-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optical multi-species gas monitoring sensor and system |
US8350585B2 (en) * | 2011-05-31 | 2013-01-08 | Primestar Solar, Inc. | Simultaneous QE scanning system and methods for photovoltaic devices |
NL2007149C2 (nl) * | 2011-07-20 | 2013-01-22 | Lely Patent Nv | Sensorsysteem, sensorinrichting daarmee, en melkdierbehandelingsinrichting daarmee. |
DE102013205848B3 (de) * | 2013-04-03 | 2014-07-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Optisches Temperatursensorsystem |
WO2015015010A1 (fr) * | 2013-08-02 | 2015-02-05 | Koninklijke Philips N.V. | Appareil et procédé de régulation de la température d'aliment |
US9964455B2 (en) * | 2014-10-02 | 2018-05-08 | General Electric Company | Methods for monitoring strain and temperature in a hot gas path component |
CN105300563B (zh) * | 2015-11-19 | 2017-10-03 | 哈尔滨工业大学 | 一种上转换荧光强度比测温技术的修正方法 |
CN105466592B (zh) * | 2015-11-19 | 2017-11-03 | 哈尔滨工业大学 | 一种下转换荧光强度比测温技术的修正方法 |
DE102018203048A1 (de) * | 2018-03-01 | 2019-09-05 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Messen einer Temperatur eines Fluids zur Verwendung mit einer mikrofluidischen Analysevorrichtung und mikrofluidische Analysevorrichtung mit einer Vorrichtung |
CN110186587B (zh) * | 2019-07-12 | 2021-02-26 | 南昌航空大学 | 一种荧光测温方法 |
US11285477B2 (en) | 2019-08-29 | 2022-03-29 | Robert Bosch Gmbh | Method and apparatus for measuring a temperature of a fluid for use with a microfluidic analysis apparatus, and microfluidic analysis apparatus comprising an apparatus |
CN111289484A (zh) * | 2020-03-11 | 2020-06-16 | 哈尔滨工业大学(威海) | 一种基于罗丹明b荧光特性的冷表皮检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2484639A1 (fr) * | 1980-06-16 | 1981-12-18 | Asea Ab | Dispositif de mesure de temperature a fibres optiques |
US4885633A (en) * | 1988-06-13 | 1989-12-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment |
JPH09126837A (ja) * | 1995-10-27 | 1997-05-16 | Osaka Gas Co Ltd | 流体の流れの計測と該流体の温度の測定とを同時に行なう方法 |
US5788374A (en) * | 1996-06-12 | 1998-08-04 | The United States Of America As Represented By The Secretary Of Commerce | Method and apparatus for measuring the temperature of a liquid medium |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA70655B (en) * | 1969-08-02 | 1971-04-28 | Impulsphysik Gmbh | Appliance for measuring the concentration of fluorescing material in air and water in great dilutions |
US3960753A (en) * | 1974-05-30 | 1976-06-01 | Rca Corporation | Fluorescent liquid crystals |
US4061578A (en) * | 1976-04-05 | 1977-12-06 | Marcos Kleinerman | Infrared detection and imaging, method and apparatus |
US4215275A (en) * | 1977-12-07 | 1980-07-29 | Luxtron Corporation | Optical temperature measurement technique utilizing phosphors |
US4459044A (en) * | 1981-02-09 | 1984-07-10 | Luxtron Corporation | Optical system for an instrument to detect the temperature of an optical fiber phosphor probe |
US4708494A (en) * | 1982-08-06 | 1987-11-24 | Marcos Kleinerman | Methods and devices for the optical measurement of temperature with luminescent materials |
US4791585A (en) * | 1985-02-27 | 1988-12-13 | The Regents Of The University Of California | Cryogenic thermometer employing molecular luminescence |
FR2579320B1 (fr) | 1985-03-19 | 1987-11-20 | Framatome Sa | Procede de mesure de la temperature d'un fluide dans une enceinte a l'aide d'une onde ultrasonore et dispositif pour la mise en oeuvre de ce procede |
US4613237A (en) * | 1985-08-22 | 1986-09-23 | United Technologies Corporation | Method for determining the temperature of a fluid |
FR2632406B1 (fr) | 1988-06-03 | 1990-09-21 | Karlsruhe Augsburg Iweka | Ensemble de detection et de mesure simultanees de la pression et de la temperature dans un fluide sous pression |
US5377004A (en) * | 1993-10-15 | 1994-12-27 | Kaiser Optical Systems | Remote optical measurement probe |
FR2713768B1 (fr) * | 1993-12-10 | 1996-02-09 | Sextant Avionique | Procédé et appareil de mesure optique de la température d'un mélange gazeux. |
GB9508427D0 (en) * | 1995-04-26 | 1995-06-14 | Electrotech Equipments Ltd | Temperature sensing methods and apparatus |
DE60224267T2 (de) * | 2002-08-14 | 2009-01-08 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zur Bestimmung der Temperatur eines Systems |
-
2000
- 2000-03-09 FR FR0003005A patent/FR2806159B1/fr not_active Expired - Fee Related
-
2001
- 2001-03-12 WO PCT/FR2001/000723 patent/WO2002073145A1/fr active Search and Examination
- 2001-03-12 EP EP01913981A patent/EP1269132A1/fr not_active Withdrawn
- 2001-03-12 US US10/239,683 patent/US7059766B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2484639A1 (fr) * | 1980-06-16 | 1981-12-18 | Asea Ab | Dispositif de mesure de temperature a fibres optiques |
US4885633A (en) * | 1988-06-13 | 1989-12-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment |
JPH09126837A (ja) * | 1995-10-27 | 1997-05-16 | Osaka Gas Co Ltd | 流体の流れの計測と該流体の温度の測定とを同時に行なう方法 |
US5788374A (en) * | 1996-06-12 | 1998-08-04 | The United States Of America As Represented By The Secretary Of Commerce | Method and apparatus for measuring the temperature of a liquid medium |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 09 30 September 1997 (1997-09-30) * |
Also Published As
Publication number | Publication date |
---|---|
US20030048831A1 (en) | 2003-03-13 |
FR2806159B1 (fr) | 2003-03-07 |
FR2806159A1 (fr) | 2001-09-14 |
US7059766B2 (en) | 2006-06-13 |
WO2002073145A8 (fr) | 2003-02-13 |
EP1269132A1 (fr) | 2003-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002073145A1 (fr) | Procede et dispositif optique pour la mesure non intrusive de la temperature dans un liquide en ecoulement | |
EP0637742B1 (fr) | Appareil et procédé pour mesurer la concentration de glucose par diffusion de lumière | |
CA2622487C (fr) | Materiau nanoporeux d'aldehydes a transduction optique directe | |
WO2000060342A1 (fr) | Detecteur de fluorescence induite par laser et procede de mise en oeuvre dudit dispositif | |
FR3038723B1 (fr) | Procede d’estimation d’une quantite d’analyte dans un liquide | |
Hankus et al. | Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application | |
FR2963101A1 (fr) | Detecteur de particules et procede de realisation d'un tel detecteur | |
WO2018114269A1 (fr) | Dispositif simplifie de detection de la formation d'hydrates de gaz | |
FR3024236A1 (fr) | Capteur et dispositif pour la detection de fongicides en milieu hydro-alcoolique | |
WO2013045807A1 (fr) | Systeme de detection et/ou de quantification in vitro par fluorimetrie | |
WO2010043824A1 (fr) | Procede de determination de la phase solide/liquide | |
EP1664735B1 (fr) | Mesure en ligne des caracteristiques d'un système disperse s'ecoulant | |
EP0522988B1 (fr) | Procédé et dispositifs de détection infrarouge de pollution en milieu aqueux | |
CA2765198A1 (fr) | Dispositif et procede de determination de la concentration d'un compose dans une phase aqueuse ou gazeuse | |
Scholten et al. | Vapor discrimination by dual-laser reflectance sensing of a single functionalized nanoparticle film | |
FR2916849A1 (fr) | Procede de teledetection optique de composes dans un milieu | |
EP3094405B1 (fr) | Dispositif microfluidique pour l'analyse de polluants en écoulement | |
EP3220131A1 (fr) | Procédé de caractérisation d'un échantillon liquide comportant des particules | |
WO2003010523A1 (fr) | Dispositif et procede de mesure d'un echantillon par spectroscopie par correlation | |
WO2010043825A1 (fr) | Determination de la concentration en sel d'une solution aqueuse | |
Siebenhofer et al. | Transient absorption spectroscopy on spiropyran monolayers using nanosecond pump–probe Brewster angle reflectometry | |
WO2010136728A1 (fr) | Dispositif de spectroscopie et procédé pour sa mise en oeuvre | |
Quero et al. | Engineered Lab on Fiber SERS probes by “Self-Assembly on Fiber” technique | |
Jiang et al. | An Optofluidic Nanoplasmonic Sensor for Aerosols | |
Mittenzwey et al. | An improved lidar method for monitoring surface waters: experiments in the laboratory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2001913981 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10239683 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 572360 Kind code of ref document: A Format of ref document f/p: F |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 2001913981 Country of ref document: EP |
|
AK | Designated states |
Kind code of ref document: C1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: PAT. BUL. 38/2002 ADD "(30) PRIORITY DATA: 00/03005, 20000309, FR" |