EP1267389B1 - Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung - Google Patents
Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung Download PDFInfo
- Publication number
- EP1267389B1 EP1267389B1 EP02100705A EP02100705A EP1267389B1 EP 1267389 B1 EP1267389 B1 EP 1267389B1 EP 02100705 A EP02100705 A EP 02100705A EP 02100705 A EP02100705 A EP 02100705A EP 1267389 B1 EP1267389 B1 EP 1267389B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas discharge
- low
- pressure gas
- discharge lamp
- lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 87
- 150000004770 chalcogenides Chemical class 0.000 claims description 23
- 229910052732 germanium Inorganic materials 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910005866 GeSe Inorganic materials 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 229910052798 chalcogen Inorganic materials 0.000 claims description 5
- 150000001787 chalcogens Chemical class 0.000 claims description 5
- QIHHYQWNYKOHEV-UHFFFAOYSA-N 4-tert-butyl-3-nitrobenzoic acid Chemical compound CC(C)(C)C1=CC=C(C(O)=O)C=C1[N+]([O-])=O QIHHYQWNYKOHEV-UHFFFAOYSA-N 0.000 claims description 3
- 229910005900 GeTe Inorganic materials 0.000 claims description 3
- 229910005642 SnTe Inorganic materials 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 150000004771 selenides Chemical class 0.000 claims description 3
- 150000004763 sulfides Chemical class 0.000 claims description 3
- 150000004772 tellurides Chemical class 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910005829 GeS Inorganic materials 0.000 claims description 2
- 229910020349 SiS Inorganic materials 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- UQMCSSLUTFUDSN-UHFFFAOYSA-N sulfanylidenegermane Chemical compound [GeH2]=S UQMCSSLUTFUDSN-UHFFFAOYSA-N 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 25
- 230000005855 radiation Effects 0.000 description 20
- 239000010410 layer Substances 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 7
- 229910052753 mercury Inorganic materials 0.000 description 6
- -1 copper halide Chemical class 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052756 noble gas Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 229910020068 MgAl Inorganic materials 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910017639 MgSi Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000037338 UVA radiation Effects 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VDNSGQQAZRMTCI-UHFFFAOYSA-N sulfanylidenegermanium Chemical compound [Ge]=S VDNSGQQAZRMTCI-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017119 AlPO Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- RXQPCQXEUZLFTE-UHFFFAOYSA-N selanylidenegermanium Chemical compound [Se]=[Ge] RXQPCQXEUZLFTE-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QPBYLOWPSRZOFX-UHFFFAOYSA-J tin(iv) iodide Chemical compound I[Sn](I)(I)I QPBYLOWPSRZOFX-UHFFFAOYSA-J 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/70—Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
Definitions
- the invention relates to a low-pressure gas discharge lamp which has a gas discharge vessel, which contains a gas filling, with electrodes and with means for production and maintaining a low pressure gas discharge.
- the generation of light in low-pressure gas discharge lamps is based on the fact that charge carriers, especially electrons, but also ions, through an electric field between the Electrodes of the lamp are accelerated so much that they are in the gas filling of the lamp stimulate them by collisions with the gas atoms or molecules of the gas filling or ionize.
- charge carriers especially electrons, but also ions
- Conventional low-pressure gas discharge lamps contain mercury in the gas filling and also have a fluorescent coating on the inside of the gas discharge vessel. It is a disadvantage of mercury low pressure gas discharge lamps that mercury vapor primarily radiation in the high-energy but invisible UV-C range of the emits electromagnetic spectrum, which is only visible through the phosphors in the much lower-energy radiation must be converted. The energy difference is converted into unwanted heat radiation.
- the mercury in the gas filling is also reinforced as environmentally harmful and Toxic substance viewed in modern mass products due to environmental hazards should be avoided if possible during application, production and disposal should.
- GB 2 014 358 A discloses a low-pressure gas discharge lamp which comprises a discharge vessel, electrodes and a filling which contains at least one copper halide as the UV emitter.
- This copper halide-containing low-pressure gas discharge lamp emits in the visible range and in the UV range at 324.75 and 327.4 nm.
- EP-A-0 316 189 a low pressure gas discharge lamp, the filling of which can contain the active compounds CS 2 or CSe 2 in addition to a buffer gas, is known.
- an electrodeless lamp is known from EP 1 093 152, which contains tin iodide in the gas filling
- a low-pressure gas discharge lamp with a gas discharge vessel that selected a gas filling with a chalcogenide from the group of sulfides, selenides and tellurides, the elements of the 4th main group of Periodic table of the elements, selected from silicon, germanium, tin and lead, and containing a buffer gas, internal or external electrodes and means is equipped to generate and maintain a low pressure gas discharge.
- a molecular gas discharge at low pressure takes place in the lamp according to the invention instead, the radiation in the visible and near UVA range of the electromagnetic spectrum emits. Since it is the radiation of a molecular discharge, the exact location of the continuum by the type of chalcogenide, any other Additives, lamp pressure and operating temperature can be controlled.
- the lamp according to the invention has a visual efficiency that is considerably higher than that of conventional low-pressure mercury discharge lamps.
- the visual efficiency expressed in lumens / watt, is the ratio between the Brightness of the radiation in a certain visible wavelength range and the Generation energy for radiation.
- the high visual efficiency of the invention Lamp means that a certain amount of light due to less power consumption is realized.
- the chalcogenides of the elements of the 4th main group of the PSE e.g. B. silicon, germanium, tin and lead have a high dissociation energy. Therefore, only a small proportion of the molecules in the gas phase are split by electron impact ionization during gas discharge and only a few chalcogenide ions occur during gas discharge. This also has a positive effect on the visual efficiency of the lamp. It also avoids the use of mercury.
- the lamp according to the invention is advantageously used as a UV-A lamp for Sunbeds, disinfection lights and paint curing lights.
- the lamp is combined with appropriate phosphors. Because the Losses due to Stoke's displacement are small, you get visible light with a high luminous efficacy of more than 100 lumens / watt.
- the chalcogenide is selected from the group SiS, GeS, GeSe, GeTe, SnS, SnSe and SnTe.
- the gas filling contains germanium sulfide.
- a gas filling, which contains germanium sulfide is characterized by a high vapor pressure.
- gas filling is a mixture of two or contains more chalcogenides of silicon, germanium, tin and lead.
- the molar ratio n between the Chalcogen and element of the 4th main group of the PSE is 0.8 ⁇ n ⁇ 1.2.
- the gas filling can be a noble gas selected from the group of helium, neon, Argon, Krypton and Xenon include.
- the gas discharge vessel has a phosphor coating on the outer surface.
- the UVA radiation which is emitted by the low-pressure gas discharge lamp according to the invention not absorbed by the common types of glass, but passes through the walls of the discharge vessel almost lossless.
- the fluorescent coating can therefore on the outside of the Gas discharge vessel can be attached. This simplifies the manufacturing process.
- the gas discharge vessel may also be preferred for the gas discharge vessel to have a phosphor coating the inner surface.
- the low-pressure gas discharge lamp from a tubular lamp bulb 1, which has a discharge space surrounds. At both ends of the tube electrodes 2 are melted inside, through which the Gas discharge can be ignited.
- the low pressure gas discharge lamp further comprises in a manner known per se an electrical ballast, the ignition and the Operation of the gas discharge lamp regulates.
- the gas discharge vessel can also be used as a multiply folded or coiled tube executed and be surrounded by an outer bulb.
- the wall of the gas discharge vessel preferably consists of a type of glass, quartz, Aluminum oxide or yttrium aluminum garnet.
- the gas filling consists of a chalcogenide of silicon, germanium, tin and lead in an amount of 2x10 - 11 mol / cm 3 to 2x10 -9 mol / cm 3 and an inert gas.
- the noble gas serves as a buffer gas and facilitates the ignition of the gas discharge.
- the preferred buffer gas is argon.
- Argon can be replaced in whole or in part by another noble gas, such as helium, neon, krypton or xenon.
- Chalcogenides are binary chemical compounds that form a chalcogen, i.e. an element the 6th main group of the Periodic Table of the Elements, as electronegative Component included.
- the chalcogenides which are the preferred Contains chalcogenic sulfur (S), selenium (Se) and tellurium (Te).
- chalcogenides of the elements of the 4th main group of To use PSE in which the molar ratio n between the chalcogen and the Element of the 4th main group of the PSE is 0.8 ⁇ n ⁇ 1.2.
- Table 1 shows the spectroscopic properties of some chalcogenides of the elements of the fourth main group of the PSE summarized.
- T * [K] is the wall temperature of the Lamp in which the partial vapor pressure of the chalcogenide reaches 10 ⁇ bar.
- Trans is the type of radiative transitions in the chalcogenide molecule specified.
- X denotes the electronic ground state of the molecule
- a '," B “,” D “ and “E” is an electronically excited state of the molecule
- D [eV] is the dissociation energy of the chalcogenide in question and ⁇ * a characteristic wavelength of molecular emission.
- One way to increase efficiency is to use two or more chalcogenides Combine silicon, germanium, tin and lead in the gas atmosphere.
- the cold filling pressure of the buffer gas is optimal if the product from the cold filling pressure of the noble gas p with the smallest diameter of the gas discharge vessel d fulfills the condition 0.2 mbar cm ⁇ pd ⁇ 20 mbar cm.
- a further advantageous measure to increase the lumen efficiency of the low-pressure gas discharge lamp has been to check the operating temperature of the lamp by means of suitable design measures, so that an internal temperature corresponding to T * ⁇ 50 [K] according to Table 1 during operation at an outside temperature of 25 ° C
- the internal temperature T * refers to the coldest point of the gas discharge vessel.
- the gas discharge vessel can also be used with a Outer bulb, which is coated with a layer reflecting IR radiation, surrounded become.
- An infrared radiation-reflecting coating made of indium-doped is preferred Tin oxide.
- a suitable material for the electrodes in the low-pressure gas discharge lamp according to the invention consists for example of nickel or a nickel alloy or one refractory metal, in particular tungsten and tungsten alloys, in particular Tungsten alloys with rhenium. Also tungsten composite materials with thorium oxide or indium oxide are suitable.
- the electrodes can still be made with a material lower work function.
- the gas discharge vessel of the lamp is on it Outside surface coated with a phosphor layer 4.
- the UV radiation emitted by the Gas discharge stimulates the phosphors in the phosphor layer to emit light in the visible area 5.
- the chemical composition of the phosphor layer determines the spectrum of the light or its color.
- the materials that can be used as phosphors must be absorb generated radiation and in a suitable wavelength range z. B. for the three primary colors red, blue and green emit and a high fluorescence quantum yield to reach.
- germanium chalcogenides The emission of germanium chalcogenides is mainly in the UV range and to a small extent in the blue spectral range. With the help of the phosphor layer, this bluish-white emission spectrum can be converted into a white light spectrum with a color temperature below 10,000 K.
- the phosphor layer of a white-emitting lamp with germanium chalcogenides can contain a single phosphor which converts the UV radiation into visible light with a wide color spectrum from green to red.
- Such a phosphor is preferably a Ce 3+ -activated phosphor such as Y 3 Al 5 O 12 : Ce or (Y 1-x Gd x ) 3 (Al 1-y Ga y ) 5 O 12 : Ce (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
- SrLi 2 SiO 4 : Eu can be used.
- the phosphor layer can contain two or three phosphors. Contains the Fluorescent layer two phosphors, so one phosphor converts UV radiation into red Light and the other phosphor convert UV radiation into green light. In the case of three The phosphor layer contains another phosphor, the UV radiation transformed into blue light.
- the phosphors used should have a strong absorption in the Have range 250 to 400 nm. The emission maximum is preferably a blue-emitting one Phosphor between 440 and 480 nm, a green-emitting Phosphor between 510 and 560 nm and a red-emitting phosphor between 590 and 660 nm. Because the phosphors have a high thermal quenching temperature should preferably be line emitters, broadband emitters with a small Stokes shift or host lattice with low phonon frequencies.
- a blue-emitting phosphor is preferably selected from the group (Ba 1-x Sr x ) MgAl 10 O 17 : Eu (0 ⁇ x ⁇ 1), (Ba 1-x , Sr x ) 5 (PO 4 ) 3 (F , Cl): Eu (0 ⁇ x ⁇ 1), (Ba 1-xy , Sr x , Ca y ) 5 (PO 4 ) 3 (F, Cl): Eu (0 ⁇ x ⁇ 1), (Y 1- x Gd x ) 2 SiO 5 : Ce, ZnS: Ag SrS: Ce, (Ba 1-x Sr x ) MgSi 2 O 8 : Eu (0 ⁇ x ⁇ 1) and (La 1- xGd x ) OBr: Ce ( 0 ⁇ x ⁇ 1).
- a green-emitting phosphor is preferably selected from the group (Ba 1-x Sr x ) MgAl 10 O 17 : Eu, Mn (0 ⁇ x ⁇ 1), (Ba 1-x Sr x ) 2 SiO 4 : Eu (0 ⁇ x ⁇ 1), ZnS: Cu, Al, Au, SrGa 2 S 4 : Eu, (Y 1-x Gd x ) BO 3 : Ce, Tb (0 ⁇ x ⁇ 1), (Y 1-x Gd x ) 2 O 2 S: Tb (0 ⁇ x ⁇ 1), LaOBr: Ce, Tb, CaS: Ce, Ca 2 MgSi 2 O 7 : Eu and (Y 1-x Gd x ) 2 SiO 5 : Ce, Tb ( 0 ⁇ x ⁇ 1).
- a red-emitting phosphor is preferably selected from the group Sr 2 CeO 4 : Eu, (Y 1-x Gd x ) 2 O 3 : Eu, Bi (0 ⁇ x ⁇ 1), (Y 1-x Gd x ) 2 O 3 : Eu, Bi (0 ⁇ x ⁇ 1), YVO 4 : Eu, Y (V 1-x P x ) O 4 : Eu (0 ⁇ x ⁇ 1), Y (V 1-x , P x ) O 4 : Eu, Bi (0 ⁇ x ⁇ 1), Y 2 O 2 S: Eu, Mg 4 GeO 5.5 F: Mn, (Sr 1-x Ca x ) 2 P 2 O 7 : Eu, Mn (0 ⁇ x ⁇ 1), (Sr 1-x Ba x ) 2 Si 5 N 8 : Eu (0 ⁇ x ⁇ 1), Ca 2 Si 5 N 8 : Eu, CaS: Ce, Mn and (Ca 1-x Sr x ) S: Eu (0 ⁇ x ⁇ 1).
- Oxidation-sensitive phosphors such as BaMgAl 10 O 17 : Eu
- Oxidation-sensitive phosphors can be used in the phosphor layer if the phosphor particles are coated with a protective layer of, for example, SiO 2 , MgO, LaPO 4 , AlPO 4 , YPO 4 , MgAl 2 O 4 , Y 2 O 3 , La 2 O 3 , Ca 2 P 2 O 7 or Al 2 O 3 are provided.
- the specific weight of the phosphor layer is preferably between 0.1 and 10 mg / cm 2 .
- Suitable phosphors and phosphor combinations do not have to be on the inside of the Gas discharge vessel are applied, but can also be applied to the outside be because the radiation generated in the UVA range from the common types of glass is not absorbed.
- the lamp is a capacitive with a high frequency field with a frequency of, for example, 2.65 MHz, 13.56 MHz or 2.4 GHz excited lamp in which the electrodes are attached to the outside of the gas discharge vessel
- the lamp is an inductively excited lamp with a high-frequency field with a frequency of, for example, 2.65 MHz, 13.56 MHz or 2.4 GHz.
- the electrons emitted by the electrodes excite the atoms and molecules of the gas filling to emit UV radiation from the characteristic radiation and a molecular continuum.
- the discharge heats the gas filling in such a way that the desired vapor pressure and the desired operating temperature is reached at which the luminous efficacy is optimal.
- the radiation of the gas filling generated during operation has an intense, broad, continuous molecular spectrum which is caused by the molecular discharge of the chalcogenide.
- the range of maximum emission of the continuous molecular spectrum usually shifts to longer wavelengths with increasing molecular weight of the chalcogenide.
- a cylindrical discharge vessel made of a glass that is transparent to UVA radiation, with a length of 14 cm and a diameter of 2.5 cm with external electrodes made of copper.
- the discharge vessel is evacuated and at the same time 0.3 mg GeSe metered in.
- Argon is also filled in at a cold pressure of 5 mbar. It is an alternating current with a frequency of 13.65 MHz from an external AC power supply and the at an operating temperature of 433 ° C. Lumen efficiency measured. The lumen efficiency is 100 Lm / W.
Landscapes
- Discharge Lamp (AREA)
- Luminescent Compositions (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10128915 | 2001-06-15 | ||
DE10128915A DE10128915A1 (de) | 2001-06-15 | 2001-06-15 | Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1267389A1 EP1267389A1 (de) | 2002-12-18 |
EP1267389B1 true EP1267389B1 (de) | 2004-11-17 |
Family
ID=7688300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02100705A Expired - Lifetime EP1267389B1 (de) | 2001-06-15 | 2002-06-13 | Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung |
Country Status (5)
Country | Link |
---|---|
US (1) | US6731070B2 (enrdf_load_stackoverflow) |
EP (1) | EP1267389B1 (enrdf_load_stackoverflow) |
JP (1) | JP2003007248A (enrdf_load_stackoverflow) |
CN (1) | CN1311512C (enrdf_load_stackoverflow) |
DE (2) | DE10128915A1 (enrdf_load_stackoverflow) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10044562A1 (de) * | 2000-09-08 | 2002-03-21 | Philips Corp Intellectual Pty | Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung |
DE10127961A1 (de) * | 2001-06-08 | 2002-12-12 | Philips Corp Intellectual Pty | Gasentladungslampe |
WO2005015601A2 (en) * | 2003-08-07 | 2005-02-17 | Philips Intellectual Property & Standards Gmbh | Low-pressure gas discharge lamp with alkaline earth chalcogenides as electron emitter material |
CN1879193A (zh) * | 2003-11-11 | 2006-12-13 | 皇家飞利浦电子股份有限公司 | 具有无汞气体填充物的低压蒸气放电灯 |
WO2006035339A1 (en) * | 2004-09-28 | 2006-04-06 | Philips Intellectual Property & Standards Gmbh | Low-pressure gas discharge lamp |
US7265493B2 (en) * | 2004-10-04 | 2007-09-04 | General Electric Company | Mercury-free compositions and radiation sources incorporating same |
US7847484B2 (en) * | 2004-12-20 | 2010-12-07 | General Electric Company | Mercury-free and sodium-free compositions and radiation source incorporating same |
US7358656B1 (en) | 2005-02-04 | 2008-04-15 | Technical Consumer Products, Inc. A Delaware Corporation | Universal cooling points for fluorescent lamps |
JP2009535772A (ja) | 2006-05-01 | 2009-10-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 低圧放電ランプ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7107535A (enrdf_load_stackoverflow) * | 1971-06-02 | 1972-12-05 | ||
GB2014358B (en) | 1978-02-10 | 1982-03-03 | Thorn Electrical Ind Ltd | Discharge lamp |
US5300859A (en) * | 1987-11-12 | 1994-04-05 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | IR-radiation source and method for producing same |
IL84463A (en) | 1987-11-12 | 1992-06-21 | Yissum Res Dev Co | Ir-radiation source and method for producing same |
GB8922862D0 (en) | 1989-10-11 | 1989-11-29 | Emi Plc Thorn | A discharge tube arrangement |
KR20010037340A (ko) * | 1999-10-15 | 2001-05-07 | 구자홍 | 요오드화주석을 사용한 무전극램프 |
-
2001
- 2001-06-15 DE DE10128915A patent/DE10128915A1/de not_active Withdrawn
-
2002
- 2002-06-11 US US10/167,181 patent/US6731070B2/en not_active Expired - Fee Related
- 2002-06-12 CN CNB02126581XA patent/CN1311512C/zh not_active Expired - Fee Related
- 2002-06-13 DE DE50201546T patent/DE50201546D1/de not_active Expired - Fee Related
- 2002-06-13 EP EP02100705A patent/EP1267389B1/de not_active Expired - Lifetime
- 2002-06-14 JP JP2002174632A patent/JP2003007248A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE50201546D1 (de) | 2004-12-23 |
US20030001505A1 (en) | 2003-01-02 |
DE10128915A1 (de) | 2002-12-19 |
CN1311512C (zh) | 2007-04-18 |
US6731070B2 (en) | 2004-05-04 |
CN1392588A (zh) | 2003-01-22 |
EP1267389A1 (de) | 2002-12-18 |
JP2003007248A (ja) | 2003-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1187174A2 (de) | Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung | |
JP3714952B2 (ja) | 誘電体妨害放電蛍光ランプ | |
US6734631B2 (en) | Low-pressure gas discharge lamp with phosphor coating | |
DE10129464A1 (de) | Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung | |
EP1267389B1 (de) | Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung | |
DE10057881A1 (de) | Gasentladungslampe mit Leuchtstoffschicht | |
DE2835575C2 (de) | Leuchtstoff für eine Niederdruckquecksilberdampfentladungslampe | |
EP1253624A2 (de) | Gasentladungslampe mit Down-Conversion-Leuchtstoff | |
DE69322834T2 (de) | Fluoreszenzlampe mit verbesserter Phosphormischung | |
EP2737003B1 (de) | Leuchtstoff mit schutzschicht und leuchtstofflampe denselben enthaltend | |
EP1187173A2 (de) | Niederdruckgasentladungslampe mit kupferhaltiger Gasfüllung | |
DE3109538A1 (de) | Leuchtstofflampe mit leuchtstoffkombination | |
EP1253625B1 (de) | Gasentladungslampe mit Down-Conversion-Leuchtstoff | |
EP1271618A2 (de) | Gasentladungslampe für dielektrisch behinderte Entladungen mit blauem Leuchtstoff | |
EP1254943A2 (de) | Down-Conversion-Leuchtstoff, und Gasentladungslampe mit diesem Leuchtstoff | |
EP3114701B1 (de) | Niederdruckentladungslampe mit leuchtstoffpartikeln kleiner korngrösse | |
DE2128065C2 (de) | Leuchtstoffschicht für eine elektrische Lichtquelle zur Erzeugung von weißem Licht sowie Verwendung dieser Leuchtstoffschicht | |
DE10242241A1 (de) | Niederdruckgasentladungslampe mit Ba TiO3-ähnlichen Elektronen-Ermittersubstanzen | |
DE10242049A1 (de) | Niederdruckgasentladungslampe mit zinnhaltiger Gasfüllung | |
DE10254737A1 (de) | Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung | |
DE2747330A1 (de) | Niederdruckquecksilberdampfentladungslampe | |
DE1464181C (de) | Elektrische Hochdruck Dampfentladungs lampe | |
MERCURE | NIEDERDRUCKGASENTLADUNGSLAMPE MIT QUECKSILBERFREIER GASFÜLLUNG LAMPE A DECHARGE DE GAZ A BASSE PRESSION CONTENANT UNE ATMOSPHERE GAZEUSE | |
EP0251550A1 (en) | Improvements in or relating to inorganic phosphors | |
Jüstel et al. | Enhancing the Lumen Output of Trichromatic Fluorescent Lamps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. |
|
17P | Request for examination filed |
Effective date: 20030618 |
|
17Q | First examination report despatched |
Effective date: 20030723 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50201546 Country of ref document: DE Date of ref document: 20041223 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050216 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20050217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050818 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070813 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070626 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070626 Year of fee payment: 6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080613 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |