EP1267389B1 - Mercury-free low pressure gas discharge lamp - Google Patents

Mercury-free low pressure gas discharge lamp Download PDF

Info

Publication number
EP1267389B1
EP1267389B1 EP02100705A EP02100705A EP1267389B1 EP 1267389 B1 EP1267389 B1 EP 1267389B1 EP 02100705 A EP02100705 A EP 02100705A EP 02100705 A EP02100705 A EP 02100705A EP 1267389 B1 EP1267389 B1 EP 1267389B1
Authority
EP
European Patent Office
Prior art keywords
gas discharge
low
pressure gas
discharge lamp
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02100705A
Other languages
German (de)
French (fr)
Other versions
EP1267389A1 (en
Inventor
Robert Dr. c/o Philips Corp.Int.Prop. GmbH Scholl
Rainer Dr. c/o Philips Corp.Int.Prop.GmbH Hilbig
Achim c/o Philips Corp.Int.Prop.GmbH Körber
Johannes Dr. c/o Philips Corp.Int.Prop.GmbH Baier
Thomas Dr. c/o Philips Corp.Int.Prop.GmbH Jüstel
Peter Dr. c/o Philips Corp.Int.Prop.GmbH Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1267389A1 publication Critical patent/EP1267389A1/en
Application granted granted Critical
Publication of EP1267389B1 publication Critical patent/EP1267389B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature

Definitions

  • the invention relates to a low-pressure gas discharge lamp which has a gas discharge vessel, which contains a gas filling, with electrodes and with means for production and maintaining a low pressure gas discharge.
  • the generation of light in low-pressure gas discharge lamps is based on the fact that charge carriers, especially electrons, but also ions, through an electric field between the Electrodes of the lamp are accelerated so much that they are in the gas filling of the lamp stimulate them by collisions with the gas atoms or molecules of the gas filling or ionize.
  • charge carriers especially electrons, but also ions
  • Conventional low-pressure gas discharge lamps contain mercury in the gas filling and also have a fluorescent coating on the inside of the gas discharge vessel. It is a disadvantage of mercury low pressure gas discharge lamps that mercury vapor primarily radiation in the high-energy but invisible UV-C range of the emits electromagnetic spectrum, which is only visible through the phosphors in the much lower-energy radiation must be converted. The energy difference is converted into unwanted heat radiation.
  • the mercury in the gas filling is also reinforced as environmentally harmful and Toxic substance viewed in modern mass products due to environmental hazards should be avoided if possible during application, production and disposal should.
  • GB 2 014 358 A discloses a low-pressure gas discharge lamp which comprises a discharge vessel, electrodes and a filling which contains at least one copper halide as the UV emitter.
  • This copper halide-containing low-pressure gas discharge lamp emits in the visible range and in the UV range at 324.75 and 327.4 nm.
  • EP-A-0 316 189 a low pressure gas discharge lamp, the filling of which can contain the active compounds CS 2 or CSe 2 in addition to a buffer gas, is known.
  • an electrodeless lamp is known from EP 1 093 152, which contains tin iodide in the gas filling
  • a low-pressure gas discharge lamp with a gas discharge vessel that selected a gas filling with a chalcogenide from the group of sulfides, selenides and tellurides, the elements of the 4th main group of Periodic table of the elements, selected from silicon, germanium, tin and lead, and containing a buffer gas, internal or external electrodes and means is equipped to generate and maintain a low pressure gas discharge.
  • a molecular gas discharge at low pressure takes place in the lamp according to the invention instead, the radiation in the visible and near UVA range of the electromagnetic spectrum emits. Since it is the radiation of a molecular discharge, the exact location of the continuum by the type of chalcogenide, any other Additives, lamp pressure and operating temperature can be controlled.
  • the lamp according to the invention has a visual efficiency that is considerably higher than that of conventional low-pressure mercury discharge lamps.
  • the visual efficiency expressed in lumens / watt, is the ratio between the Brightness of the radiation in a certain visible wavelength range and the Generation energy for radiation.
  • the high visual efficiency of the invention Lamp means that a certain amount of light due to less power consumption is realized.
  • the chalcogenides of the elements of the 4th main group of the PSE e.g. B. silicon, germanium, tin and lead have a high dissociation energy. Therefore, only a small proportion of the molecules in the gas phase are split by electron impact ionization during gas discharge and only a few chalcogenide ions occur during gas discharge. This also has a positive effect on the visual efficiency of the lamp. It also avoids the use of mercury.
  • the lamp according to the invention is advantageously used as a UV-A lamp for Sunbeds, disinfection lights and paint curing lights.
  • the lamp is combined with appropriate phosphors. Because the Losses due to Stoke's displacement are small, you get visible light with a high luminous efficacy of more than 100 lumens / watt.
  • the chalcogenide is selected from the group SiS, GeS, GeSe, GeTe, SnS, SnSe and SnTe.
  • the gas filling contains germanium sulfide.
  • a gas filling, which contains germanium sulfide is characterized by a high vapor pressure.
  • gas filling is a mixture of two or contains more chalcogenides of silicon, germanium, tin and lead.
  • the molar ratio n between the Chalcogen and element of the 4th main group of the PSE is 0.8 ⁇ n ⁇ 1.2.
  • the gas filling can be a noble gas selected from the group of helium, neon, Argon, Krypton and Xenon include.
  • the gas discharge vessel has a phosphor coating on the outer surface.
  • the UVA radiation which is emitted by the low-pressure gas discharge lamp according to the invention not absorbed by the common types of glass, but passes through the walls of the discharge vessel almost lossless.
  • the fluorescent coating can therefore on the outside of the Gas discharge vessel can be attached. This simplifies the manufacturing process.
  • the gas discharge vessel may also be preferred for the gas discharge vessel to have a phosphor coating the inner surface.
  • the low-pressure gas discharge lamp from a tubular lamp bulb 1, which has a discharge space surrounds. At both ends of the tube electrodes 2 are melted inside, through which the Gas discharge can be ignited.
  • the low pressure gas discharge lamp further comprises in a manner known per se an electrical ballast, the ignition and the Operation of the gas discharge lamp regulates.
  • the gas discharge vessel can also be used as a multiply folded or coiled tube executed and be surrounded by an outer bulb.
  • the wall of the gas discharge vessel preferably consists of a type of glass, quartz, Aluminum oxide or yttrium aluminum garnet.
  • the gas filling consists of a chalcogenide of silicon, germanium, tin and lead in an amount of 2x10 - 11 mol / cm 3 to 2x10 -9 mol / cm 3 and an inert gas.
  • the noble gas serves as a buffer gas and facilitates the ignition of the gas discharge.
  • the preferred buffer gas is argon.
  • Argon can be replaced in whole or in part by another noble gas, such as helium, neon, krypton or xenon.
  • Chalcogenides are binary chemical compounds that form a chalcogen, i.e. an element the 6th main group of the Periodic Table of the Elements, as electronegative Component included.
  • the chalcogenides which are the preferred Contains chalcogenic sulfur (S), selenium (Se) and tellurium (Te).
  • chalcogenides of the elements of the 4th main group of To use PSE in which the molar ratio n between the chalcogen and the Element of the 4th main group of the PSE is 0.8 ⁇ n ⁇ 1.2.
  • Table 1 shows the spectroscopic properties of some chalcogenides of the elements of the fourth main group of the PSE summarized.
  • T * [K] is the wall temperature of the Lamp in which the partial vapor pressure of the chalcogenide reaches 10 ⁇ bar.
  • Trans is the type of radiative transitions in the chalcogenide molecule specified.
  • X denotes the electronic ground state of the molecule
  • a '," B “,” D “ and “E” is an electronically excited state of the molecule
  • D [eV] is the dissociation energy of the chalcogenide in question and ⁇ * a characteristic wavelength of molecular emission.
  • One way to increase efficiency is to use two or more chalcogenides Combine silicon, germanium, tin and lead in the gas atmosphere.
  • the cold filling pressure of the buffer gas is optimal if the product from the cold filling pressure of the noble gas p with the smallest diameter of the gas discharge vessel d fulfills the condition 0.2 mbar cm ⁇ pd ⁇ 20 mbar cm.
  • a further advantageous measure to increase the lumen efficiency of the low-pressure gas discharge lamp has been to check the operating temperature of the lamp by means of suitable design measures, so that an internal temperature corresponding to T * ⁇ 50 [K] according to Table 1 during operation at an outside temperature of 25 ° C
  • the internal temperature T * refers to the coldest point of the gas discharge vessel.
  • the gas discharge vessel can also be used with a Outer bulb, which is coated with a layer reflecting IR radiation, surrounded become.
  • An infrared radiation-reflecting coating made of indium-doped is preferred Tin oxide.
  • a suitable material for the electrodes in the low-pressure gas discharge lamp according to the invention consists for example of nickel or a nickel alloy or one refractory metal, in particular tungsten and tungsten alloys, in particular Tungsten alloys with rhenium. Also tungsten composite materials with thorium oxide or indium oxide are suitable.
  • the electrodes can still be made with a material lower work function.
  • the gas discharge vessel of the lamp is on it Outside surface coated with a phosphor layer 4.
  • the UV radiation emitted by the Gas discharge stimulates the phosphors in the phosphor layer to emit light in the visible area 5.
  • the chemical composition of the phosphor layer determines the spectrum of the light or its color.
  • the materials that can be used as phosphors must be absorb generated radiation and in a suitable wavelength range z. B. for the three primary colors red, blue and green emit and a high fluorescence quantum yield to reach.
  • germanium chalcogenides The emission of germanium chalcogenides is mainly in the UV range and to a small extent in the blue spectral range. With the help of the phosphor layer, this bluish-white emission spectrum can be converted into a white light spectrum with a color temperature below 10,000 K.
  • the phosphor layer of a white-emitting lamp with germanium chalcogenides can contain a single phosphor which converts the UV radiation into visible light with a wide color spectrum from green to red.
  • Such a phosphor is preferably a Ce 3+ -activated phosphor such as Y 3 Al 5 O 12 : Ce or (Y 1-x Gd x ) 3 (Al 1-y Ga y ) 5 O 12 : Ce (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • SrLi 2 SiO 4 : Eu can be used.
  • the phosphor layer can contain two or three phosphors. Contains the Fluorescent layer two phosphors, so one phosphor converts UV radiation into red Light and the other phosphor convert UV radiation into green light. In the case of three The phosphor layer contains another phosphor, the UV radiation transformed into blue light.
  • the phosphors used should have a strong absorption in the Have range 250 to 400 nm. The emission maximum is preferably a blue-emitting one Phosphor between 440 and 480 nm, a green-emitting Phosphor between 510 and 560 nm and a red-emitting phosphor between 590 and 660 nm. Because the phosphors have a high thermal quenching temperature should preferably be line emitters, broadband emitters with a small Stokes shift or host lattice with low phonon frequencies.
  • a blue-emitting phosphor is preferably selected from the group (Ba 1-x Sr x ) MgAl 10 O 17 : Eu (0 ⁇ x ⁇ 1), (Ba 1-x , Sr x ) 5 (PO 4 ) 3 (F , Cl): Eu (0 ⁇ x ⁇ 1), (Ba 1-xy , Sr x , Ca y ) 5 (PO 4 ) 3 (F, Cl): Eu (0 ⁇ x ⁇ 1), (Y 1- x Gd x ) 2 SiO 5 : Ce, ZnS: Ag SrS: Ce, (Ba 1-x Sr x ) MgSi 2 O 8 : Eu (0 ⁇ x ⁇ 1) and (La 1- xGd x ) OBr: Ce ( 0 ⁇ x ⁇ 1).
  • a green-emitting phosphor is preferably selected from the group (Ba 1-x Sr x ) MgAl 10 O 17 : Eu, Mn (0 ⁇ x ⁇ 1), (Ba 1-x Sr x ) 2 SiO 4 : Eu (0 ⁇ x ⁇ 1), ZnS: Cu, Al, Au, SrGa 2 S 4 : Eu, (Y 1-x Gd x ) BO 3 : Ce, Tb (0 ⁇ x ⁇ 1), (Y 1-x Gd x ) 2 O 2 S: Tb (0 ⁇ x ⁇ 1), LaOBr: Ce, Tb, CaS: Ce, Ca 2 MgSi 2 O 7 : Eu and (Y 1-x Gd x ) 2 SiO 5 : Ce, Tb ( 0 ⁇ x ⁇ 1).
  • a red-emitting phosphor is preferably selected from the group Sr 2 CeO 4 : Eu, (Y 1-x Gd x ) 2 O 3 : Eu, Bi (0 ⁇ x ⁇ 1), (Y 1-x Gd x ) 2 O 3 : Eu, Bi (0 ⁇ x ⁇ 1), YVO 4 : Eu, Y (V 1-x P x ) O 4 : Eu (0 ⁇ x ⁇ 1), Y (V 1-x , P x ) O 4 : Eu, Bi (0 ⁇ x ⁇ 1), Y 2 O 2 S: Eu, Mg 4 GeO 5.5 F: Mn, (Sr 1-x Ca x ) 2 P 2 O 7 : Eu, Mn (0 ⁇ x ⁇ 1), (Sr 1-x Ba x ) 2 Si 5 N 8 : Eu (0 ⁇ x ⁇ 1), Ca 2 Si 5 N 8 : Eu, CaS: Ce, Mn and (Ca 1-x Sr x ) S: Eu (0 ⁇ x ⁇ 1).
  • Oxidation-sensitive phosphors such as BaMgAl 10 O 17 : Eu
  • Oxidation-sensitive phosphors can be used in the phosphor layer if the phosphor particles are coated with a protective layer of, for example, SiO 2 , MgO, LaPO 4 , AlPO 4 , YPO 4 , MgAl 2 O 4 , Y 2 O 3 , La 2 O 3 , Ca 2 P 2 O 7 or Al 2 O 3 are provided.
  • the specific weight of the phosphor layer is preferably between 0.1 and 10 mg / cm 2 .
  • Suitable phosphors and phosphor combinations do not have to be on the inside of the Gas discharge vessel are applied, but can also be applied to the outside be because the radiation generated in the UVA range from the common types of glass is not absorbed.
  • the lamp is a capacitive with a high frequency field with a frequency of, for example, 2.65 MHz, 13.56 MHz or 2.4 GHz excited lamp in which the electrodes are attached to the outside of the gas discharge vessel
  • the lamp is an inductively excited lamp with a high-frequency field with a frequency of, for example, 2.65 MHz, 13.56 MHz or 2.4 GHz.
  • the electrons emitted by the electrodes excite the atoms and molecules of the gas filling to emit UV radiation from the characteristic radiation and a molecular continuum.
  • the discharge heats the gas filling in such a way that the desired vapor pressure and the desired operating temperature is reached at which the luminous efficacy is optimal.
  • the radiation of the gas filling generated during operation has an intense, broad, continuous molecular spectrum which is caused by the molecular discharge of the chalcogenide.
  • the range of maximum emission of the continuous molecular spectrum usually shifts to longer wavelengths with increasing molecular weight of the chalcogenide.
  • a cylindrical discharge vessel made of a glass that is transparent to UVA radiation, with a length of 14 cm and a diameter of 2.5 cm with external electrodes made of copper.
  • the discharge vessel is evacuated and at the same time 0.3 mg GeSe metered in.
  • Argon is also filled in at a cold pressure of 5 mbar. It is an alternating current with a frequency of 13.65 MHz from an external AC power supply and the at an operating temperature of 433 ° C. Lumen efficiency measured. The lumen efficiency is 100 Lm / W.

Landscapes

  • Discharge Lamp (AREA)
  • Luminescent Compositions (AREA)

Description

Die Erfindung betrifft eine Niederdruckgasentladungslampe, die mit einem Gasentladungsgefäß, das eine Gasfüllung enthält, mit Elektroden und mit Mitteln zur Erzeugung und Aufrechterhaltung einer Niederdruckgasentladung ausgerüstet ist.The invention relates to a low-pressure gas discharge lamp which has a gas discharge vessel, which contains a gas filling, with electrodes and with means for production and maintaining a low pressure gas discharge.

Die Lichterzeugung in Niederdruckgasentladungslampen beruht darauf, dass Ladungsträger, insbesondere Elektronen, aber auch Ionen, durch ein elektrisches Feld zwischen den Elektroden der Lampe so stark beschleunigt werden, dass sie in der Gasfüllung der Lampe durch Zusammenstöße mit den Gasatomen oder Molekülen der Gasfüllung diese anregen oder ionisieren. Bei der Rückkehr der Atome oder Moleküle der Gasfüllung in ihren Grundzustand wird ein mehr oder weniger großer Teil der Anregungsenergie in Strahlung umgewandelt.The generation of light in low-pressure gas discharge lamps is based on the fact that charge carriers, especially electrons, but also ions, through an electric field between the Electrodes of the lamp are accelerated so much that they are in the gas filling of the lamp stimulate them by collisions with the gas atoms or molecules of the gas filling or ionize. When the atoms or molecules of the gas filling in their return Ground state becomes a more or less large part of the excitation energy in radiation converted.

Konventionelle Niederdruckgasentladungslampen enthalten Quecksilber in der Gasfüllung und weisen außerdem einen Leuchtstoffüberzug innen auf dem Gasentladungsgefäß auf. Es ist ein Nachteil der Quecksilber-Niederdruckgasentladungslampen, dass Quecksilberdampf primär Strahlung im hochenergetischen, aber unsichtbaren UV-C-Bereich des elektromagnetischen Spektrums abgibt, die erst durch die Leuchtstoffe in die sichtbare, wesentlich niederenergetischere Strahlung umgewandelt werden muss. Die Energiedifferenz wird dabei in unerwünschte Wärmestrahlung umgewandelt.Conventional low-pressure gas discharge lamps contain mercury in the gas filling and also have a fluorescent coating on the inside of the gas discharge vessel. It is a disadvantage of mercury low pressure gas discharge lamps that mercury vapor primarily radiation in the high-energy but invisible UV-C range of the emits electromagnetic spectrum, which is only visible through the phosphors in the much lower-energy radiation must be converted. The energy difference is converted into unwanted heat radiation.

Das Quecksilber in der Gasfüllung wird außerdem auch verstärkt als umweltschädliche und giftige Substanz angesehen, die in modernen Massenprodukten aufgrund der Umweltgefährdung bei Anwendung, Produktion und Entsorgung möglichst vermieden werden sollte.The mercury in the gas filling is also reinforced as environmentally harmful and Toxic substance viewed in modern mass products due to environmental hazards should be avoided if possible during application, production and disposal should.

Es ist bereits bekannt, das Spektrum von Niederdruckgasentladungslampen zu beeinflussen, indem man das Quecksilbers in der Gasfüllung durch andere Stoffe ersetzt. It is already known to influence the spectrum of low-pressure gas discharge lamps by replacing the mercury in the gas filling with other substances.

Beispielsweise ist aus GB 2 014 358 A eine Niederdruckgasentladungslampe bekannt, die ein Entladungsgefäß, Elektroden und eine Füllung umfasst, die wenigstens ein Kupferhalogenid als UV-Emitter enthält. Diese kupferhalogenidhaltige Niederdruckgasentladungslampe emittiert im sichtbaren Bereich sowie im UV-Bereich bei 324,75 und 327,4 nm.
Aus EP-A-0 316 189 eine Niederdruckgasentladungslampe, deren Füllung neben einem Puffergas die aktiven Verbindungen CS2oder CSe2enthalten kann, bekannt. Weiterhin ist aus EP 1 093 152 eine elektrodenlose Lampe, die Zinnjodid in der Gasfüllung enthält bekannt
For example, GB 2 014 358 A discloses a low-pressure gas discharge lamp which comprises a discharge vessel, electrodes and a filling which contains at least one copper halide as the UV emitter. This copper halide-containing low-pressure gas discharge lamp emits in the visible range and in the UV range at 324.75 and 327.4 nm.
From EP-A-0 316 189 a low pressure gas discharge lamp, the filling of which can contain the active compounds CS 2 or CSe 2 in addition to a buffer gas, is known. Furthermore, an electrodeless lamp is known from EP 1 093 152, which contains tin iodide in the gas filling

Es ist eine Aufgabe der vorliegenden Erfindung eine Niederdruckgasentladungslampe zu schaffen, deren Strahlung möglichst nahe am sichtbaren Bereich des elektromagnetischen Spektrums liegt.It is an object of the present invention to provide a low pressure gas discharge lamp create their radiation as close as possible to the visible range of the electromagnetic Spectrum lies.

Erfindungsgemäß wird die Aufgabe gelöst durch eine Niederdruckgasentladungslampe, die mit einem Gasentladungsgefäß, das eine Gasfüllung mit einem Chalkogenid, ausgewählt aus der Gruppe der Sulfide, Selenide und Telluride, der Elemente der 4. Hauptgruppe des Periodischen Systems der Elemente, ausgewählt aus Silicium, Germanium, Zinn und Blei, und mit einem Puffergas enthält, mit inneren oder äußeren Elektroden und mit Mitteln zur Erzeugung und Aufrechterhaltung einer Niederdruckgasentladung ausgerüstet ist.According to the invention the object is achieved by a low-pressure gas discharge lamp with a gas discharge vessel that selected a gas filling with a chalcogenide from the group of sulfides, selenides and tellurides, the elements of the 4th main group of Periodic table of the elements, selected from silicon, germanium, tin and lead, and containing a buffer gas, internal or external electrodes and means is equipped to generate and maintain a low pressure gas discharge.

In der erfindungsgemäßen Lampe findet eine molekulare Gasentladung bei Niederdruck statt, die Strahlung im sichtbaren und nahen UVA-Bereich des elektromagnetischen Spektrum abgibt. Da es sich um die Strahlung einer molekularen Entladung handelt, ist die genaue Lage des Kontinuums durch die Art des Chalkogenids, etwaigen weiteren Additiven sowie Lampeninnendruck und Betriebstemperatur steuerbar.A molecular gas discharge at low pressure takes place in the lamp according to the invention instead, the radiation in the visible and near UVA range of the electromagnetic spectrum emits. Since it is the radiation of a molecular discharge, the exact location of the continuum by the type of chalcogenide, any other Additives, lamp pressure and operating temperature can be controlled.

Kombiniert mit Leuchtstoffen hat die erfindungsgemäße Lampe eine visuelle Effizienz, die beträchtlich höher ist als die von konventionellen Niederdruckquecksilberentladungslampen. Die visuelle Effizienz, ausgedrückt in Lumen/Watt ist das Verhältnis zwischen der Helligkeit der Strahlung in einem bestimmten sichtbaren Wellenlängenbereich und der Erzeugungsenergie für die Strahlung. Die hohe visuelle Effizienz der erfindungsgemäßen Lampe bedeutet, dass eine bestimmte Lichtmenge durch weniger Leistungsaufnahme realisiert wird.Combined with phosphors, the lamp according to the invention has a visual efficiency that is considerably higher than that of conventional low-pressure mercury discharge lamps. The visual efficiency, expressed in lumens / watt, is the ratio between the Brightness of the radiation in a certain visible wavelength range and the Generation energy for radiation. The high visual efficiency of the invention Lamp means that a certain amount of light due to less power consumption is realized.

Die Chalkogenide der Elemente der 4. Hauptgruppe des PSE, z. B. Silicium, Germanium, Zinn und Blei haben eine hohe Dissoziationsenergie. Deshalb wird nur ein geringer Anteil der Moleküle in der Gasphase während der Gasentladung durch Elektronenstoßionisation gespalten und es treten nur wenige Chalkogenid-Ionen während der Gasentladung auf. Das wirkt sich ebenfalls günstig auf die visuelle Effizienz der Lampe aus.
Außerdem wird die Verwendung von Quecksilber vermieden.
The chalcogenides of the elements of the 4th main group of the PSE, e.g. B. silicon, germanium, tin and lead have a high dissociation energy. Therefore, only a small proportion of the molecules in the gas phase are split by electron impact ionization during gas discharge and only a few chalcogenide ions occur during gas discharge. This also has a positive effect on the visual efficiency of the lamp.
It also avoids the use of mercury.

Eine vorteilhafte Verwendung findet die erfindungsgemäße Lampe als UV-A-Lampe für Sonnenbänke, Desinfektionsleuchten und Lackhärtungsbeleuchtungen. Für allgemeine Beleuchtungszwecke wird die Lampe mit entsprechenden Leuchtstoffen kombiniert. Weil die Verluste durch Stokesche Verschiebung gering sind, erhält man sichtbares Licht mit einer hohen Lichtausbeute von mehr als 100 Lumen/Watt.The lamp according to the invention is advantageously used as a UV-A lamp for Sunbeds, disinfection lights and paint curing lights. For general lighting purposes the lamp is combined with appropriate phosphors. Because the Losses due to Stoke's displacement are small, you get visible light with a high luminous efficacy of more than 100 lumens / watt.

Es ist besonders bevorzugt, dass das Chalkogenid ausgewählt ist aus der Gruppe SiS, GeS, GeSe, GeTe, SnS, SnSe und SnTe.It is particularly preferred that the chalcogenide is selected from the group SiS, GeS, GeSe, GeTe, SnS, SnSe and SnTe.

Besonders vorteilhafte Wirkungen gegenüber dem Stand der Technik werden erhalten, wenn die Gasfüllung Germaniumselenid GeSe enthält. Man erhält eine Gasentladung mit einem breiten kontinuierlichen Spektrum.Particularly advantageous effects over the prior art are obtained if the gas filling contains germanium selenide GeSe. You get a gas discharge with a wide continuous spectrum.

Es kann auch bevorzugt sein, dass die Gasfüllung Germaniumsulfid enthält. Eine Gasfüllung, die Germaniumsulfid enthält, zeichnet sich durch einen hohen Dampfdruck aus.It may also be preferred that the gas filling contains germanium sulfide. A gas filling, which contains germanium sulfide is characterized by a high vapor pressure.

Eine weiter verbesserte Effizienz wird erreicht, wenn die Gasfüllung ein Gemisch aus zwei oder mehreren Chalkogeniden des Siliciums, Germaniums, Zinns und Bleis enthält. A further improved efficiency is achieved when the gas filling is a mixture of two or contains more chalcogenides of silicon, germanium, tin and lead.

Es ist bevorzugt, dass in dem Chalkogenid das molare Verhältnis n zwischen dem Chalkogen und Element der 4. Hauptgruppe des PSE 0,8 ≤ n ≤1,2 ist.It is preferred that in the chalcogenide the molar ratio n between the Chalcogen and element of the 4th main group of the PSE is 0.8 ≤ n ≤1.2.

Die Gasfüllung kann als Puffergas ein Edelgas, ausgewählt aus der Gruppe Helium, Neon, Argon, Krypton und Xenon umfassen.The gas filling can be a noble gas selected from the group of helium, neon, Argon, Krypton and Xenon include.

Im Rahmen der vorliegenden Erfindung kann es bevorzugt sein, dass das Gasentladungsgefäß einen Leuchtstoffüberzug auf der äußeren Oberfläche aufweist. Die UVA-Strahlung, die von der erfindungsgemäßen Niederdruckgasentladungslampe abgestrahlt wird, wird von den gängigen Glassorten nicht absorbiert, sondern passiert die Wände des Entladungsgefäßes nahezu verlustfrei. Der Leuchtstoffüberzug kann deshalb auf der Außenseite des Gasentladungsgefäßes angebracht werden. Dadurch wird das Herstellungsverfahren vereinfacht.In the context of the present invention, it may be preferred that the gas discharge vessel has a phosphor coating on the outer surface. The UVA radiation, which is emitted by the low-pressure gas discharge lamp according to the invention not absorbed by the common types of glass, but passes through the walls of the discharge vessel almost lossless. The fluorescent coating can therefore on the outside of the Gas discharge vessel can be attached. This simplifies the manufacturing process.

Es kann auch bevorzugt sein, dass das Gasentladungsgefäß einen Leuchtstoffüberzug auf der inneren Oberfläche aufweist.It may also be preferred for the gas discharge vessel to have a phosphor coating the inner surface.

Nachfolgend wird die Erfindung anhand von einer Figur und einem Ausführungsbeispiel weiter erläutert.

Fig. 1
zeigt schematisch die Lichterzeugung in einer Niederdruckgasentladungslampe mit einer Gasfüllung, die Germaniumselenid enthält.
The invention is explained in more detail below on the basis of a figure and an exemplary embodiment.
Fig. 1
shows schematically the light generation in a low-pressure gas discharge lamp with a gas filling, which contains germanium selenide.

In der in Fig. 1 gezeigten Ausführungsform besteht die erfindungsgemäße Niederdruckgasentladungslampe aus einem rohrförmigen Lampenkolben 1, der einen Entladungsraum umgibt. An beiden Enden des Rohrs sind innen Elektroden 2 eingeschmolzen, über die die Gasentladung gezündet werden kann. Die Niederdruckgasentladungslampe umfasst weiterhin in an sich bekannter Weise ein elektrisches Vorschaltgerät, das die Zündung und den Betrieb der Gasentladungslampe regelt.In the embodiment shown in FIG. 1 there is the low-pressure gas discharge lamp according to the invention from a tubular lamp bulb 1, which has a discharge space surrounds. At both ends of the tube electrodes 2 are melted inside, through which the Gas discharge can be ignited. The low pressure gas discharge lamp further comprises in a manner known per se an electrical ballast, the ignition and the Operation of the gas discharge lamp regulates.

Das Gasentladungsgefäß kann auch als ein mehrfach gefaltetes oder gewendeltes Rohr ausgeführt und von einem Außenkolben umgeben sein.The gas discharge vessel can also be used as a multiply folded or coiled tube executed and be surrounded by an outer bulb.

Die Wand des Gasentladungsgefäßes besteht bevorzugt aus einer Glassorte, Quarz, Aluminiumoxid oder Yttrium-Aluminium-Granat.The wall of the gas discharge vessel preferably consists of a type of glass, quartz, Aluminum oxide or yttrium aluminum garnet.

Die Gasfüllung besteht im einfachsten Fall aus einem Chalkogenid des Siliciums, Germaniums, Zinns und Bleis in einer Menge von 2x10-11 mol/cm3 bis 2x10-9 mol/cm3 und einem Edelgas. Das Edelgas dient als Puffergas und erleichtert die Zündung der Gasentladung. Bevorzugtes Puffergas ist Argon. Argon kann ganz oder teilweise durch ein anderes Edelgas, wie Helium, Neon, Krypton oder Xenon ersetzt werden.In the simplest case, the gas filling consists of a chalcogenide of silicon, germanium, tin and lead in an amount of 2x10 - 11 mol / cm 3 to 2x10 -9 mol / cm 3 and an inert gas. The noble gas serves as a buffer gas and facilitates the ignition of the gas discharge. The preferred buffer gas is argon. Argon can be replaced in whole or in part by another noble gas, such as helium, neon, krypton or xenon.

Chalkogenide sind binäre chemische Verbindungen, die ein Chalkogen, d.h. ein Element der 6. Hauptgruppe des Periodischen Systems der Elemente, als elektronegative Komponente enthalten. Im Rahmen der vorliegenden Erfindung werden die Chalkogenide, die die Chalkogene Schwefel (S), Selen(Se) und Tellur (Te) enthalten, verwendet.Chalcogenides are binary chemical compounds that form a chalcogen, i.e. an element the 6th main group of the Periodic Table of the Elements, as electronegative Component included. Within the scope of the present invention, the Chalcogenides containing the chalcogens sulfur (S), selenium (Se) and tellurium (Te), used.

Im Rahmen der vorliegenden Erfindung werden bevorzugt die Chalkogenide, die die Chalkogene Schwefel (S), Selen(Se) und Tellur (Te) enthalten, verwendet.In the context of the present invention, the chalcogenides which are the preferred Contains chalcogenic sulfur (S), selenium (Se) and tellurium (Te).

Als Elemente der vierten Hauptgruppe des Periodischen Systems der Elemente kommen für die Erfindung die Elemente Silicium (Si), Germanium (Ge), Zinn(Sn) und Blei(Pb) in Betracht.Coming as elements of the fourth main group of the Periodic Table of the Elements for the invention the elements silicon (Si), germanium (Ge), tin (Sn) and lead (Pb) in Consideration.

Für die Erfindung ist es bevorzugt, Chalkogenide der Elemente der 4. Hauptgruppe des PSE zu verwenden, in denen das molare Verhältnis n zwischen dem Chalkogen und dem Element der 4. Hauptgruppe des PSE bei 0.8 ≤ n ≤ 1,2 liegt.For the invention it is preferred to chalcogenides of the elements of the 4th main group of To use PSE in which the molar ratio n between the chalcogen and the Element of the 4th main group of the PSE is 0.8 ≤ n ≤ 1.2.

In Tab.1 sind die spektroskopischen Eigenschaften einiger Chalkogenide der Elemente der vierten Hauptgruppe des PSE zusammengefasst. T*[K] ist die Wandtemperatur der Lampe, bei der der Partialdampfdruck des Chalkogenids 10 µbar erreicht. In der Spalte "Trans." ist die Art der strahlenden Übergänge (transitions) im Chalkogenidmolekül angegeben. "X" bezeichnet den elektronischen Grundzustand des Moleküls, "A',"B","D" und "E" einen elektronisch angeregten Zustand des Moleküls, D[eV] ist die Dissoziationsenergie des betreffenden Chalkogenids und λ* eine charakteristische Wellenlänge der molekularen Emission.Table 1 shows the spectroscopic properties of some chalcogenides of the elements of the fourth main group of the PSE summarized. T * [K] is the wall temperature of the Lamp in which the partial vapor pressure of the chalcogenide reaches 10 µbar. In the column "Trans." is the type of radiative transitions in the chalcogenide molecule specified. "X" denotes the electronic ground state of the molecule, "A '," B "," D " and "E" is an electronically excited state of the molecule, D [eV] is the dissociation energy of the chalcogenide in question and λ * a characteristic wavelength of molecular emission.

Eine Möglichkeit zur Effizienzsteigerung besteht darin, zwei oder mehr Chalkogenide des Siliciums, Germaniums, Zinns und Bleis in der Gasatmosphäre zu kombinieren. One way to increase efficiency is to use two or more chalcogenides Combine silicon, germanium, tin and lead in the gas atmosphere.

Die Effizienz kann weiterhin verbessert werden, wenn der Betriebsinnendruck der Lampe optimiert wird. Der Kaltfülldruck des Puffergases ist optimal, wenn das Produkt aus dem Kaltfülldruck des Edelgases p mit dem kleinsten Durchmesser des Gasentladungsgefäßes d die Bedingung 0,2 mbar cm < p.d < 20 mbar cm erfüllt.
Als weitere vorteilhafte Maßnahme zur Steigerung der Lumeneffizienz der Niederdruckgasentladungslampe hat sich die Kontrolle der Betriebstemperatur der Lampe durch geeignete konstruktive Maßnahmen erwiesen, so dass während des Betriebes bei einer Außentemperatur von 25 °C eine Innentemperatur entsprechend T* ± 50 [K] gemäß Tab. 1 erreicht wird Die Innentemperatur T* bezieht sich auf die kälteste Stelle des Gasentladungsgefäßes.
Efficiency can be further improved if the lamp's internal pressure is optimized. The cold filling pressure of the buffer gas is optimal if the product from the cold filling pressure of the noble gas p with the smallest diameter of the gas discharge vessel d fulfills the condition 0.2 mbar cm <pd <20 mbar cm.
A further advantageous measure to increase the lumen efficiency of the low-pressure gas discharge lamp has been to check the operating temperature of the lamp by means of suitable design measures, so that an internal temperature corresponding to T * ± 50 [K] according to Table 1 during operation at an outside temperature of 25 ° C The internal temperature T * refers to the coldest point of the gas discharge vessel.

Um die Innentemperatur zu erhöhen, kann das Gasentladungsgefäß auch mit einem Außenkolben, der mit einer IR-Strahlung reflektierende Schicht beschichtet ist, umgeben werden. Bevorzugt ist eine Infrarotstrahlung reflektierende Beschichtung aus indiumdotiertem Zinnoxid.To increase the internal temperature, the gas discharge vessel can also be used with a Outer bulb, which is coated with a layer reflecting IR radiation, surrounded become. An infrared radiation-reflecting coating made of indium-doped is preferred Tin oxide.

Ein geeigneter Werkstoff für die Elektroden in der erfindungsgemäßen Niederdruckgasentladungslampe besteht beispielsweise aus Nickel oder einer Nickellegierung oder aus einem hochschmelzenden Metall, insbesondere Wolfram und Wolframlegierungen, insbesondere Wolframlegierungen mit Rhenium. Auch Verbundwerkstoffe aus Wolfram mit Thoriumoxid oder Indiumoxid sind geeignet. Die Elektroden können noch mit einem Material mit niedriger Austrittsarbeit beschichtet werden.A suitable material for the electrodes in the low-pressure gas discharge lamp according to the invention consists for example of nickel or a nickel alloy or one refractory metal, in particular tungsten and tungsten alloys, in particular Tungsten alloys with rhenium. Also tungsten composite materials with thorium oxide or indium oxide are suitable. The electrodes can still be made with a material lower work function.

In der Ausführungsform gemäß Fig 1 ist das Gasentladungsgefäß der Lampe an seiner Außenfläche mit einer Leuchtstoffschicht 4 beschichtet. Die ausgesendete UV-Strahlung der Gasentladung regt die Leuchtstoffe in der Leuchtstoffschicht zur Emission von Licht im sichtbaren Bereich 5 an.In the embodiment according to FIG. 1, the gas discharge vessel of the lamp is on it Outside surface coated with a phosphor layer 4. The UV radiation emitted by the Gas discharge stimulates the phosphors in the phosphor layer to emit light in the visible area 5.

Die chemische Zusammensetzung der Leuchtstoffschicht bestimmt das Spektrum des Lichts bzw. dessen Farbton. Die als Leuchtstoffe in Frage kommenden Materialien müssen die erzeugte Strahlung absorbieren und in einem geeigneten Wellenlängenbereich z. B. für die drei Grundfarben Rot, Blau und Grün emittieren und eine hohe Fluoreszenzquantenausbeute erreichen. The chemical composition of the phosphor layer determines the spectrum of the light or its color. The materials that can be used as phosphors must be absorb generated radiation and in a suitable wavelength range z. B. for the three primary colors red, blue and green emit and a high fluorescence quantum yield to reach.

Die Emission von Germaniumchalkogenide liegt zu hauptsächlich im UV-Bereich und zu einem kleinen Teil im blauen Spektralbereich.
Mit Hilfe der Leuchtstoffschicht kann dieses bläulich-weiße Emissionspektrum in ein weißes Lichtspektrum mit einer Farbtemperatur unter 10.000 K überführt werden. Die Leuchtstoffschicht einer weiß-emittierenden Lampe mit Germaniumchalkogeniden kann zu diesem Zweck einen einzelnen Leuchtstoff enthalten, der die UV-Strahlung in sichtbares Licht mit einem breiten Farbspektrum von grün bis rot überführt. Ein solcher Leuchtstoff ist vorzugsweise ein Ce3+-aktivierter Leuchtstoff wie beispielsweise Y3Al5O12:Ce oder (Y1-xGdx)3(Al1-yGay)5O12:Ce (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). Alternativ kann SrLi2SiO4:Eu verwendet werden.
The emission of germanium chalcogenides is mainly in the UV range and to a small extent in the blue spectral range.
With the help of the phosphor layer, this bluish-white emission spectrum can be converted into a white light spectrum with a color temperature below 10,000 K. For this purpose, the phosphor layer of a white-emitting lamp with germanium chalcogenides can contain a single phosphor which converts the UV radiation into visible light with a wide color spectrum from green to red. Such a phosphor is preferably a Ce 3+ -activated phosphor such as Y 3 Al 5 O 12 : Ce or (Y 1-x Gd x ) 3 (Al 1-y Ga y ) 5 O 12 : Ce (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). Alternatively, SrLi 2 SiO 4 : Eu can be used.

Alternativ kann die Leuchtstoffschicht zwei oder drei Leuchtstoffe enthalten. Enthält die Leuchtstoffschicht zwei Leuchtstoffe, so überführt ein Leuchtstoff UV-Strahlung in rotes Licht und der andere Leuchtstoff überführt UV-Strahlung in grünes Licht. Im Falle von drei Leuchtstoffen enthält die Leuchtstoffschicht einen weiteren Leuchtstoff, der UV-Strahlung in blaues Licht überführt. Die verwendeten Leuchtstoffe sollten eine starke Absorption im Bereich 250 bis 400 nm aufweisen. Vorzugsweise liegt das Emissionsmaximum eines blauemittierenden Leuchtstoffs zwischen 440 und 480 nm, eines grün-emittierenden Leuchtstoffes zwischen 510 und 560 nm und eines rot-emittierenden Leuchtstoffs zwischen 590 und 660 nm. Da die Leuchtstoffe eine hohe thermische Löschungstemperatur aufweisen sollten, werden vorzugsweise Linienemitter, Breitbandemitter mit einer kleinen Stokes-Verschiebung oder Wirtsgitter mit niedrigen Phononenfrequenzen verwendet.Alternatively, the phosphor layer can contain two or three phosphors. Contains the Fluorescent layer two phosphors, so one phosphor converts UV radiation into red Light and the other phosphor convert UV radiation into green light. In the case of three The phosphor layer contains another phosphor, the UV radiation transformed into blue light. The phosphors used should have a strong absorption in the Have range 250 to 400 nm. The emission maximum is preferably a blue-emitting one Phosphor between 440 and 480 nm, a green-emitting Phosphor between 510 and 560 nm and a red-emitting phosphor between 590 and 660 nm. Because the phosphors have a high thermal quenching temperature should preferably be line emitters, broadband emitters with a small Stokes shift or host lattice with low phonon frequencies.

Ein blau-emittierender Leuchtstoff ist vorzugsweise ausgewählt aus der Gruppe (Ba1-xSrx)MgAl10O17:Eu (0 ≤ x ≤ 1), (Ba1-x,Srx)5(PO4)3(F,Cl):Eu (0 ≤ x ≤ 1), (Ba1-x-y,Srx,Cay)5(PO4)3(F,Cl):Eu (0 ≤ x ≤ 1), (Y1-xGdx)2SiO5:Ce, ZnS:Ag SrS:Ce, (Ba1-xSrx)MgSi2O8:Eu (0 ≤ x ≤ 1) und (La1-xGdx)OBr:Ce (0 ≤ x ≤ 1). Ein grün-emittierender Leuchtstoff ist vorzugsweise ausgewählt aus der Gruppe (Ba1-xSrx)MgAl10O17:Eu,Mn (0 ≤ x ≤ 1), (Ba1-xSrx)2SiO4:Eu (0 ≤ x ≤ 1), ZnS:Cu,Al,Au, SrGa2S4:Eu, (Y1-xGdx)BO3:Ce,Tb (0 ≤ x ≤ 1), (Y1-xGdx)2O2S:Tb (0 ≤ x ≤ 1), LaOBr:Ce,Tb, CaS:Ce, Ca2MgSi2O7:Eu und (Y1-xGdx)2SiO5:Ce,Tb (0 ≤ x ≤ 1).
Ein rot-emittierender Leuchtstoff ist vorzugsweise ausgewählt aus der Gruppe Sr2CeO4:Eu, (Y1-xGdx)2O3:Eu,Bi (0 ≤ x ≤ 1), (Y1-xGdx)2O3:Eu,Bi (0≤x≤1), YVO4:Eu, Y(V1-xPx)O4:Eu (0≤x≤1), Y(V1-x,Px)O4:Eu,Bi (0≤x≤1), Y2O2S:Eu, Mg4GeO5.5F:Mn, (Sr1-xCax)2P2O7:Eu,Mn (0≤x≤1), (Sr1-xBax)2Si5N8:Eu(0≤x≤1), Ca2Si5N8:Eu, CaS:Ce, Mn und (Ca1-xSrx)S:Eu (0≤x≤1).
A blue-emitting phosphor is preferably selected from the group (Ba 1-x Sr x ) MgAl 10 O 17 : Eu (0 ≤ x ≤ 1), (Ba 1-x , Sr x ) 5 (PO 4 ) 3 (F , Cl): Eu (0 ≤ x ≤ 1), (Ba 1-xy , Sr x , Ca y ) 5 (PO 4 ) 3 (F, Cl): Eu (0 ≤ x ≤ 1), (Y 1- x Gd x ) 2 SiO 5 : Ce, ZnS: Ag SrS: Ce, (Ba 1-x Sr x ) MgSi 2 O 8 : Eu (0 ≤ x ≤ 1) and (La 1- xGd x ) OBr: Ce ( 0 ≤ x ≤ 1). A green-emitting phosphor is preferably selected from the group (Ba 1-x Sr x ) MgAl 10 O 17 : Eu, Mn (0 ≤ x ≤ 1), (Ba 1-x Sr x ) 2 SiO 4 : Eu (0 ≤ x ≤ 1), ZnS: Cu, Al, Au, SrGa 2 S 4 : Eu, (Y 1-x Gd x ) BO 3 : Ce, Tb (0 ≤ x ≤ 1), (Y 1-x Gd x ) 2 O 2 S: Tb (0 ≤ x ≤ 1), LaOBr: Ce, Tb, CaS: Ce, Ca 2 MgSi 2 O 7 : Eu and (Y 1-x Gd x ) 2 SiO 5 : Ce, Tb ( 0 ≤ x ≤ 1).
A red-emitting phosphor is preferably selected from the group Sr 2 CeO 4 : Eu, (Y 1-x Gd x ) 2 O 3 : Eu, Bi (0 ≤ x ≤ 1), (Y 1-x Gd x ) 2 O 3 : Eu, Bi (0≤x≤1), YVO 4 : Eu, Y (V 1-x P x ) O 4 : Eu (0≤x≤1), Y (V 1-x , P x ) O 4 : Eu, Bi (0≤x≤1), Y 2 O 2 S: Eu, Mg 4 GeO 5.5 F: Mn, (Sr 1-x Ca x ) 2 P 2 O 7 : Eu, Mn (0≤ x≤1), (Sr 1-x Ba x ) 2 Si 5 N 8 : Eu (0≤x≤1), Ca 2 Si 5 N 8 : Eu, CaS: Ce, Mn and (Ca 1-x Sr x ) S: Eu (0≤x≤1).

Oxidationsempfindliche Leuchtstoffe, wie beispielsweise BaMgAl10O17:Eu, können in der Leuchtstoffschicht verwendet werden, wenn die Leuchtstoffpartikel mit einer Schutzschicht aus beispielsweise SiO2, MgO, LaPO4, AlPO4, YPO4, MgAl2O4, Y2O3, La2O3, Ca2P2O7 oder Al2O3 versehen sind.Oxidation-sensitive phosphors, such as BaMgAl 10 O 17 : Eu, can be used in the phosphor layer if the phosphor particles are coated with a protective layer of, for example, SiO 2 , MgO, LaPO 4 , AlPO 4 , YPO 4 , MgAl 2 O 4 , Y 2 O 3 , La 2 O 3 , Ca 2 P 2 O 7 or Al 2 O 3 are provided.

Das spezifische Gewicht der Leuchtstoffschicht beträgt vorzugsweise zwischen 0.1 und 10 mg/cm2.The specific weight of the phosphor layer is preferably between 0.1 and 10 mg / cm 2 .

Geeignete Leuchtstoffe und Leuchtstoffkombinationen müssen nicht auf die Innenseite des Gasentladungsgefäßes aufgebracht werden, sondern können auch auf die Außenseite aufgetragen werden, da die erzeugte Strahlung im UVA-Bereich von den gängigen Glassorten nicht absorbiert wird.Suitable phosphors and phosphor combinations do not have to be on the inside of the Gas discharge vessel are applied, but can also be applied to the outside be because the radiation generated in the UVA range from the common types of glass is not absorbed.

Nach einer anderen Ausführungsform ist die Lampe eine kapazitiv mit einem Hochfrequenzfeld mit einer Frequenz von beispielsweise 2,65 MHz, 13,56 MHz oder 2,4 GHz angeregte Lampe, bei der die Elektroden außen an dem Gasentladungsgefäß angebracht sindAccording to another embodiment, the lamp is a capacitive with a high frequency field with a frequency of, for example, 2.65 MHz, 13.56 MHz or 2.4 GHz excited lamp in which the electrodes are attached to the outside of the gas discharge vessel

Nach einer weiteren Ausführungsform ist die Lampe eine induktiv mit einem Hochfrequenzfeld mit einer Frequenz von beispielsweise 2,65 MHz, 13,56 MHz oder 2,4 GHz angeregte Lampe.
Wenn die Lampe gezündet wird, regen die von den Elektroden emittierten Elektronen die Atome und Moleküle der Gasfüllung zur Ausstrahlung von UV-Strahlung aus der charakteristischen Strahlung und einem Molekülkontinuum an.
According to a further embodiment, the lamp is an inductively excited lamp with a high-frequency field with a frequency of, for example, 2.65 MHz, 13.56 MHz or 2.4 GHz.
When the lamp is ignited, the electrons emitted by the electrodes excite the atoms and molecules of the gas filling to emit UV radiation from the characteristic radiation and a molecular continuum.

Die Entladung erwärmt die Gasfüllung so, dass der gewünschte Dampfdruck und die gewünschte Betriebstemperatur erreicht wird, bei der die Lichtausbeute optimal ist. Die im Betrieb erzeugte Strahlung der chalkogenidhaltigen Gasfüllung weist neben dem Linienspektrum der Elemente der 4. Hauptgruppe des Periodensystems ein intensives, breites, kontinuierliches Molekülspektrum auf, das durch molekulare Entladung des Chalkogenids verursacht ist. Der Bereich der maximalen Emission des kontinuierlichen Molekülspektrums verschiebt sich in der Regel zu längeren Wellenlängen mit steigendem Molekulargewicht des Chalkogenids. Eigenschaften von Chalkogeniden T*[K] Trans. D[eV] λ*[nm] SiS 870 E→X
D→X
6.4 238
285
GeS 640 E→X
A→X
5.67 257
304
GeSe 670 E→X
A→X
4.9 282
324
GeTe 760 E→X
A→X
4.2 318
360
SnS 850 B→X
A→X
4.77 423
436
SnSe 850 E→X
D→X
4.2 325
363
SnTe B→X
A→X
3.69 490
594
The discharge heats the gas filling in such a way that the desired vapor pressure and the desired operating temperature is reached at which the luminous efficacy is optimal. In addition to the line spectrum of the elements of the fourth main group of the periodic table, the radiation of the gas filling generated during operation has an intense, broad, continuous molecular spectrum which is caused by the molecular discharge of the chalcogenide. The range of maximum emission of the continuous molecular spectrum usually shifts to longer wavelengths with increasing molecular weight of the chalcogenide. Properties of chalcogenides T * [K] Trans. D [eV] * λ [nm] SiS 870 E → X
D → X
6.4 238
285
GeS 640 E → X
A → X
5.67 257
304
GeSe 670 E → X
A → X
4.9 282
324
GeTe 760 E → X
A → X
4.2 318
360
SnS 850 B → X
A → X
4.77 423
436
SnSe 850 E → X
D → X
4.2 325
363
SnTe B → X
A → X
3.69 490
594

Ausführungsbeispiel 1Embodiment 1

Ein zylindrisches Entladungsgefäß aus einem Glas, das für UVA-Strahlung durchlässig ist, mit einer Länge von 14 cm und einem Durchmesser von 2,5 cm wird mit äußeren Elektroden aus Kupfer ausgerüstet. Das Entladungsgefäß wird evakuiert und gleichzeitig werden 0.3 mg GeSe eindosiert. Ebenso wird Argon mit einem Kaltdruck von 5 mbar eingefüllt. Es wird ein Wechselstrom mit einer Frequenz von 13,65 MHz von einer externen Wechselstromquelle zugeführt und bei einer Betriebstemperatur von 433 °C die Lumeneffizienz gemessen. Die Lumeneffizienz beträgt 100 Lm/W.A cylindrical discharge vessel made of a glass that is transparent to UVA radiation, with a length of 14 cm and a diameter of 2.5 cm with external electrodes made of copper. The discharge vessel is evacuated and at the same time 0.3 mg GeSe metered in. Argon is also filled in at a cold pressure of 5 mbar. It is an alternating current with a frequency of 13.65 MHz from an external AC power supply and the at an operating temperature of 433 ° C. Lumen efficiency measured. The lumen efficiency is 100 Lm / W.

Claims (9)

  1. A low-pressure gas discharge lamp comprising a gas discharge vessel containing a gas filling with a chalcogenide selected from the group formed by sulphides, selenides and tellurides of the elements of the fourth main group of the periodic system selected from silicon, germanium, tin and lead, and a buffer gas, and comprising inner or outer electrodes and means for generating and maintaining a low-pressure gas discharge.
  2. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the chalcogenide is selected from the group formed by SiS, GeS, GeSe, GeTe, SnS, SnSe and SnTe.
  3. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the gas filling contains germanium selenide GeSe.
  4. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the gas filling contains germanium sulphide GeS.
  5. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the gas filling comprises a mixture of two or more chalcogenides selected from the group formed by sulphides, selenides and tellurides of silicon, germanium, tin and lead.
  6. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that in the chalcogenide, the molar ratio n between chalcogen and the element of the fourth main group of the periodic system of elements, selected from the group formed by silicon, germanium, tin and lead, is 0.8 ≤ n ≤ 1.2.
  7. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the buffer gas of the gas filling is an inert gas selected from the group formed by helium, neon, argon, krypton and xenon.
  8. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the gas discharge vessel comprises a luminophor coating on the outside surface.
  9. A low-pressure gas discharge lamp as claimed in claim 1, characterized in that the inner surface of the gas discharge vessel is provided with a luminophor coating.
EP02100705A 2001-06-15 2002-06-13 Mercury-free low pressure gas discharge lamp Expired - Lifetime EP1267389B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10128915A DE10128915A1 (en) 2001-06-15 2001-06-15 Low pressure gas discharge lamp with mercury-free gas filling
DE10128915 2001-06-15

Publications (2)

Publication Number Publication Date
EP1267389A1 EP1267389A1 (en) 2002-12-18
EP1267389B1 true EP1267389B1 (en) 2004-11-17

Family

ID=7688300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02100705A Expired - Lifetime EP1267389B1 (en) 2001-06-15 2002-06-13 Mercury-free low pressure gas discharge lamp

Country Status (5)

Country Link
US (1) US6731070B2 (en)
EP (1) EP1267389B1 (en)
JP (1) JP2003007248A (en)
CN (1) CN1311512C (en)
DE (2) DE10128915A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044562A1 (en) * 2000-09-08 2002-03-21 Philips Corp Intellectual Pty Low pressure gas discharge lamp with mercury-free gas filling
DE10127961A1 (en) * 2001-06-08 2002-12-12 Philips Corp Intellectual Pty Gas discharge lamp comprises a discharge gas with a light-emitting substance enclosed in a discharge vessel
US20060214590A1 (en) * 2003-08-07 2006-09-28 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp with alkaline eart chalcogenides as electron emitter material
CN1879193A (en) * 2003-11-11 2006-12-13 皇家飞利浦电子股份有限公司 Low-pressure vapor discharge lamp with a mercury-free gas filling
WO2006035339A1 (en) * 2004-09-28 2006-04-06 Philips Intellectual Property & Standards Gmbh Low-pressure gas discharge lamp
US7265493B2 (en) * 2004-10-04 2007-09-04 General Electric Company Mercury-free compositions and radiation sources incorporating same
US7847484B2 (en) * 2004-12-20 2010-12-07 General Electric Company Mercury-free and sodium-free compositions and radiation source incorporating same
US7358656B1 (en) 2005-02-04 2008-04-15 Technical Consumer Products, Inc. A Delaware Corporation Universal cooling points for fluorescent lamps
CN101553898A (en) 2006-05-01 2009-10-07 皇家飞利浦电子股份有限公司 Low-pressure discharge lamp

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7107535A (en) * 1971-06-02 1972-12-05
GB2014358B (en) 1978-02-10 1982-03-03 Thorn Electrical Ind Ltd Discharge lamp
IL84463A (en) 1987-11-12 1992-06-21 Yissum Res Dev Co Ir-radiation source and method for producing same
US5300859A (en) * 1987-11-12 1994-04-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem IR-radiation source and method for producing same
GB8922862D0 (en) 1989-10-11 1989-11-29 Emi Plc Thorn A discharge tube arrangement
KR20010037340A (en) * 1999-10-15 2001-05-07 구자홍 AN ELECTRODELESS LAMP INCLUDING SnI2

Also Published As

Publication number Publication date
CN1311512C (en) 2007-04-18
DE50201546D1 (en) 2004-12-23
EP1267389A1 (en) 2002-12-18
US6731070B2 (en) 2004-05-04
DE10128915A1 (en) 2002-12-19
US20030001505A1 (en) 2003-01-02
JP2003007248A (en) 2003-01-10
CN1392588A (en) 2003-01-22

Similar Documents

Publication Publication Date Title
EP1187174A2 (en) Low pressure gas discharge lamp with an indium-containing gas fill
JP3714952B2 (en) Dielectric disturbing discharge fluorescent lamp
US6734631B2 (en) Low-pressure gas discharge lamp with phosphor coating
DE10129464A1 (en) Low pressure gas discharge lamp with mercury-free gas filling
EP1267389B1 (en) Mercury-free low pressure gas discharge lamp
DE10057881A1 (en) Gas discharge lamp, used in e.g. color copiers and color scanners, comprises a discharge vessel, filled with a gas, having a wall made from a dielectric material and a wall with a surface partially transparent for visible radiation
DE2835575C2 (en) Phosphor for a low-pressure mercury vapor discharge lamp
EP2737003B1 (en) Illuminant and illuminant lamp comprising said illuminant
EP1187173A2 (en) Low pressure gas discharge lamp with a copper-containing gas fill
EP1253624A2 (en) Gas discharge lamp with down-conversion phosphor
DE3109538A1 (en) FLUORESCENT LAMP WITH FLUORESCENT COMBINATION
EP1253625B1 (en) Gas discharge lamp with down-conversion phosphor
US6940216B2 (en) Gas discharge lamp for dielectrically impeded discharges comprising a blue phosphor
EP1254943A2 (en) Downconversion phosphor and gas discharge lamp with such a phosphor
EP3114701B1 (en) Low-pressure discharge lamp with fluorescent particles having a small particle size
DE2128065C2 (en) Phosphor layer for an electrical light source for generating white light and use of this phosphor layer
DE10242241A1 (en) Low pressure discharge lamp comprises a gas discharge vessel containing a noble gas filling, electrodes and devices for producing and maintaining a low pressure gas discharge, and an electron emitter substance
DE10242049A1 (en) Low pressure discharge lamp comprises a gas discharge vessel containing a noble gas filling as buffer gas, electrodes and devices for producing and maintaining a low pressure gas discharge, and a zinc halide
DE19737920A1 (en) Long life low pressure gas discharge lamp
DE10254737A1 (en) Low pressure gas discharge lamp with mercury-free gas filling
DE2747330A1 (en) LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP
MERCURE NIEDERDRUCKGASENTLADUNGSLAMPE MIT QUECKSILBERFREIER GASFÜLLUNG LAMPE A DECHARGE DE GAZ A BASSE PRESSION CONTENANT UNE ATMOSPHERE GAZEUSE
EP0251550A1 (en) Improvements in or relating to inorganic phosphors
Jüstel et al. Enhancing the Lumen Output of Trichromatic Fluorescent Lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

17P Request for examination filed

Effective date: 20030618

17Q First examination report despatched

Effective date: 20030723

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201546

Country of ref document: DE

Date of ref document: 20041223

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050216

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20050217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050818

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070813

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070626

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070626

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080613

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630