EP1261820B1 - Labyrinthdichtung zwischen drehbaren bauteilen - Google Patents
Labyrinthdichtung zwischen drehbaren bauteilen Download PDFInfo
- Publication number
- EP1261820B1 EP1261820B1 EP01917030A EP01917030A EP1261820B1 EP 1261820 B1 EP1261820 B1 EP 1261820B1 EP 01917030 A EP01917030 A EP 01917030A EP 01917030 A EP01917030 A EP 01917030A EP 1261820 B1 EP1261820 B1 EP 1261820B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- labyrinth seal
- sealing
- sealing ring
- face
- seal according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/44—Free-space packings
- F16J15/447—Labyrinth packings
- F16J15/4472—Labyrinth packings with axial path
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
- F16C2380/27—Motor coupled with a gear, e.g. worm gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/76—Sealings of ball or roller bearings
- F16C33/80—Labyrinth sealings
Definitions
- the invention relates to a labyrinth seal according to the preamble of the first claim.
- a labyrinth seal of this type known from DE 44 03 776 A1 is used in the region of a ball bearing at the transition from a drive motor to a gearbox flanged thereto.
- a housing-fixed component is equipped with radially inwardly directed, parallel to each other and having the same inner diameter having ring elements.
- On the armature shaft of the drive motor is seated a further annular component which has in the region of the end faces of the individual ring elements to adjacent cylindrical sealing surfaces.
- This further component also carries radially outward Abschleuderstege which engage between ring elements.
- the end faces of the ring elements are slightly larger in diameter than the diameter of the associated cylindrical sealing surface, so that a circumferential hollow cylindrical narrow sealing ring gap between the respective end face and the associated sealing surface is formed.
- the end face and the sealing surface thus form the inner and the outer circumferential surface of the respectively associated sealing ring gap.
- the eccentrically rotating sealing surface acts like a pump and thus promotes the occurrence of contamination through the sealing ring gap and can thus reach the engine and cause interference there.
- a relaxation area is integrated into the labyrinth arrangement, which is connected via a channel to a venturi nozzle-effective diffuser, which is in communication with the outside atmosphere.
- a generic labyrinth seal for an oil-lubricated rolling bearing arrangement is likewise known from EP 0 608 672 A1, in which a leakage flow from the interior of the bearing housing is likewise to be avoided by means of a sealing ring gap inclined to the rotation axis.
- the object of the present invention is to provide a labyrinth seal which, in the case of changing operating conditions, enables a reliable separation between the spaces on both sides of the seal in a simple manner.
- a labyrinth seal is due to the conical shape of the sealing ring gap with respect to the axial pumping action, which is established by the already mentioned dynamic changes of the Dichtungsringspaltes due to irregularities, additionally generates a radial component in the sealing ring gap.
- This radial component of the pumping action is dependent on the rotational speed, the diameter and the radial extent and the inclination of the conical sealing ring gap in the axial direction.
- the radial gap width over the axial extent is equal. It then results in a sealing ring gap in Hohlkegelstumpfform.
- both aforementioned lateral surfaces can be inclined in opposite directions relative to the axial direction. It may also be expedient if the inclination of the aforementioned lateral surfaces extends only over part of their axial extent. In particular, the inclination of the outer circumferential surface of the sealing ring gap is decisive for the size of the pumping action. The pumping action is directed towards the end of the sealing ring gap, which has the larger diameter.
- the larger diameter of the sealing ring gap is thus arranged to the side from which interfering fluids, in particular oil, water or the like, can flow to the labyrinth seal.
- interfering fluids in particular oil, water or the like
- the radial centrifugal force exerted on the fluid to be retained can be of importance, which conveys fluid that has penetrated into the sealing ring gap to the outside.
- On the inclined outer surface then occurs a flow component, which counteracts the axial pumping action generated by the non-circular motion with respect to the inflowing fluid.
- axially successive frusto-conical sealing surfaces are seen in longitudinal section sawtooth associated with each other, so that the average diameter can be made at least approximately equal. It is also possible to provide the labyrinth seal with sealing ring gaps which are inclined in opposite directions. It can then be counteracted, for example, from a vented in the central axial region portion of the labyrinth seal the ingress of fluids from both end regions ago.
- a common sealing surface can also face a plurality of annular surfaces.
- an armature 2 is fixed on a shaft 3 in the interior 1 of a stationary housing of an electric motor.
- the shaft 3 is rotatably supported via a rolling bearing 4 in a bearing plate 5 of the housing.
- the outwardly protruding from the interior 1 of the housing end of the shaft 3 is in drive connection with a subsequent directly to the bearing plate 5 mechanical transmission, of which only an arrangement of gears 6 is shown.
- the gears 6 run in an oil bath, not shown. The transported by the gears 6 amount of oil also serves the Lubrication of the rolling bearing 4.
- the labyrinth seal consists of a sleeve-shaped inner member 8, which is fixed on the shaft 3 and rotates with the shaft 3, and from an inner member 8 cup-shaped outer member 7, which is fixedly connected to the bearing plate 5.
- On the inner wall of the outer member 7 are radially inwardly directed ring elements 9, which are arranged at an axial distance from each other and between which there are cavities 10 with a U-shaped cross-section. As illustrated in FIG.
- the radially inward-facing end faces 11 of the ring elements 9 are closely adjacent and contactless with respect to one another to form a sealing ring gap 12, which is formed on the outer wall of the sleeve-shaped component 8 which revolves with the shaft 3. Since the sealing surface 13 does not run exactly round under practical operating conditions, the width of the sealing ring gap 12 measured in the radial direction changes with the rotational frequency of the shaft 3. This effects in the sealing ring gap 12 that lubricating oil originating from the rolling bearing 4 in spite of the very small gap width is pumped through the sealing ring gap 1 2.
- both the end face 11 on the ring element 9 and the associated sealing surface 13 are conical.
- the inclination on the end face 11 and the sealing surface 13 are here equal to the indicated axis 14 of the shaft 3 and selected in the same direction.
- the sealing ring gap 12 thus has the shape of a hollow truncated cone, the diameter of which widens opposite to the direction from which the fluid to be retained, in this case lubricating oil, migrates.
- the force component can be chosen so that the pumping action generated by the non-round running in the sealing ring gap 12 counteracted and this is at least partially compensated.
- the fluid flow rate can be reduced by an appropriately trained labyrinth seal at least to the extent that additional measures are not required or only a reduced number of sealing ring columns 12 of ring element 9 and with the same sealing effect against arrangements with purely cylindrical sealing ring gap Sealing surface 13 is required.
- the average diameter of at least two adjacently arranged conical sealing ring gaps 12 is selected to be at least approximately equal.
- the associated axially juxtaposed on the rotatably mounted member 8 frusto-conical sealing surfaces 13 thereby form a sawtooth in the axial longitudinal section.
- radially outwardly directed spin-off rings 15 are provided in the area of the sawtooth tips between adjacent sealing surfaces 13 which project between associated adjacent ring elements 9.
- the armature 2 facing the end portion of the inner member 8 is accordingly provided with a sealing surface 13, whose inclination relative to the axis 14th opposite to the inclination of the sealing surface 13 is formed on the opposite, the transmission end facing the labyrinth seal. Accordingly, however, the end faces 11 of the associated ring elements 9 are inclined in opposite directions.
- a neutral chamber 16 is inserted into the labyrinth seal between the areas with opposite inclination of the sealing ring gaps 12, from which fluid that has penetrated is discharged to the outside.
- the fluid deposited therein, in the present case gear oil are guided back to the roller bearing 4 or into the transmission.
- the conical design of the sealing ring gap 12 is achieved by the conical design of the sealing ring gap 12.
- the demands on the throttling action of the sealing ring gap 12 can be reduced by the exploitable force component, so it may optionally be increased, the radial gap width, so that the manufacture of the components can be done with reduced precision.
- the gap width increases, so does its relative dynamic change with rotating shaft 3, which in turn reduces the undesirable pumping effect from the side of the incoming side oil.
- the diameter of the inner member 8 need not be increased despite conical design of the sealing surface 13, when the sealing surfaces 13 seen in longitudinal section sawtooth-like are joined together axially.
- the outer component 7 together with the annular webs 9 is designed to be split for assembly reasons, while the inner component 8 with the sealing surfaces 13 and the Abschleuderringen 15 is a one-piece unit. Both components 7 and 8 are rotatable against each other, but axially fixed except for operational displacements. Also directly associated with an end face 11 part of the respective sealing surface 13 is formed in the axial direction without interruption.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
- Mechanical Sealing (AREA)
- Centrifugal Separators (AREA)
- Glass Compositions (AREA)
- Joints Allowing Movement (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10011063A DE10011063A1 (de) | 2000-03-07 | 2000-03-07 | Labyrinthdichtung zwischen drehbaren Bauteilen |
DE10011063 | 2000-03-07 | ||
PCT/EP2001/002152 WO2001066983A1 (de) | 2000-03-07 | 2001-02-26 | Labyrinthdichtung zwischen drehbaren bauteilen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1261820A1 EP1261820A1 (de) | 2002-12-04 |
EP1261820B1 true EP1261820B1 (de) | 2006-08-09 |
Family
ID=7633824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01917030A Expired - Lifetime EP1261820B1 (de) | 2000-03-07 | 2001-02-26 | Labyrinthdichtung zwischen drehbaren bauteilen |
Country Status (18)
Country | Link |
---|---|
US (1) | US20040119238A1 (no) |
EP (1) | EP1261820B1 (no) |
JP (1) | JP2003526062A (no) |
CN (1) | CN1322257C (no) |
AT (1) | ATE335945T1 (no) |
AU (1) | AU2001244165A1 (no) |
CA (1) | CA2402110A1 (no) |
CZ (1) | CZ301133B6 (no) |
DE (2) | DE10011063A1 (no) |
DK (1) | DK1261820T3 (no) |
ES (1) | ES2270987T3 (no) |
HU (1) | HUP0300501A2 (no) |
NO (1) | NO330091B1 (no) |
PL (1) | PL198805B1 (no) |
PT (1) | PT1261820E (no) |
RU (1) | RU2262023C2 (no) |
SK (1) | SK12482002A3 (no) |
WO (1) | WO2001066983A1 (no) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831208C1 (de) * | 1998-07-04 | 1999-05-06 | Abb Daimler Benz Transp | Schnellaufendes Getriebe mit Ölschmierung, insbesondere für gekapselte Bahnantriebe |
DE10217060B4 (de) * | 2002-04-17 | 2004-03-04 | Siemens Ag | Berührungslose Dichtung |
CA2402094A1 (en) * | 2002-09-10 | 2004-03-10 | Silvano Breda | Improvements to multiport diverter valve |
US8002285B2 (en) * | 2003-05-01 | 2011-08-23 | Justak John F | Non-contact seal for a gas turbine engine |
DE10322027B4 (de) * | 2003-05-16 | 2013-03-07 | Siemens Aktiengesellschaft | Bahnantrieb mit Dichtungsanordnung |
GB2408548A (en) * | 2003-11-25 | 2005-06-01 | Alstom Technology Ltd | Finned seals for turbomachinery |
DE10358876A1 (de) * | 2003-12-16 | 2005-07-28 | Fag Kugelfischer Ag | Dichtung mit berührungslos zueinander angeordneten Abweisringen |
DE102004055429B3 (de) * | 2004-11-17 | 2006-08-10 | Man B & W Diesel Ag | Dichtungseinrichtung für eine insbesondere im Stillstand geschmierte Lagerung einer Rotorwelle |
US7597699B2 (en) * | 2005-07-25 | 2009-10-06 | Rogers William G | Motorized surgical handpiece |
JP5141946B2 (ja) * | 2007-06-22 | 2013-02-13 | 株式会社Ihi | 遠心圧縮機の軸シール構造 |
FR2920207B1 (fr) * | 2007-08-23 | 2009-10-09 | Alcatel Lucent Sas | Pompe a vide de type seche comportant un dispositif d'etancheite aux fluides lubrifiants et elements centrifugeur equipant un tel dispositif |
US8342535B2 (en) * | 2007-11-20 | 2013-01-01 | The Timken Company | Non-contact labyrinth seal assembly and method of construction thereof |
DE102007060890A1 (de) * | 2007-12-14 | 2009-06-18 | Rolls-Royce Deutschland Ltd & Co Kg | Abdichtung mindestens einer Welle mit mindestens einer hydraulischen Dichtung |
US20090206554A1 (en) * | 2008-02-18 | 2009-08-20 | Mark Kevin Bowen | Steam turbine engine and method of assembling same |
CN101639125B (zh) * | 2008-07-29 | 2012-02-15 | 上海梅山钢铁股份有限公司 | 涡流离心式密封装置 |
GB2526220B (en) * | 2009-04-02 | 2016-01-06 | Cummins Turbo Tech Ltd | A rotating machine with shaft sealing arrangement |
CN101705996B (zh) * | 2009-10-12 | 2011-09-14 | 江苏牡丹离心机制造有限公司 | 卧式离心机中传动机构的密封装置 |
DE102009053954A1 (de) * | 2009-11-19 | 2011-06-09 | Siemens Aktiengesellschaft | Labyrinthdichtung und Verfahren zum Herstellen einer Labyrinthdichtung |
JP5827827B2 (ja) * | 2010-06-29 | 2015-12-02 | エーエスエムエル ネザーランズ ビー.ブイ. | アクチュエータ |
US8844935B2 (en) * | 2011-04-13 | 2014-09-30 | Gamesa Innovation & Technology, S.L. | Seal arrangement |
DK2866023T3 (en) * | 2012-06-21 | 2019-01-07 | Toyo Seikan Group Holdings Ltd | Canned pore inspection device |
CN102878207B (zh) * | 2012-09-25 | 2016-01-20 | 济钢集团有限公司 | 一种轧机轧辊的轴承座密封装置 |
US9115810B2 (en) * | 2012-10-31 | 2015-08-25 | General Electric Company | Pressure actuated film riding seals for turbo machinery |
US9045994B2 (en) * | 2012-10-31 | 2015-06-02 | General Electric Company | Film riding aerodynamic seals for rotary machines |
WO2015035926A1 (zh) * | 2013-09-13 | 2015-03-19 | 天津明贤科技有限公司 | 一种压缩机 |
JP6008452B2 (ja) * | 2014-03-04 | 2016-10-19 | 富士フイルム株式会社 | ラビリンスシール、流延装置、溶液製膜設備及び方法 |
US10161259B2 (en) | 2014-10-28 | 2018-12-25 | General Electric Company | Flexible film-riding seal |
CN104455465A (zh) * | 2014-12-12 | 2015-03-25 | 北京凯特破碎机有限公司 | 一种复合迷宫密封装置 |
JP6380767B2 (ja) * | 2015-12-14 | 2018-08-29 | ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド | ベアリングオイル除去型ロータ構造 |
FR3050250B1 (fr) * | 2016-04-15 | 2018-04-13 | Safran Transmission Systems | Joint sans contact de type labyrinthe obtenu par fabrication additive |
US10690251B2 (en) | 2016-09-23 | 2020-06-23 | General Electric Company | Labyrinth seal system and an associated method thereof |
JP6824862B2 (ja) * | 2017-10-25 | 2021-02-03 | 株式会社神戸製鋼所 | ラビリンスシール、および、ラビリンスシール構造 |
CN110985373B (zh) * | 2019-11-22 | 2022-04-19 | 中国航发西安动力控制科技有限公司 | 随动式迷宫密封结构 |
JP2021127812A (ja) * | 2020-02-14 | 2021-09-02 | 株式会社荏原製作所 | 軸封装置および回転機械 |
DE102022002580A1 (de) | 2022-07-14 | 2024-01-25 | C&U Europe Holding GmbH | Dichtungsvorrichtung für eine Lageranordnung und Lageranordnung mit der Dichtungsvorrichtung |
DE102023101220A1 (de) * | 2023-01-19 | 2024-07-25 | Schaeffler Technologies AG & Co. KG | Elektrisches Antriebsmodul mit Labyrinthdichtung |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US835836A (en) * | 1906-02-27 | 1906-11-13 | Richard Schulz | Labyrinth packing for rotary machines. |
US1651855A (en) * | 1924-06-24 | 1927-12-06 | Gen Electric | Elastic-fluid turbine |
US1831242A (en) * | 1926-12-09 | 1931-11-10 | Westinghouse Electric & Mfg Co | Labyrinth packing |
GB274049A (en) * | 1927-06-09 | 1928-05-03 | Fischer Karl | Improvements relating to stuffing box packing |
US1857961A (en) * | 1927-12-15 | 1932-05-10 | Westinghouse Electric & Mfg Co | Bi-metal packing |
US2123818A (en) * | 1935-07-11 | 1938-07-12 | Wegmann Ernst | Labyrinth packing |
US2281905A (en) * | 1939-04-04 | 1942-05-05 | Gen Motors Corp | Oil seal or guard |
DE1475600A1 (de) * | 1965-08-03 | 1969-01-16 | Krupp Gmbh | Wellendichtung |
US3663023A (en) * | 1967-08-11 | 1972-05-16 | Reinhold Leidenfrost | Labyrinth gap seal |
DE2720135C3 (de) * | 1977-05-05 | 1980-09-25 | Georg Mueller Kugellagerfabrik Kg, 8500 Nuernberg | Spalt- bzw. Labyrinthdichtung |
NL8501411A (nl) * | 1985-05-15 | 1986-12-01 | Skf Ind Trading & Dev | Afdichting voor een aslager. |
US5029876A (en) * | 1988-12-14 | 1991-07-09 | General Electric Company | Labyrinth seal system |
SE9300239D0 (sv) * | 1993-01-27 | 1993-01-27 | Skf Mekanprodukter Ab | Labyrinttaetning foer oljesmorda staallagerhus |
DE4403776C2 (de) * | 1994-02-01 | 1998-04-09 | Aeg Westinghouse Transport | Dichtung mit labyrinthartigem Dichtspalt |
CH686796A5 (de) * | 1995-02-08 | 1996-06-28 | Walter Koechli | Lageranordnung fuer ein Fahrrad. |
-
2000
- 2000-03-07 DE DE10011063A patent/DE10011063A1/de not_active Ceased
-
2001
- 2001-02-26 US US10/220,841 patent/US20040119238A1/en not_active Abandoned
- 2001-02-26 PT PT01917030T patent/PT1261820E/pt unknown
- 2001-02-26 EP EP01917030A patent/EP1261820B1/de not_active Expired - Lifetime
- 2001-02-26 JP JP2001565566A patent/JP2003526062A/ja not_active Withdrawn
- 2001-02-26 WO PCT/EP2001/002152 patent/WO2001066983A1/de active IP Right Grant
- 2001-02-26 ES ES01917030T patent/ES2270987T3/es not_active Expired - Lifetime
- 2001-02-26 CZ CZ20022928A patent/CZ301133B6/cs not_active IP Right Cessation
- 2001-02-26 CN CNB018061826A patent/CN1322257C/zh not_active Expired - Fee Related
- 2001-02-26 DK DK01917030T patent/DK1261820T3/da active
- 2001-02-26 AU AU2001244165A patent/AU2001244165A1/en not_active Abandoned
- 2001-02-26 AT AT01917030T patent/ATE335945T1/de active
- 2001-02-26 DE DE50110699T patent/DE50110699D1/de not_active Expired - Lifetime
- 2001-02-26 RU RU2002125115/06A patent/RU2262023C2/ru not_active IP Right Cessation
- 2001-02-26 CA CA002402110A patent/CA2402110A1/en not_active Abandoned
- 2001-02-26 SK SK1248-2002A patent/SK12482002A3/sk not_active Application Discontinuation
- 2001-02-26 HU HU0300501A patent/HUP0300501A2/hu unknown
- 2001-02-26 PL PL363604A patent/PL198805B1/pl unknown
-
2002
- 2002-09-04 NO NO20024212A patent/NO330091B1/no not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
PL363604A1 (en) | 2004-11-29 |
NO20024212L (no) | 2002-10-24 |
PL198805B1 (pl) | 2008-07-31 |
RU2262023C2 (ru) | 2005-10-10 |
WO2001066983A1 (de) | 2001-09-13 |
NO20024212D0 (no) | 2002-09-04 |
ES2270987T3 (es) | 2007-04-16 |
CZ301133B6 (cs) | 2009-11-18 |
DK1261820T3 (da) | 2006-12-11 |
AU2001244165A1 (en) | 2001-09-17 |
EP1261820A1 (de) | 2002-12-04 |
US20040119238A1 (en) | 2004-06-24 |
CN1322257C (zh) | 2007-06-20 |
ATE335945T1 (de) | 2006-09-15 |
SK12482002A3 (sk) | 2003-09-11 |
CN1418300A (zh) | 2003-05-14 |
CZ20022928A3 (cs) | 2003-02-12 |
CA2402110A1 (en) | 2001-09-13 |
PT1261820E (pt) | 2006-12-29 |
DE50110699D1 (de) | 2006-09-21 |
JP2003526062A (ja) | 2003-09-02 |
HUP0300501A2 (en) | 2003-06-28 |
DE10011063A1 (de) | 2001-09-27 |
NO330091B1 (no) | 2011-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1261820B1 (de) | Labyrinthdichtung zwischen drehbaren bauteilen | |
DE2843198C2 (no) | ||
DE3828363C2 (no) | ||
DE102015105243B4 (de) | Antriebsanordnung mit Lüftungskanal | |
EP1903231B1 (de) | Wälzlager mit Wellenlagerdichtung | |
DE2447244A1 (de) | Kontinuierliche rotary-daempfungseinrichtung, insbesondere drehschwingungsdaempfer | |
EP2403682B1 (de) | Spindel mit einer lanzeneinheit | |
DE4037455C1 (no) | ||
EP3762624B1 (de) | Abgasturbolader mit einem hydrodynamischen gleitlager oder lageranordnung mit einem hydrodynamischen gleitlager | |
DE10158768B4 (de) | Radialkolbenpumpe | |
EP2401505B1 (de) | Multi-inlet-vakuumpumpe | |
DE1450247C3 (de) | Der Schmiermittelrückführung dienende Abdeckkappe für von der Gehäusewand einer dynamoelektrischen Maschine getragene Lager aus porösem Werkstoff | |
EP1639288A1 (de) | Drehdurchführung | |
EP1777417A1 (de) | Turbolader | |
EP3094913B1 (de) | Schmierstoffleitender x-ring | |
DE1500389B2 (de) | Hydrostatisches radialkolbengetriebe mit innerer leistungsverzweigung | |
EP0476476B1 (de) | Dichtungsanordnung | |
DE102016116384B3 (de) | Pumpenvorrichtung | |
DE3420523A1 (de) | Radialwellendichtring | |
EP0761968A1 (de) | Kreiskolbenmaschine mit hydrostatisch gelagertem Steuerteil und Steuerteil dafür | |
DE10110668B4 (de) | Kurvennuttrieb | |
DE102023000881B3 (de) | Antriebswelle für eine elektrische Antriebseinrichtung | |
EP4105524A1 (de) | Dichtring einer gleitringdichtung sowie gleitringdichtung mit einem solchen dichtring | |
DE2853552B2 (de) | Hydraulischer Motor | |
DE102021203811A1 (de) | Dichtungsanordnung für eine Welle und Verfahren zum Betrieb einer Dichtungsanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020805 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20041125 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060809 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50110699 Country of ref document: DE Date of ref document: 20060921 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20060403897 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20061107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070306 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2270987 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070226 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20160125 Year of fee payment: 16 Ref country code: DK Payment date: 20160217 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20160211 Year of fee payment: 16 Ref country code: GB Payment date: 20160217 Year of fee payment: 16 Ref country code: GR Payment date: 20160216 Year of fee payment: 16 Ref country code: PT Payment date: 20160222 Year of fee payment: 16 Ref country code: BE Payment date: 20160217 Year of fee payment: 16 Ref country code: NL Payment date: 20160217 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20170301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170226 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170301 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170226 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190219 Year of fee payment: 19 Ref country code: ES Payment date: 20190320 Year of fee payment: 19 Ref country code: CH Payment date: 20190218 Year of fee payment: 19 Ref country code: IT Payment date: 20190225 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190219 Year of fee payment: 19 Ref country code: SE Payment date: 20190218 Year of fee payment: 19 Ref country code: FR Payment date: 20190219 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50110699 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 335945 Country of ref document: AT Kind code of ref document: T Effective date: 20200226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170226 |