EP1250531A1 - Turboradialgebläse - Google Patents

Turboradialgebläse

Info

Publication number
EP1250531A1
EP1250531A1 EP01901200A EP01901200A EP1250531A1 EP 1250531 A1 EP1250531 A1 EP 1250531A1 EP 01901200 A EP01901200 A EP 01901200A EP 01901200 A EP01901200 A EP 01901200A EP 1250531 A1 EP1250531 A1 EP 1250531A1
Authority
EP
European Patent Office
Prior art keywords
impeller
bearing
radial fan
fan according
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01901200A
Other languages
English (en)
French (fr)
Other versions
EP1250531B1 (de
Inventor
Josef Hodapp
Karl-Heinz Ronthaler
Hans Kriechel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1250531A1 publication Critical patent/EP1250531A1/de
Application granted granted Critical
Publication of EP1250531B1 publication Critical patent/EP1250531B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0653Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the motor having a plane air gap, e.g. disc-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps

Definitions

  • the invention relates to a turbo radial fan with a rotatably mounted impeller and a motor driving the impeller.
  • Turbo radial blowers in vacuum technology are usually constructed both in one-stage and in two-stage versions such that the impeller, motor and bearing are arranged spatially one behind the other, the impeller being located between the bearings or being able to be mounted on the fly.
  • the bearings are lubricated with oil, which is conveyed to the bearings by an oil delivery device.
  • Such turbo radial blowers have a large axial length and a large number of components. They require complicated balancing processes. There is also a risk of contamination of the impeller area with the oil provided for bearing lubrication.
  • the motor is in a vacuum, which requires complex winding insulation, with the result of poor heat transfer and a sealed cable duct for the power lines.
  • the invention has for its object to provide a radial turbo blower that has a compact design and can be manufactured inexpensively from a few components.
  • the motor is a permanently excited disc rotor motor, which has permanent magnet magnets with axial magnetic field alignment attached to the impeller and stationary stator coils.
  • the motor is thus partially integrated into the impeller and arranged in the immediate vicinity of the impeller. This reduces the overall length of the blower.
  • the impeller is mounted with a bearing arrangement, which is accommodated in a cavity of the impeller, on a fixed bearing mandrel protruding into the cavity.
  • the impeller is therefore only stored inside the impeller, and a rotating shaft is not necessary. Rather, the impeller hub can be mounted directly on the bearing arrangement seated on the bearing mandrel. With such a bearing, vibrations of the impeller are also avoided. There are low rotor losses and thus an increase in efficiency.
  • the fixed bearing mandrel simplifies production. Simple water cooling can be installed for the motor.
  • the bearing arrangement is preferably lubricated with grease, at least one grease chamber being provided in the cavity of the impeller.
  • magnetic bearings that are also maintenance-free.
  • the combination of magnetic bearings and grease-lubricated bearings is also conceivable.
  • the cavity of the impeller is preferably open towards the rear and a sealing gap is formed at the rear end of the cavity between the impeller and the bearing pin. This sealing gap prevents grease and bearing components from being sucked into the pump chamber from the cavity. It is also possible to use a seal at this point, but then abrasion from the seal could get into the pump chamber.
  • a narrow heat transfer gap of at most 0.5 mm width is formed between the wall delimiting the cavity and a spacer ring that sits on the bearing mandrel with good heat conduction for dissipating heat from the impeller to the bearing mandrel.
  • a pressure-tight, magnetically permeable partition can be arranged between the impeller and the stator coils.
  • This partition can consist of a membrane, a fiber composite material or a potting compound. It creates a vacuum seal between the pump compartment and the engine compartment, so that the stator contained in the engine compartment is on the atmosphere side and not in a vacuum compartment. This enables easier and cheaper winding insulation of the stator windings. Furthermore, no pressure-tight leadthrough is required on the .stator housing. Rather, a simple terminal box can be used.
  • the cooling can also be significantly simplified in that a cooling device direction is accommodated in the stator housing.
  • This cooling device cools both the stator and the bearing mandrel and causes heat to be dissipated from the heat transferred from the impeller to the bearing mandrel.
  • a corresponding sensor on an inductive, capacitive or optical basis can be provided, which is arranged in the stator.
  • Another advantage of the embodiment of the motor as a disc rotor motor according to the invention is that the stator coils attract the rotor, so that a mechanical application of a preloading axial force to the impeller is not necessary.
  • turbo radial fan according to the invention is particularly suitable for high-speed fans, for example for use in snow-blown CO 2 lasers.
  • turbo radial fan is shown in longitudinal section.
  • the turbo radial fan has a stator housing 10 and a pump housing 11.
  • the pump housing 11 contains a pump chamber 12, in which a rotatable impeller 13 is arranged, which has a hub 14 and vanes 15 projecting therefrom.
  • the wings 15 have outer edges that correspond to the contour of the wall of the follow the pump housing 11 with a small gap. The pump sucks the fluid to be pumped axially and conveys it radially to the outlets 16.
  • the hub 14 of the impeller 13 contains a carrier part 17, which consists of a tube section 18 and a flange section 19.
  • the flange section 19 forms the rear end wall of the impeller 13. It contains recesses in which permanent magnets 20 are arranged. These permanent magnets have an axial magnetic field alignment. This means that the north pole N and the south pole S lie on a line running parallel to the impeller axis.
  • the carrier part 17 and the hub 14 are made of non-magnetic material.
  • a partition wall 21 is provided adjacent to the permanent magnets 20 and separates the interior 22 of the stator housing 10 from the pump chamber 12.
  • the partition wall 21 consists of a magnetically permeable membrane, preferably made of composite fiber material, or a casting compound. It creates a vacuum seal between the stator chamber 22 and the pump chamber 12.
  • the impeller 13 has an inner cavity 23 which is sealed at the front end with a cap 24.
  • a bearing mandrel 25 projects into this cavity 23, on which the impeller 13 is mounted with a bearing arrangement 26.
  • the bearing arrangement includes two roller bearings, namely a front ball bearing 27 and a rear ball bearing 28. These ball bearings are seated on the bearing mandrel 25 and they support the tube section 18 of the carrier part 17.
  • At least one grease chamber 29 adjoins each ball bearing, which serves as a pasty grease Bearing lubrication contains. At least one of these camps can also be used as Magnetic bearings can be executed. In principle, a complete bearing design in magnetic bearings is also possible.
  • a cap 30 On the outer end of the bearing mandrel 25, a cap 30 is fastened, which supports a plate spring assembly 31, which in turn presses against the front ball bearing 27 and thus keeps the bearing arrangement axially compressed.
  • a spacer ring 32 made of a good heat-conducting material on the bearing mandrel 25, which is in close contact with the bearing mandrel 25.
  • a heat transfer gap 33 with a width of at most 0.5 mm, preferably of approximately 0.4 mm, for dissipating the heat from the impeller 13 via the spacer ring 32- to the mandrel 25.
  • a sealing gap 34 is formed between the rear end of the tube section 18 of the carrier part 17 and the bearing mandrel 25. This sealing gap enables gas extraction from the pump chamber 12 into the cavity 23. From the cavity, a discharge takes place through a bore (not shown) in the bearing mandrel 25. The sealing gap 34 represents the only opening in the cavity 23.
  • stator 35 In the stator chamber 22 is the stator 35 with the stator coils 36, which are embedded in an iron package 37.
  • the stator 35 forms, together with the carrier part 17 containing the permanent magnets 20, the disc rotor motor 44.
  • the stator coils 36 lie on the same circle on which the permanent magnets 20 move when the impeller 13 rotates.
  • On Electronic commutator generates current in the stator windings 36 in a cyclically rotating manner, so that the stator windings generate a rotating magnetic field.
  • the impeller 13 follows this magnetic field with its permanent magnets 20.
  • the disc rotor motor is a kind of magnetic coupling for contactless impeller drive.
  • the air gap between the stator coils 36 and the permanent magnets 20 is penetrated by the partition 21.
  • This partition is sealingly attached to a base 38 which is fixedly mounted on a bottom wall 39 of the stator housing 10 and forms part of the bearing mandrel 25. Since the partition wall 21 separates the stator chamber 22 from the vacuum part, atmospheric pressure prevails in the stator chamber 22.
  • a cable opening 40 for the passage of power cables.
  • a pipe lead-through opening 41 is provided, through which pipes 42 lead, which is part of a cooling coil through which cooling water flows and which forms the cooling device 43.
  • the cooling device 43 cools both the stator 35 and the bearing mandrel 25 and dissipates the heat from the entire fan housing.
  • the turbo radial fan consists of few individual parts and is inexpensive to manufacture. It is largely maintenance-free.

Description

Turboradialqβbläse
Die Erfindung betrifft ein Turboradialgebläse mit einem drehbar gelagerten Laufrad und einem das Laufrad treibenden Motor.
Turboradialgebläse in der Vakuumtechnik sind sowohl in einstufiger wie auch in zweistufiger Ausführung üblicherweise so aufgebaut, dass Laufrad, Motor und Lagerung räumlich hintereinander angeordnet sind, wobei das Laufrad sich zwischen den Lagern befindet oder fliegend gelagert sein kann. Die Lagerschmierung erfolgt mittels Öl, das durch eine Ölfördereinrichtung zu den Lagern gefördert wird. Solche Turboradialgebläse haben eine große axiale Baulänge und eine große Zahl von Bauteilen. Sie erfordern komplizierte Auswuchtvorgänge. Ferner besteht die Gefahr der Kontamination des Laufradbereichs mit dem für die Lagerschmierung vorgesehenen Öl . Der Motor befindet sich im Vakuum, wodurch eine aufwendige Wicklungsisolation erforderlich ist, mit der Folge schlechter Wärmeübergänge und einer abgedichteten Leitungsdurchführung für die Stromleitungen. Der Erfindung liegt die Aufgabe zugrunde, ein Turboradialgebläse zu schaffen, das eine kompakte Bauform hat und aus wenigen Komponenten kostengünstig hergestellt werden kann.
Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den im Patentanspruch 1 angegebenen Merkmalen. Hiernach ist der Motor ein permanenterregter Scheibenläufermotor, der an dem Laufrad befestigte Permamentmagnete mit axialer Magnetfeldausrichtung und ortsfeste Statorspulen aufweist. Der Motor ist somit teilweise in das Laufrad integriert und in unmittelbarer Laufradnähe angeordnet. Hierdurch wird die Baulänge des Gebläses verringert. Ferner ist das Laufrad mit einer Lageranordnung, welche in einem Hohlraum des Laufrades untergebracht ist, auf einem in den Hohlraum ragenden feststehenden Lagerdorn gelagert. Die Lagerung des Laufrades erfolgt also ausschließlich im Innern des Laufrades, wobei eine mitdrehende Welle nicht erforderlich ist. Vielmehr kann die Laufradnabe unmittelbar auf der auf dem Lagerdorn sitzenden Lageranordnung gelagert sein. Mit einer derartigen Lagerung werden auch Vibrationen des Laufrades vermieden. Es ergeben sich geringe Rotorverluste und dadurch eine Erhöhung des Wirkungsgrades. Der feststehende Lagerdorn erleichtert die Fertigung. Für den Motor kann eine einfache Wasserkühlung installiert werden.
Vorzugsweise wird die Lageranordnung mit Fett geschmiert, wobei mindestens eine Fettkammer in dem Hohlraum des Laufrades vorgesehen ist. Alternativ hierzu, besteht die Möglichkeit, Magnetlager einzusetzen, die ebenfalls wartungsfrei sind. Denkbar ist auch die Kombination Magnetlager und fettgeschmiertes Lager. Vorzugsweise ist der Hohlraum des Laufrades zur Rückseite hin offen und am rückwärtigen Ende des Hohlraumes ist zwischen dem Laufrad und dem Lagerdorn ein Dichtspalt ausgebildet. Dieser Dichtspalt verhindert das Einsaugen von Schmierfett und Lagerbestandteilen aus dem Hohlraum in den Pumpenraum. Es ist auch möglich, an dieser Stelle eine Dichtung einzusetzen, jedoch könnte dann Abrieb von der Dichtung in den Pumpenraum gelangen.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist zwischen der den Hohlraum begrenzenden Wand und einem gut wärmeleitend auf dem Lagerdorn sitzenden Distanzring ein schmaler Wärmeübertragungsspalt von höchstens 0 , 5 mm Breite zur Ableitung von Wärme von dem Laufrad auf den Lagerdorn gebildet . Durch die Ausbildung eines schmalen Wärmeübertragungsspalts wird Wärme von dem Laufrad auf den gekühlten Lagerdorn abgeleitet.
Zwischen dem Laufrad und den Statorspulen kann eine druckdichte magnetisch durchlässige Trennwand angeordnet sein. Diese Trennwand kann aus einer Membran, aus einem Faserverbundwerkstoff oder einer Vergußmasse bestehen. Sie bewirkt eine Vakuumdichtung zwischen dem Pumpenraum und dem Motorraum, so dass der im Motorraum enthaltene Stator sich auf der Atmosphärenseite befindet und nicht in einem Vakuumraum. Dies ermöglicht eine einfachere und billigere Wicklungsisolation der Statorwicklungen. Ferner ist an dem .Statorgehäuse keine druckdichte Stromdurchführung erforderlich. Vielmehr kann ein einfacher Klemmenkasten benutzt werden.
Bei dem erfindungsgemäßen Turboradialgebläse kann auch die Kühlung wesentlich dadurch vereinfacht werden, dass eine Kühlvor- richtung in dem Statorgehäuse untergebracht wird. Diese Kühlvorrichtung kühlt sowohl den Stator als auch den Lagerdorn und bewirkt eine Wärmeabfuhr der vom Laufrad auf den Lagerdorn übertragenen Wärme .
Wenn die Drehposition des Laufrades ermittelt werden soll, kann ein entsprechender Geber auf induktiver, kapazitiver oder optischer Basis vorgesehen sein, der im Stator angeordnet ist.
Ein weiterer Vorteil der erfindungsgemäßen Ausführung des Motors als Scheibenläufermotor besteht darin, dass die Statorspulen den Rotor anziehen, so dass eine mechanische Aufbringung einer vorspannenden Axialkraft auf das Laufrad nicht erforderlich ist.
Das erfindungsgemäße Turboradialgebläse eignet sich insbesondere für schnelllaufende Gebläse, beispielsweise für den Einsatz in schneiIgeströmten C02-Lasern.-
Im folgenden wird unter Bezugnahme auf die einzige Figur der Zeichnung ein Ausführungsbeispiel der Erfindung näher erläutert .
In der Zeichnung ist ein Turboradialgebläse im Längsschnitt dargestellt .
Das Turboradialgebläse weist ein Statorgehäuse 10 und ein Pumpengehäuse 11 auf. Das Pumpengehäuse 11 enthält einen Pumpenraum 12, in dem ein drehbares Laufrad 13 angeordnet ist, welches eine Nabe 14 und davon abstehende Flügel 15 aufweist. Die Flügel 15 haben Außenkanten, die der Kontur der Wand des Pumpengehäuses 11 mit geringem Spalt folgen. Die Pumpe saugt das zu pumpende Fluid axial an und fördert es radial zu den Auslässen 16.
Die Nabe 14 des Laufrades 13 enthält ein Trägerteil 17, welches aus einem Rohrabschnitt 18 und einem Flanschabschnitt 19 besteht. Der Flanschabschnitt 19 bildet die rückwärtige Endwand des Laufrades 13. Er enthält Ausnehmungen, in denen Permanentmagnete 20 angeordnet sind. Diese Permanentmagnete haben eine axiale Magnetfeldausrichtung. Dies bedeutet, dass der Nordpol N und der Südpol S auf einer parallel zur Laufradachse verlaufenden Linie liegen. Das Trägerteil 17 und die Nabe 14 bestehen aus amagnetischen Material.
Angrenzend an die Permanentmagnete 20 ist eine Trennwand 21 vorgesehen, die den Innenraum 22 des Statorgehäuses 10 von dem Pumpenraum 12 trennt. Die Trennwand 21 besteht aus einer magnetisch durchlässigen Membran, vorzugsweise aus Fasserverbundwerkstoff, oder einer Vergußmasse. Sie bewirkt eine Vakuumabdichtung zwischen dem Statorraum 22 und dem Pumpenraum 12.
Das Laufrad 13 weist einen inneren Hohlraum 23 auf, der am vorderen Ende mit einer Kappe 24 abdichtend verschlossen ist. In diesen Hohlraum 23 ragt ein Lagerdorn 25 hinein, auf dem das Laufrad 13 mit einer Lageranordnung 26 gelagert ist. Zu der Lageranordnung gehören zwei Wälzlager, nämlich ein vorderes Kugellager 27 und ein rückwärtiges Kugellager 28. Diese Kugellager sitzen auf dem Lagerdorn 25 und sie lagern den Rohrabschnitt 18 des Trägerteils 17. An jedes Kugellager grenzt mindestens eine Fettkammer 29 an, die ein pastöses Fett zur Lagerschmierung enthält. Mindestens eines dieser Lager kann auch als Magnetlager ausgeführt sein. Prinzipiell ist auch eine komplette Lagerausführung in Magnetlager möglich.
Auf dem äußeren Ende des Lagerdorns 25 ist eine Kappe 30 befestigt, welche ein Tellerfederpaket 31 abstützt, das seinerseits gegen das vordere Kugellager 27 drückt und damit die Lageranordnung axial zusammengepresst hält.
Zwischen den Kugellagern 27 und 28 befindet sich auf dem Lagerdorn 25 ein Distanzring 32 aus gut wärmeleitendem Material, der in engem Kontakt mit dem Lagerdorn 25 steht. Zwischen der den Hohlraum 23 begrenzenden Wand des rohrförmigen Teils 18 und dem Distanzring 32 befindet sich ein Wärmeübertragungsspalt 33 mit einer Breite von höchstens 0,5 mm, vorzugsweise von ca. 0,4 mm, zur Ableitung der Wärme von dem Laufrad 13 über den Distanzring 32- zum Lagerdorn 25.
Zwischen dem rückwärtigen Ende des Rohrabschnitts 18 des Trägerteils 17 und dem Lagerdorn 25 ist ein Dichtspalt 34 gebildet. Dieser Dichtspalt ermöglicht eine Gasabsaugung aus dem Pumpenraum 12 in den Hohlraum 23. Von dem Hohlraum erfolgt eine Ableitung durch eine (nicht dargestellte) Bohrung im Lagerdorn 25. Der Dichtspalt 34 stellt die einzige Öffnung des Hohlraumes 23 dar.
In dem Statorraum 22 befindet sich der Stator 35 mit den Statorspulen 36, die in ein Eisenpaket 37 eingelassen sind. Der Stator 35 bildet zusammen mit dem die Permanentmagnete 20 enthaltenden Trägerteil 17 den Scheibenläufermotor 44. Die Statorspulen 36 liegen auf demselben Kreis, auf dem sich die Permanentmagnete 20 bei Rotation des Laufrades 13 bewegen. Ein elektronischer Kommutator erzeugt in den Statorwicklungen 36 zyklisch umlaufend Strom, so dass die Statorwicklungen ein umlaufendes Magnetfeld erzeugen. Das Laufrad 13 folgt mit seinen Permanentmagneten 20 diesem Magnetfeld. Es handelt sich bei dem Scheibenläufermotor quasi um eine Magnetkupplung für den berührungslosen Laufradantrieb. Der Luftspalt zwischen den Statorspulen 36 und den Permanentmagneten 20 ist von der Trennwand 21 durchsetzt. Diese Trennwand ist abdichtend an einem Sockel 38 befestigt, der auf einer Bodenwand 39 des Statorgehäuses 10 fest montiert ist und einen Bestandteil des Lagerdorns 25 bildet. Da die Trennwand 21 den Statorraum 22 von dem Vakuumteil trennt, herrscht im Statorraum 22 Atmosphärendruck. In der Wand des Statorgehäuses 10 befindet sich eine Kabelöffnung 40 für die Durchführung von Stromkabeln. Ferner ist eine Rohrdurchführungsöffnung 41 vorgesehen, durch welche Rohrleitungen 42 hindurchführen, die Bestandteil einer von Kühlwasser durchströmten Kühlschlange ist, welche die Kühlvorrichtung 43 bildet. Die Kühlvorrichtung 43 kühlt sowohl den Stator 35 als auch den Lagerdorn 25 und führt die Wärme aus dem gesamten Gebläsegehäuse ab.
Das Turboradialgebläse besteht aus wenig Einzelteilen und ist kostengünstig herstellbar. Es ist weitgehend wartungsfrei.

Claims

PATENTANSPRUCHE
1. Turboradialgebläse mit einem drehbar gelagerten Laufrad
(13) und einem das Laufrad treibenden Motor,
d a d u r c h g e k e n n z e i c h n e t ,
dass der Motor ein permanenterregter Scheibenläufermotor (44) ist, der an dem Laufrad (13) befestigte Permanentmagnete (20) mit axialer Magnetfeldausrichtung und ortsfeste Statorspulen (36) aufweist, und dass das Laufrad (13) mit einer Lageranordnung (26) , welche in einem Hohlraum (23) des Laufrades untergebracht ist, auf einem in den Hohlraum (23) ragenden feststehenden Lagerdorn (25) gelagert ist .
2. Turboradialgebläse nach Anspruch 1, dadurch gekennzeichnet, dass die Lageranordnung (26) eine Fettschmierung mit mindestens einer Fettkammer (29) aufweist.
3. Turboradialgebläse nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass der Hohlraum (23) des Laufrades (13) nur zur Rückseite hin offen ist und dass am rückwärtigen Ende des Hohlraums (23) zwischen dem Laufrad (13) und dem Lagerdorn
(25) ein Dichtspalt (34) ausgebildet ist.
4. Turboradialgebläse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen der den Hohlraum (23) begrenzenden Wand und einem gut wärmeleitend auf dem Lagerdorn (25) sitzenden Distanzring (32) ein schmaler Wärmeübertragungsspalt (33) von höchstens 0,5 mm Breite zur Ab- leitung von Wärme von dem Laufrad (13) auf den Lagerdorn (25) gebildet ist.
5. Turboradialgebläse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwischen dem Laufrad (13) und den Statorspulen (36) eine druckdichte magnetisch durchlässige Trennwand (21) angeordnet ist.
6. Turboradialgebläse nach Anspruch 5, dadurch gekennzeichnet, dass die Statorspulen (36) in einem unter Atmosphärendruck stehenden Statorgehäuse (10) enthalten sind, welches eine Kühlvorrichtung (43) enthält.
7. Turboradialgebläse nach Anspruch 6, dadurch gekennzeichnet, dass ein Teil (38) des Lagerdorns (25) in wärmeleitendem Kontakt mit dem Stator (35) steht und aus diesem herausragt und dort der Einwirkung der Kühlvorrichtung (43) ausgesetzt ist .
8. Turboradialgebläse nach Anspruch 1, dadurch gekennzeichnet, dass ein Lager in fettgeschmierter Ausführung und ein Lager, vorzugsweise das Untere, als passives Magnetlager ausgeführt ist .
9. Tuboradialgebläse nach Anspruch 1, dadurch gekennzeichnet, dass die Lageranordnung mit aktiven Magnetlagern ausgeführt ist .
EP01901200A 2000-01-26 2001-01-24 Turboradialgebläse Expired - Lifetime EP1250531B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10003153 2000-01-26
DE10003153A DE10003153A1 (de) 2000-01-26 2000-01-26 Turboradialgebläse
PCT/EP2001/000758 WO2001055598A1 (de) 2000-01-26 2001-01-24 Turboradialgebläse

Publications (2)

Publication Number Publication Date
EP1250531A1 true EP1250531A1 (de) 2002-10-23
EP1250531B1 EP1250531B1 (de) 2004-10-20

Family

ID=7628687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01901200A Expired - Lifetime EP1250531B1 (de) 2000-01-26 2001-01-24 Turboradialgebläse

Country Status (8)

Country Link
US (1) US6682324B2 (de)
EP (1) EP1250531B1 (de)
JP (1) JP2003524730A (de)
KR (1) KR100635692B1 (de)
CN (1) CN1178005C (de)
AT (1) ATE280328T1 (de)
DE (2) DE10003153A1 (de)
WO (1) WO2001055598A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203778A1 (de) * 2002-01-30 2003-07-31 Siemens Ag Elektrisch angetriebene Pumpe
JP2003269369A (ja) * 2002-03-13 2003-09-25 Boc Edwards Technologies Ltd 真空ポンプ
EP1657448A1 (de) * 2004-10-28 2006-05-17 Asmo Co., Ltd. Lüfter
JP4539487B2 (ja) * 2005-08-05 2010-09-08 株式会社Ihi 電動機付過給機
JP4605380B2 (ja) * 2005-08-08 2011-01-05 株式会社Ihi 電動過給機
JP4692820B2 (ja) * 2005-08-11 2011-06-01 株式会社Ihi 電動機付過給機
JP4591828B2 (ja) * 2005-08-22 2010-12-01 株式会社Ihi 電動機付過給機
DE602006020239D1 (de) 2006-01-24 2011-04-07 Ihi Corp Motorbetriebene Aufladung
EP1813782B1 (de) 2006-01-26 2009-08-05 IHI Corporation Turbo-Auflader
EP1998008B1 (de) * 2006-03-23 2019-03-13 IHI Corporation Hochgeschwindigkeitsrotationswellenanordnung für auflader
JP4671177B2 (ja) * 2006-06-02 2011-04-13 株式会社Ihi 電動過給機
JP4753033B2 (ja) * 2006-06-02 2011-08-17 株式会社Ihi 電動過給機
EP2067960B1 (de) 2006-08-18 2015-09-23 IHI Corporation Elektrischer auflader
KR20090039770A (ko) * 2006-08-18 2009-04-22 가부시키가이샤 아이에이치아이 전동 과급기
EP2167823B1 (de) * 2007-05-23 2015-07-29 Eppendorf, Inc. Verstellbare nabe für sanitäres laufrad
DE502007006457D1 (de) * 2007-05-24 2011-03-24 Lindenmaier Gmbh Turbolader
DE102008024764A1 (de) * 2008-05-23 2009-11-26 Oerlikon Leybold Vacuum Gmbh Mehrstufige Vakuumpumpe
US8523539B2 (en) * 2008-06-19 2013-09-03 The Board Of Regents Of The University Of Texas Systems Centrifugal pump
EP2273655B1 (de) * 2009-07-07 2012-03-21 Dietz-motoren GmbH & Co. KG Elektrische Maschine
JP2011055587A (ja) * 2009-08-31 2011-03-17 Ihi Corp ターボ機械システム
DE102009052931A1 (de) * 2009-11-12 2011-05-26 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
CN102235383A (zh) * 2010-04-26 2011-11-09 宁波龙泰电讯电机有限公司 一种前向离心式风机
GB2503531A (en) * 2012-06-29 2014-01-01 Samsung Electro Mech Fan motor structure
DE102013200655B4 (de) * 2013-01-17 2015-11-05 Yasa Motors Poland Sp. z.o.o. Kombiniertes Radial-Axiallager und Nassläuferpumpe
KR101429848B1 (ko) * 2013-02-13 2014-08-12 한승주 자기 구동 확장공기충전장치
TWI553231B (zh) * 2015-02-13 2016-10-11 佳世達科技股份有限公司 風扇及電子裝置
DE102015220988A1 (de) * 2015-10-27 2017-04-27 Robert Bosch Gmbh Förderungseinheit, sowie Brennstoffzellenvorrichtung mit einer Förderungseinheit
US20170356464A1 (en) * 2016-06-08 2017-12-14 Nidec Corporation Blower apparatus
DE102016214700A1 (de) * 2016-08-08 2018-02-08 Efficient Energy Gmbh Elektrischer Scheibenläufer mit einem Druckreduzierer für den Motorspalt
CN106224263A (zh) * 2016-08-19 2016-12-14 联想(北京)有限公司 一种散热风扇和电子设备
US11757330B2 (en) 2019-12-19 2023-09-12 Black & Decker, Inc. Canned outer-rotor brushless motor for a power tool
US11437900B2 (en) 2019-12-19 2022-09-06 Black & Decker Inc. Modular outer-rotor brushless motor for a power tool
CN114673728B (zh) * 2020-12-24 2024-01-26 迈格钠磁动力股份有限公司 一种永磁推力悬浮轴承及其控制方法
CN114607626A (zh) * 2021-08-25 2022-06-10 北京石头世纪科技股份有限公司 一种风机及清洁设备
US20240060499A1 (en) * 2022-08-22 2024-02-22 Hamilton Sundstrand Corporation Rotor integrated axial flux electric motor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693149A (en) * 1950-09-13 1954-11-02 Howard T White Explosionproof motor-driven pump
CH368575A (de) * 1959-05-22 1963-04-15 Robert Dipl Ing Coester Axial förderndes Motorgebläse
CH612736A5 (de) * 1976-04-27 1979-08-15 Papst Motoren Kg
FR2528127A1 (fr) * 1982-06-04 1983-12-09 Creusot Loire Moto-compresseur centrifuge electrique integre a grande vitesse
JPH02169899A (ja) * 1988-12-21 1990-06-29 Fanuc Ltd レーザ用ターボブロア及びそれを用いたレーザ発振装置
JPH02222586A (ja) * 1989-02-23 1990-09-05 Fanuc Ltd レーザ用ターボブロア及びレーザ発振装置
DE4214483A1 (de) * 1992-05-07 1993-11-11 Dornier Gmbh Permanent-Magnet-Generator
FR2696057B1 (fr) * 1992-09-22 1997-06-13 Aerospatiale Moteur-couple allonge et dispositif de commande en debattement angulaire le comportant.
US5332374A (en) * 1992-12-30 1994-07-26 Ralph Kricker Axially coupled flat magnetic pump
DE4301675A1 (de) * 1993-01-22 1994-07-28 Pierburg Gmbh Elektronisch kommutierter Elektromotor
US5906098A (en) * 1996-07-16 1999-05-25 Turbodyne Systems, Inc. Motor-generator assisted turbocharging systems for use with internal combustion engines and control method therefor
US5870894A (en) 1996-07-16 1999-02-16 Turbodyne Systems, Inc. Motor-assisted supercharging devices for internal combustion engines
US6132186A (en) 1997-08-06 2000-10-17 Shurflo Pump Manufacturing Co. Impeller pump driven by a dynamo electric machine having a stator comprised of a mass of metal particles
JP3084622B2 (ja) * 1997-08-13 2000-09-04 セイコー精機株式会社 ターボ分子ポンプ
US5951267A (en) * 1997-09-24 1999-09-14 Ingersoll-Dresser Pump Co. Diaphragm for seal-less integral-motor pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0155598A1 *

Also Published As

Publication number Publication date
DE50104205D1 (de) 2004-11-25
KR100635692B1 (ko) 2006-10-17
CN1440493A (zh) 2003-09-03
CN1178005C (zh) 2004-12-01
US6682324B2 (en) 2004-01-27
WO2001055598A1 (de) 2001-08-02
EP1250531B1 (de) 2004-10-20
ATE280328T1 (de) 2004-11-15
US20030118461A1 (en) 2003-06-26
DE10003153A1 (de) 2001-08-02
KR20030017466A (ko) 2003-03-03
JP2003524730A (ja) 2003-08-19

Similar Documents

Publication Publication Date Title
EP1250531B1 (de) Turboradialgebläse
EP1725775B1 (de) Anordnung mit einem elektronisch kommutierten aussenläufermotor
EP1995426A1 (de) Elektromotor
EP1936198B1 (de) Vakuumpumpe
DE102011001041A1 (de) Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
DE19948972A1 (de) Motorpumpe
EP3765712A1 (de) Baukastensystem eines axial integrierten pumpenaufbaus
EP1857681B1 (de) Drehschiebervakuumpumpe mit Spaltrohrmotor
EP1936203B1 (de) Vakuumpumpe mit Lüfter
EP1256722A2 (de) Kreiselpumpe
DE102009055888A1 (de) Vakuumpumpe
WO2010012526A1 (de) Vakuumpumpe
DE60007063T2 (de) Einheit mit drehenden teilen
EP2751429B1 (de) Turbokompressor und verwendung
EP3729611B1 (de) Rollenmotor mit geschlossenem kühlkreislauf
CN108691801B (zh) 一种单片永磁体
DE102004047637B4 (de) Elektrisch betriebene Pumpe mit Außenrotor
DE102004047635B4 (de) Elektrisch betriebene Pumpe mit Innenrotor
DE102017109253A1 (de) Elektrische pumpe mit druckausgleichender medientrennung
DE102016214696A1 (de) Elektrischer Scheibenmotor mit Medientrennung im Motorspalt
EP1420502A2 (de) Elektromotor
EP3628883B1 (de) Vakuumpumpe
EP2273655B1 (de) Elektrische Maschine
EP3501088B1 (de) Förderaggregat
DE102023114729A1 (de) Fluidpumpe mit integriertem Gehäuse und Austrittsdämpfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRIECHEL, HANS

Inventor name: HODAPP, JOSEF

Inventor name: RONTHALER, KARL-HEINZ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104205

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050124

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
BERE Be: lapsed

Owner name: LEYBOLD VACUUM G.M.B.H.

Effective date: 20050131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BERE Be: lapsed

Owner name: *LEYBOLD VACUUM G.M.B.H.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100125

Year of fee payment: 10

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100223

Year of fee payment: 10

Ref country code: IT

Payment date: 20100130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100121

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110124

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130321

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104205

Country of ref document: DE

Effective date: 20140801