EP1236906A1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP1236906A1
EP1236906A1 EP02001844A EP02001844A EP1236906A1 EP 1236906 A1 EP1236906 A1 EP 1236906A1 EP 02001844 A EP02001844 A EP 02001844A EP 02001844 A EP02001844 A EP 02001844A EP 1236906 A1 EP1236906 A1 EP 1236906A1
Authority
EP
European Patent Office
Prior art keywords
components
vacuum pump
region
higher pressure
gas outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02001844A
Other languages
English (en)
French (fr)
Other versions
EP1236906B1 (de
Inventor
Peter Fahrenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1236906A1 publication Critical patent/EP1236906A1/de
Application granted granted Critical
Publication of EP1236906B1 publication Critical patent/EP1236906B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the invention relates to a vacuum pump according to the preamble of the 1st claim for protection.
  • Such a vacuum pump can be used, for example, as a turbomolecular pump or as Molecular pump according to the Holweck design or as a combination of both types be trained.
  • the invention further extends to combinations with pumps, which emit after higher pressure, such as side channel pumps.
  • Such vacuum pumps usually consist of a number of stages, which can be designed differently and each have rotor and stator components. These pump-active parts are penetrated by the gas to be pumped.
  • the area of application these pumps increasingly extend to processes where large Quantities of easily condensable gases are generated, such as chemical processes or semiconductor manufacturing.
  • these gases are easily condensable are, which is all the more the case at low temperatures, or solid deposits to a significant extent. This can cause corrosion and etching processes, which lead to the destruction of individual components or the entire pump.
  • This is the case with the pump types considered here particularly critical because their optimal mode of operation only at high speeds and very small distances between stationary and rotating parts can be.
  • the invention has for its object to present a construction in which only the components threatened by deposits are specifically heated.
  • the arrangement according to the invention ensures that only the critical components, d. H. those who are particularly at risk of deposits are heated up become.
  • the heat is generated by thermal connections with high thermal conductivity targeted to the critical points.
  • Other components, such as housings, High vacuum connection, bearings and drive are through thermal insulation from the heater except.
  • a turbomolecular pump is shown with the housing 1, which has an intake opening 2 in the high vacuum area 8 and a gas outlet opening 3 in the fore vacuum area 10 is provided.
  • the rotor shaft 4 is fixed in bearings 5 and 6 and is driven by the motor 7.
  • Rotor components 12 are fastened on the rotor shaft 4. These have pump-active structures and, with the stator components 14, which can also be provided with pump-active structures, the pump effect.
  • the gases entering the intake opening are generated by the pump-active components fed to the gas outlet opening 3 via an intermediate space 18 on the forevacuum side.
  • the space 18 is provided with a heater 20 and over thermal connection with high thermal conductivity with the fore-vacuum stator components 24 connected.
  • stator components 24 consist of a material with high thermal conductivity and the contacts between them are formed over a large area. It becomes thermal Clearance from the housing 1 and the high vacuum stator components Thermal resistances 28 separated.
  • gas outlet opening 3 can also provided with a heater 21 and by thermal resistances 27 from the adjacent Housing parts must be thermally separated.
  • the expression pre-vacuum also includes higher pressure ranges down to atmospheric pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Bei einer Vakuumpumpe werden Bauteile, die sich im Bereich höheren Druckes befinden und die durch Ablagerungen besonders bedroht sind, gezielt aufgeheizt. Dazu wird die Wärme mit Hilfe thermischer Anbindung gezielt an kritische Stellen gebracht. Bauteile, für die eine höhere Temperatur unerwünscht ist, werden durch Wärmeleitwiderstände (26, 27) von der Heizung (20) und den beheizten Teilen isoliert.

Description

Die Erfindung betrifft eine Vakuumpumpe nach dem Oberbegriff des 1. Schutzanspruches.
Eine solche Vakuumpumpe kann zum Beispiel als Turbomolekularpumpe oder als Molekularpumpe nach der Bauart von Holweck oder als Kombination beider Typen ausgebildet sein. Die Erfindung erstreckt sich weiterhin auf Kombinationen mit Pumpen, welche nach höherem Druck hin ausstoßen, wie zum Beispiel Seitenkanalpumpen.
Derartige Vakuumpumpen bestehen in der Regel aus einer Anzahl von Stufen, welche unterschiedlich gestaltet sein können und jeweils Rotor- und Statorbauteile aufweisen. Diese pumpaktiven Teile werden von dem zu fördernden Gas durchsetzt. Der Einsatzbereich dieser Pumpen erstreckt sich zunehmend auf Verfahren, bei denen große Mengen von leicht kondensierbaren Gasen anfallen, wie zum Beispiel chemische Prozesse oder die Halbleiterfertigung. Dabei werden die Gase vom Hochvakuumbereich bis zu einem Druckbereich, in welchem laminare Strömung herrscht, oder gar bis Atmosphärendruck komprimiert. Das bedeutet, dass in diesem Bereich höheren Druckes relativ große Gasmengen gefördert werden. Wenn dann diese Gase leicht kondensierbar sind, was bei tiefen Temperaturen umso mehr der Fall ist, kommt es zu Flüssigkeits- oder Feststoffabscheidungen im beträchtlichen Ausmaß. Dadurch können Korrosions- und Ätzvorgänge hervorgerufen werden, welche zur Zerstörung einzelner Bauteile oder der ganzen Pumpe führen können. Dies ist bei den hier betrachteten Pumpentypen besonders kritisch, da ihre optimale Wirkungsweise nur mit hohen Drehzahlen und sehr geringen Abständen zwischen stehenden und rotierenden Teilen erreicht werden kann.
Es gibt Konstruktionen, die zum Ziel haben, die unerwünschten Ablagerungen durch Aufheizen der kritischen Bereiche zu verhindern (DE-A 197 02 456, EP-A 06 46 220). Bei diesen Konstruktionen werden die kritischen Bereiche durch großflächige Wärmezufuhr aufgeheizt. Der Nachteil dabei ist, das dadurch auch Teile der Pumpe aufgeheizt werden, die von den Abscheidungen nicht betroffen sind, wie zum Beispiel Gehäuse, Hochvakuumanschluss, Lagerung und Antrieb. Dies führt neben überhöhtem Energieverbrauch zu weiteren unterschiedlichen nachteiligen Folgen, wie unerwünsch te Ausdehnung von Bauteilen mit äußerst engen Toleranzen, schädliche Beeinträchtigung von Antrieb und Lagerteilen und Gefahr der Verletzung bei Berührung.
Der Erfindung liegt die Aufgabe zugrunde, eine Konstruktion vorzustellen, bei der lediglich die von Ablagerungen bedrohten Bauteile gezielt aufgeheizt werden.
Die Aufgabe wird durch die kennzeichnenden Merkmale des 1. Schutzanspruches gelöst. Die Ansprüche 2 bis 5 stellen weitere Ausgestaltungsformen der Erfindung dar.
Durch die erfindungsgemäße Anordnung wird erreicht, dass nur die kritischen Bauteile, d. h. diejenigen, die besonders stark von Ablagerungen bedroht sind, aufgeheizt werden. Durch thermische Anbindungen mit hoher Wärmeleitfähigkeit wird die Wärme gezielt an die kritischen Stellen geführt. Andere Bauteile, wie zum Beispiel Gehäuse, Hochvakuumanschluss, Lager und Antrieb, werden durch Wärmeisolation von der Heizung ausgenommen. Diese Maßnahmen führen zu Vorteilen, wie Begrenzung des Energieverbrauchs, Vermeidung unerwünschter Ausdehnung von Bauteilen mit engen Toleranzen, schädliche Beeinträchtigung von Antriebs- und Lagerteilen und Verletzungsgefahr durch Berührung. Durch einen höheren Gasdurchsatz kann die Leistungsfähigkeit der Pumpe gesteigert werden. Die geringe Wärmekapazität der Heizungsteile und der Statorbauteile im Bereich höheren Druckes hat eine kurze Aufheizzeit und einen geringeren Leistungsbedarf zur Folge.
Anhand der Figur soll die Erfindung am Beispiel einer Turbomolekularpumpe näher erläutert werden.
Dargestellt ist eine Turbomolekularpumpe mit dem Gehäuse 1, welches mit einer Ansaugöffnung 2 im Hochvakuumbereich 8 und einer Gasaustrittsöffnung 3 im Vorvakuumbereich 10 versehen ist. Die Rotorwelle 4 ist in Lagern 5 und 6 fixiert und wird durch den Motor 7 angetrieben. Auf der Rotorwelle 4 sind Rotorbauteile 12 befestigt. Diese weisen pumpaktive Strukturen auf und bewirken mit den Statorbauteilen 14, welche ebenfalls mit pumpaktiven Strukturen versehen sein können, den Pumpeffekt. Die bei der Ansaugöffnung eintretenden Gase werden von den pumpaktiven Bauteilen über einen vorvakuumseitigen Zwischenraum 18 der Gasaustrittsöffnung 3 zugeführt. Erfindungsgemäß ist der Zwischenraum 18 mit einer Heizung 20 versehen und über thermische Anbindung mit hoher Wärmeleitfähigkeit mit den vorvakuumseitigen Statorbauteilen 24 verbunden. Diese thermische Anbindung wird dadurch hergestellt, dass die Statorbauteile 24 aus einem Material mit hoher Wärmeleitfähigkeit bestehen und die Kontakte zwischen ihnen großflächig ausgebildet sind. Thermisch wird der Zwischenraum vom Gehäuse 1 und den hochvakuumseitigen Statorbauteilen durch Wärmeleitwiderstände 28 getrennt. Zusätzlich kann die Gasaustrittsöffnung 3 ebenfalls mit einer Heizung 21 versehen und durch Wärmeleitwiderstände 27 von den angrenzenden Gehäuseteilen thermisch getrennt sein.
Da die Erfindung sich über das beschriebene Beispiel einer Turbomolekularpumpe hinaus auch auf Pumpen oder Pumpsysteme erstreckt, welche bis zu Atmosphärendruck ausstoßen, umfasst der Ausdruck Vorvakuum hier auch höhere Druckbereiche bis hin zum Atmosphärendruck.

Claims (5)

  1. Vakuumpumpe mit in einem Gehäuse (1) untergebrachten pumpaktiven Rotorund Statorbauteilen (12, 14), wobei das Gehäuse (1) im Hochvakuumbereich (8) mit einer Ansaugöffnung (2) und im Bereich höheren Druckes (10) mit einer Gasaustrittsöffnung (3) versehen ist und das dem Bereich höheren Druckes zugewandte Ende (16) der pumpaktiven Bauteile über einen Zwischenraum (18) mit der Gasaustrittsführung (3) verbunden ist, dadurch gekennzeichnet, dass der Zwischenraum (18) mit einer Heizung (20) versehen ist und einerseits über thermische Anbindung mit hoher Wärmeleitfähigkeit mit den Statorbauteilen (24) im Bereich höheren Druckes verbunden ist sowie andererseits durch Wärmeleitwiderstände (26) thermisch vom Gehäuse (1) getrennt ist.
  2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Gasaustrittsöffnung (3) mit einer Heizung (21) versehen ist.
  3. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die thermische Anbindung mit hoher Wärmeleitfähigkeit dadurch hergestellt wird, dass die Statorbauteile (24) selbst aus einem Material mit hoher Wärmeleitfähigkeit bestehen und die Kontakte zwischen ihnen großflächig ausgebildet sind.
  4. Vakuumpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die hochvakuumseitigen Statorbauteile durch Wärmeleitwiderstände (28) von den Statorbauteilen im Bereich höheren Druckes thermisch getrennt sind.
  5. Vakuumpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gasaustrittsöffnung (3) durch Wärmeleitwiderstände (27) von den angrenzenden Gehäusebauteilen thermisch getrennt ist.
EP02001844A 2001-02-16 2002-01-26 Turbomolekularpumpe Expired - Lifetime EP1236906B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10107341 2001-02-16
DE10107341A DE10107341A1 (de) 2001-02-16 2001-02-16 Vakuumpumpe

Publications (2)

Publication Number Publication Date
EP1236906A1 true EP1236906A1 (de) 2002-09-04
EP1236906B1 EP1236906B1 (de) 2010-07-07

Family

ID=7674321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02001844A Expired - Lifetime EP1236906B1 (de) 2001-02-16 2002-01-26 Turbomolekularpumpe

Country Status (4)

Country Link
US (1) US6699009B2 (de)
EP (1) EP1236906B1 (de)
JP (1) JP4673538B2 (de)
DE (2) DE10107341A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043962A1 (de) * 2013-09-24 2015-04-02 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142567A1 (de) * 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
JP5420323B2 (ja) * 2009-06-23 2014-02-19 株式会社大阪真空機器製作所 分子ポンプ
JP6386737B2 (ja) 2014-02-04 2018-09-05 エドワーズ株式会社 真空ポンプ
JP6390478B2 (ja) * 2015-03-18 2018-09-19 株式会社島津製作所 真空ポンプ
EP3339652B1 (de) * 2016-12-22 2020-07-01 Pfeiffer Vacuum Gmbh Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen
US10655638B2 (en) * 2018-03-15 2020-05-19 Lam Research Corporation Turbomolecular pump deposition control and particle management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197238A2 (de) * 1985-03-09 1986-10-15 Leybold Aktiengesellschaft Gehäuse für eine Turbomolekularvakuumpumpe
FR2634829A1 (fr) * 1988-07-27 1990-02-02 Cit Alcatel Pompe a vide
EP0451708A2 (de) * 1990-04-06 1991-10-16 Hitachi, Ltd. Vakuumpumpe
US5577883A (en) * 1992-06-19 1996-11-26 Leybold Aktiengesellschaft Gas friction vacuum pump having a cooling system
EP0855517A2 (de) * 1997-01-24 1998-07-29 Pfeiffer Vacuum GmbH Vakuumpumpe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618167A (en) * 1994-07-28 1997-04-08 Ebara Corporation Vacuum pump apparatus having peltier elements for cooling the motor & bearing housing and heating the outer housing
JP3125207B2 (ja) * 1995-07-07 2001-01-15 東京エレクトロン株式会社 真空処理装置
JP3160504B2 (ja) * 1995-09-05 2001-04-25 三菱重工業株式会社 ターボ分子ポンプ
DE19724323A1 (de) * 1997-06-10 1998-12-17 Leybold Vakuum Gmbh Flanschverbindung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197238A2 (de) * 1985-03-09 1986-10-15 Leybold Aktiengesellschaft Gehäuse für eine Turbomolekularvakuumpumpe
FR2634829A1 (fr) * 1988-07-27 1990-02-02 Cit Alcatel Pompe a vide
US4929151A (en) * 1988-07-27 1990-05-29 Societe Anonyme Dite: Alcatel Cit Vacuum pump
EP0451708A2 (de) * 1990-04-06 1991-10-16 Hitachi, Ltd. Vakuumpumpe
US5577883A (en) * 1992-06-19 1996-11-26 Leybold Aktiengesellschaft Gas friction vacuum pump having a cooling system
EP0855517A2 (de) * 1997-01-24 1998-07-29 Pfeiffer Vacuum GmbH Vakuumpumpe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043962A1 (de) * 2013-09-24 2015-04-02 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
US10221864B2 (en) 2013-09-24 2019-03-05 Leybold Gmbh Vacuum pump
EP3049676B1 (de) 2013-09-24 2019-07-10 Leybold GmbH Vakuumpumpe

Also Published As

Publication number Publication date
JP2002276586A (ja) 2002-09-25
US6699009B2 (en) 2004-03-02
JP4673538B2 (ja) 2011-04-20
US20020114695A1 (en) 2002-08-22
EP1236906B1 (de) 2010-07-07
DE50214516D1 (de) 2010-08-19
DE10107341A1 (de) 2002-08-29

Similar Documents

Publication Publication Date Title
DE19702456B4 (de) Vakuumpumpe
DE102012009287B4 (de) Fahrzeug-Heizgerät mit integriertem Gebläsemotor und Steuergerät
EP1252446B1 (de) Dynamische dichtung
DE102007010068B4 (de) Vakuumpumpe oder Vakuumapparatur mit Vakuumpumpe
EP1236906A1 (de) Vakuumpumpe
DE20011217U1 (de) Turboverdichter
EP0731278A1 (de) Molekularvakuumpumpe mit Kühlgaseinrichtung
DE102016118191A1 (de) Ladesystem zum Aufladen eines Elektrofahrzeugs
DE202010010272U1 (de) Lüfter mit einem elektronisch kommutierten Antriebsmotor
DE102018219253A1 (de) Elektromotor
DE112019004941T5 (de) Turbogebläse mit komplexer kühlstruktur für eine brennstoffzelle
EP1288502B1 (de) Turbomolekularpumpe
DE4440495A1 (de) Elektrisch betriebene Luftgebläseeinheit, insbesondere Sekundärluftgebläseeinheit
DE102010000816A1 (de) Antriebssystem für ein Fahrzeug sowie Lader
DE19634095A1 (de) Eingangsstufe für eine zweiflutige Gasreibungspumpe
DE10358953A1 (de) Lagerung des Rotors einer Gasturbine
EP3424133A1 (de) Gebläse für einen verbrennungsmotor
US20160290343A1 (en) Rotor device for a vacuum pump, and vacuum pump
DE19906133A1 (de) Tauchpumpe
DE202005017574U1 (de) Brennstoffzellensystem mit einer Anordnung zur Rezirkulation von Anodenabgas
EP1101944A2 (de) Turbomolekularpumpe
DE10357547B4 (de) Turbomolekularpumpe
EP1925477B1 (de) Fahrzeugheizgerät
DE1428040A1 (de) Verfahren zum Verhueten von Korrosionsschaeden an Verstellmechanismen von Leitschaufeln in Turbomaschinen und Turbomaschine zur Durchfuehrung des Verfahrens
EP1447567A2 (de) Vakuumpumpanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030207

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20080515

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: TURBOMOLECULAR PUMP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50214516

Country of ref document: DE

Date of ref document: 20100819

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214516

Country of ref document: DE

Effective date: 20110408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120124

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161117

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214516

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180126