EP1236906B1 - Turbomolekularpumpe - Google Patents

Turbomolekularpumpe Download PDF

Info

Publication number
EP1236906B1
EP1236906B1 EP02001844A EP02001844A EP1236906B1 EP 1236906 B1 EP1236906 B1 EP 1236906B1 EP 02001844 A EP02001844 A EP 02001844A EP 02001844 A EP02001844 A EP 02001844A EP 1236906 B1 EP1236906 B1 EP 1236906B1
Authority
EP
European Patent Office
Prior art keywords
components
housing
gas outlet
outlet opening
higher pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02001844A
Other languages
English (en)
French (fr)
Other versions
EP1236906A1 (de
Inventor
Peter Fahrenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1236906A1 publication Critical patent/EP1236906A1/de
Application granted granted Critical
Publication of EP1236906B1 publication Critical patent/EP1236906B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the invention relates to a turbomolecular pump according to the preamble of claim 1.
  • Such turbomolecular pumps usually consist of a number of stages, which may be designed differently and each having rotor and stator components. These pump-active parts are penetrated by the gas to be delivered.
  • the field of application of these pumps increasingly extends to processes involving large quantities of easily condensable gases, such as chemical processes or semiconductor manufacturing.
  • the gases are compressed from the high vacuum range to a pressure range in which laminar flow prevails, or even to atmospheric pressure. This means that in this area of higher pressure relatively large amounts of gas are conveyed. If then these gases are easily condensable, which is more the case at low temperatures, liquid or solid deposits will occur to a considerable extent. As a result, corrosion and etching processes can be caused, which can lead to the destruction of individual components or the entire pump. This is particularly critical in the pump types considered here, since their optimal mode of operation can only be achieved with high speeds and very small distances between stationary and rotating parts.
  • the invention has for its object to provide a construction in which only the threatened by deposits components are heated specifically.
  • a turbomolecular pump with the housing 1, which is provided with a suction port 2 in the high vacuum region 8 and a gas outlet opening 3 in the pre-vacuum region 10.
  • the rotor shaft 4 is fixed in bearings 5 and 6 and is driven by the motor 7.
  • the gases entering at the intake opening are supplied by the pump-active components via a pre-vacuum-side gap 18 to the gas outlet opening 3.
  • the interspace 18 is provided with a heater 20 and connected to the pre-vacuum-side stator components 24 via thermal connection with high thermal conductivity.
  • stator components 24 are made of a material with high thermal conductivity and the contacts between them are formed over a large area. Thermally, the gap is separated from the housing 1 and the high-vacuum-side stator components by thermal resistors 28.
  • the gas outlet opening 3 may also be provided with a heater 21 and be thermally separated by thermal resistances 27 from the adjacent housing parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

  • Die Erfindung betrifft eine Turbomolekularpumpe nach dem Oberbegriff des Anspruchs 1.
  • Derartige Turbomolekularpumpen bestehen in der Regel aus einer Anzahl von Stufen, welche unterschiedlich gestaltet sein können und jeweils Rotor- und Statorbauteile aufweisen. Diese pumpaktiven Teile werden von dem zu fördernden Gas durchsetzt. Der Einsatzbereich dieser Pumpen erstreckt sich zunehmend auf Verfahren, bei denen große Mengen von leicht kondensierbaren Gasen anfallen, wie zum Beispiel chemische Prozesse oder die Halbleiterfertigung. Dabei werden die Gase vom Hochvakuumbereich bis zu einem Druckbereich, in welchem laminare Strömung herrscht, oder gar bis Atmosphärendruck komprimiert. Das bedeutet, dass in diesem Bereich höheren Druckes relativ große Gasmengen gefördert werden. Wenn dann diese Gase leicht kondensierbar sind, was bei tiefen Temperaturen umso mehr der Fall ist, kommt es zu Flüssigkeits- oder Feststoffabscheidungen im beträchtlichen Ausmaß. Dadurch können Korrosions- und Ätzvorgänge hervorgerufen werden, welche zur Zerstörung einzelner Bauteile oder der ganzen Pumpe führen können. Dies ist bei den hier betrachteten Pumpentypen besonders kritisch, da ihre optimale Wirkungsweise nur mit hohen Drehzahlen und sehr geringen Abständen zwischen stehenden und rotierenden Teilen erreicht werden kann.
  • Es gibt Konstruktionen, die zum Ziel haben, die unerwünschten Ablagerungen durch Aufheizen der kritischen Bereiche zu verhindern. Siehe DE-A-19702456 als nächstkommenden Stand der Technik, bzw. EP-A-0646220 . Bei diesen Konstruktionen werden die kritischen Bereiche durch großflächige Wärmezufuhr aufgeheizt. Der Nachteil dabei ist, das dadurch auch Teile der Pumpe aufgeheizt werden, die von den Abscheidungen nicht betroffen sind, wie zum Beispiel Gehäuse, Hochvakuumanschluss, Lagerung und Antrieb. Dies führt neben überhöhtem Energieverbrauch zu weiteren unterschiedlichen nachteiligen Folgen, wie unerwünschte Ausdehnung von Bauteilen mit äußerst engen Toleranzen, schädliche Beeinträchtigung von Antrieb und Lagerteilen und Gefahr der Verletzung bei Berührung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Konstruktion vorzustellen, bei der lediglich die von Ablagerungen bedrohten Bauteile gezielt aufgeheizt werden.
  • Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Die Ansprüche 2 und 3 stellen weitere Ausgestaltungsformen der Erfindung dar.
  • Durch die erfindungsgemäße Anordnung wird erreicht, dass nur die kritischen Bauteile, d. h. diejenigen, die besonders stark von Ablagerungen bedroht sind, aufgeheizt werden. Durch thermische Anbindungen mit hoher Wärmeleitfähigkeit wird die Wärme gezielt an die kritischen Stellen geführt. Andere Bauteile, wie zum Beispiel Gehäuse, Hochvakuumanschluss, Lager und Antrieb, werden durch Wärmeisolation von der Heizung ausgenommen. Diese Maßnahmen führen zu Vorteilen, wie Begrenzung des Energieverbrauchs, Vermeidung unerwünschter Ausdehnung von Bauteilen mit engen Toleranzen, schädliche Beeinträchtigung von Antriebs- und Lagerteilen und Verletzungsgefahr durch Berührung. Durch einen höheren Gasdurchsatz kann die Leistungsfähigkeit der Pumpe gesteigert werden. Die geringe Wärmekapazität der Heizungsteile und der Statorbauteile im Bereich höheren Druckes hat eine kurze Aufheizzeit und einen geringeren Leistungsbedarf zur Folge.
  • Anhand der Figur soll die Erfindung am Beispiel einer Turbomolekularpumpe näher läutert werden.
  • Dargestellt ist eine Turbomolekularpumpe mit dem Gehäuse 1, welches mit einer Ansaugöffnung 2 im Hochvakuumbereich 8 und einer Gasaustrittsöffnung 3 im Vorvakuumbereich 10 versehen ist. Die Rotorwelle 4 ist in Lagern 5 und 6 fixiert und wird durch den Motor 7 angetrieben. Auf der Rotorwelle 4 sind Rotorbauteile 12 befestigt. Diese weisen pumpaktive Strukturen auf und bewirken mit den Statorbauteilen 14, welche ebenfalls mit pumpaktiven Strukturen versehen sein können, den Pumpeffekt. Die bei der Ansaugöffnung eintretenden Gase werden von den pumpaktiven Bauteilen über einen vorvakuumseitigen Zwischenraum 18 der Gasaustrittsöffnung 3 zugeführt. Erfindungsgemäß ist der Zwischenraum 18 mit einer Heizung 20 versehen und über thermische Anbindung mit hoher Wärmeleitfähigkeit mit den vorvakuumseitigen Statorbauteilen 24 verbunden. Diese thermische Anbindung wird dadurch hergestellt, dass die Statorbauteile 24 aus einem Material mit hoher Wärmeleitfähigkeit bestehen und die Kontakte zwischen ihnen großflächig ausgebildet sind. Thermisch wird der Zwischenraum vom Gehäuse 1 und den hochvakuumseitigen Statorbauteilen durch Wärmeleitwiderstände 28 getrennt. Zusätzlich kann die Gasaustrittsöffnung 3 ebenfalls mit einer Heizung 21 versehen und durch Wärmeleitwiderstände 27 von den angrenzenden Gehäuseteilen thermisch getrennt sein.

Claims (3)

  1. Turbomolekularpumpe mit in einem Gehäuse (1) untergebrachten pumpaktiven Rotor- und Statorbauteilen (12, 14), wobei das Gehäuse (1) im Hochvakuumbereich (8) mit einer Ansaugöffnung (2) und im Bereich höheren Druckes (10) mit einer Gasaustrittsöffnung (3) versehen ist und das dem Bereich höheren Druckes zugewandte Ende (16) der pumpaktiven Bauteile über einen Zwischenraum (18) mit der Gasaustrittsöffnung (3) verbunden ist, dadurch gekennzeichnet, dass der Zwischenraum (18) derart mit einer Heizung (20) versehen ist und einerseits über thermische Anbindung mit hoher Wärmeleitfähigkeit derart mit den Statorbauteilen (24) im Bereich höheren Druckes verbunden ist sowie andererseits durch Wärmeleitwiderstände (26) derart thermisch vom Gehäuse (1) getrennt ist, dass nur die besonders stark von Ablagerungen bedrohten Bauteile aufgeheizt werden, dass die hochvakuumseitigen Statorbauteile durch Wärmeleitwiderstände (28) von den Statorbauteilen im Bereich höheren Druckes thermisch getrennt sind, und dass die Gasaustrittsöffnung (3) durch Wärmeleitwiderstände (27) von den angrenzenden Gehäusebauteilen thermisch getrennt ist.
  2. Turbomolekularpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Gasaustrittsöffnung (3) mit einer Heizung (21) versehen ist.
  3. Turbomolekularpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die thermische Anbindung mit hoher Wärmeleitfähigkeit dadurch hergestellt wird, dass die Statorbauteile (24) selbst aus einem Material mit hoher Wärmeleitfähigkeit bestehen und die Kontakte zwischen ihnen großflächig ausgebildet sind.
EP02001844A 2001-02-16 2002-01-26 Turbomolekularpumpe Expired - Lifetime EP1236906B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10107341A DE10107341A1 (de) 2001-02-16 2001-02-16 Vakuumpumpe
DE10107341 2001-02-16

Publications (2)

Publication Number Publication Date
EP1236906A1 EP1236906A1 (de) 2002-09-04
EP1236906B1 true EP1236906B1 (de) 2010-07-07

Family

ID=7674321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02001844A Expired - Lifetime EP1236906B1 (de) 2001-02-16 2002-01-26 Turbomolekularpumpe

Country Status (4)

Country Link
US (1) US6699009B2 (de)
EP (1) EP1236906B1 (de)
JP (1) JP4673538B2 (de)
DE (2) DE10107341A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142567A1 (de) * 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
JP5420323B2 (ja) * 2009-06-23 2014-02-19 株式会社大阪真空機器製作所 分子ポンプ
DE202013008470U1 (de) 2013-09-24 2015-01-08 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
JP6386737B2 (ja) * 2014-02-04 2018-09-05 エドワーズ株式会社 真空ポンプ
JP6390478B2 (ja) * 2015-03-18 2018-09-19 株式会社島津製作所 真空ポンプ
EP3339652B1 (de) * 2016-12-22 2020-07-01 Pfeiffer Vacuum Gmbh Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen
US10655638B2 (en) * 2018-03-15 2020-05-19 Lam Research Corporation Turbomolecular pump deposition control and particle management

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508483A1 (de) * 1985-03-09 1986-10-23 Leybold-Heraeus GmbH, 5000 Köln Gehaeuse fuer eine turbomolekularvakuumpumpe
FR2634829B1 (fr) * 1988-07-27 1990-09-14 Cit Alcatel Pompe a vide
KR950007378B1 (ko) * 1990-04-06 1995-07-10 가부시끼 가이샤 히다찌 세이사꾸쇼 진공펌프
US5577883A (en) * 1992-06-19 1996-11-26 Leybold Aktiengesellschaft Gas friction vacuum pump having a cooling system
US5618167A (en) * 1994-07-28 1997-04-08 Ebara Corporation Vacuum pump apparatus having peltier elements for cooling the motor & bearing housing and heating the outer housing
JP3125207B2 (ja) * 1995-07-07 2001-01-15 東京エレクトロン株式会社 真空処理装置
JP3160504B2 (ja) * 1995-09-05 2001-04-25 三菱重工業株式会社 ターボ分子ポンプ
DE19702456B4 (de) * 1997-01-24 2006-01-19 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE19724323A1 (de) * 1997-06-10 1998-12-17 Leybold Vakuum Gmbh Flanschverbindung

Also Published As

Publication number Publication date
JP4673538B2 (ja) 2011-04-20
US6699009B2 (en) 2004-03-02
DE10107341A1 (de) 2002-08-29
EP1236906A1 (de) 2002-09-04
DE50214516D1 (de) 2010-08-19
US20020114695A1 (en) 2002-08-22
JP2002276586A (ja) 2002-09-25

Similar Documents

Publication Publication Date Title
DE19702456B4 (de) Vakuumpumpe
DE20011217U1 (de) Turboverdichter
EP2390510B1 (de) Vakuumpumpe
EP1236906B1 (de) Turbomolekularpumpe
DE102012009287B4 (de) Fahrzeug-Heizgerät mit integriertem Gebläsemotor und Steuergerät
DE20011219U1 (de) Turboverdichter
DE102015207341B4 (de) Verdichter und Kraftfahrzeug
DE102013012143A1 (de) Kühlmittelpumpe für ein Kraftfahrzeug zur Kühlung einer Brennkraftmaschine oder einer alternativen Antriebsvorrichtung
EP1936203B1 (de) Vakuumpumpe mit Lüfter
EP3476012A1 (de) Schleifringeinheit mit lüfter-isoliersegmentid50000084009599 pub copy null
DE202010010272U1 (de) Lüfter mit einem elektronisch kommutierten Antriebsmotor
EP2772650B1 (de) Vakuumpumpe
EP1936198A2 (de) Vakuumpumpe
DE102010023462A1 (de) Vorrichtung zum Absaugen oder Verdichten eines Arbeitsfluids
DE102014204825A1 (de) Vakuumpumpe
EP1288502B1 (de) Turbomolekularpumpe
EP3844400A1 (de) Rotormontageeinheit mit kühlfunktion
DE19906133A1 (de) Tauchpumpe
EP3278427A1 (de) Elektromotor mit drückender kühlluftförderung sowie verfahren zum kühlen von bauteilen des elektromotors
DE202015101683U1 (de) Elektromotor mit drückender Kühlluftförderung
EP3277958B2 (de) Kompressoranlage zur erzeugung von druckluft sowie verfahren zum betrieb einer druckluft erzeugenden kompressoranlage
EP1447567A2 (de) Vakuumpumpanordnung
DE10230244B9 (de) Gebläseeinrichtung für ein Gargerät
EP3462034A1 (de) Vakuumpumpe
DE10130426B4 (de) Vakuumpumpsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030207

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20080515

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: TURBOMOLECULAR PUMP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50214516

Country of ref document: DE

Date of ref document: 20100819

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214516

Country of ref document: DE

Effective date: 20110408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120124

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161117

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214516

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180126