EP3339652B1 - Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen - Google Patents

Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen Download PDF

Info

Publication number
EP3339652B1
EP3339652B1 EP16206042.0A EP16206042A EP3339652B1 EP 3339652 B1 EP3339652 B1 EP 3339652B1 EP 16206042 A EP16206042 A EP 16206042A EP 3339652 B1 EP3339652 B1 EP 3339652B1
Authority
EP
European Patent Office
Prior art keywords
insert
chamber
pump
vacuum pump
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16206042.0A
Other languages
English (en)
French (fr)
Other versions
EP3339652A1 (de
Inventor
Herbert Stammler
Sönke Gilbrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP16206042.0A priority Critical patent/EP3339652B1/de
Priority to JP2017230365A priority patent/JP6469205B2/ja
Publication of EP3339652A1 publication Critical patent/EP3339652A1/de
Application granted granted Critical
Publication of EP3339652B1 publication Critical patent/EP3339652B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the present invention relates to a vacuum pump according to claim 1.
  • Vacuum pumps such as turbomolecular pumps, are used in different areas of technology in order to create a vacuum necessary for a particular process.
  • deposits such as process impurities, particles and / or liquid residues, accumulate or deposit from the fluid pumped by the pump in the vacuum pump and primarily there in its fore-vacuum region.
  • deposits possibly also corrosive and toxic deposits have to be removed during maintenance with great effort, in particular by mechanical, physical and / or chemical cleaning.
  • the housing of the vacuum pump and in particular the lower part of the housing enclosing the fore-vacuum region with the assemblies which may be arranged there, such as an electronic assembly, precision mechanical assemblies, seals, etc., are made more difficult cleaning because, for example, superheated steam, cleaning agents and the like can be harmful.
  • a vacuum pump according to the preamble of claim 1 is known from the US 2016/273552 A1 known. Another vacuum pump is disclosed US 2002/114695 A1 .
  • the present invention has for its object to provide a vacuum pump that is easy to clean.
  • deposits should be easy to remove from the fore-vacuum area of the vacuum pump.
  • a vacuum pump according to the invention in particular a turbomolecular pump, comprises a housing with at least one inlet and an outlet for fluid, in particular process gas or air, a recipient being connectable to the inlet.
  • the vacuum pump according to the invention also comprises at least one pump stage arranged in the housing for conveying the fluid, in particular out of the recipient, through the vacuum pump from the inlet to the outlet, a chamber also being formed in the housing, and at least one insert for receiving in the chamber of deposits is arranged, which covers at least one side delimiting the chamber.
  • the chamber preferably opens into the outlet and preferably forms a discharge area of the vacuum pump.
  • the chamber is therefore preferably in the fore-vacuum region of the pump.
  • the chamber is preferably arranged downstream of the pump stage closest to the forevacuum in the housing, as seen in the pumping direction.
  • the deposits drawn in by the pump and contained in the fluid can therefore deposit on the insert.
  • the deposits can be removed by removing the insert from the pump.
  • the insert can preferably be arranged in the chamber in such a way that it can be removed from the chamber, for example, during maintenance of the pump.
  • the removed insert can be cleaned outside the pump and then reinserted into the pump. Alternatively, the dirty insert can be replaced with a new insert.
  • the effort of cleaning the chamber from the deposits can be reduced by using the insert or, in the best case, saved entirely. This also reduces the risk of damaging sensitive components in the fore-vacuum area.
  • deposit is to be understood broadly and can include any type of substances, such as particles, liquids, gases or exotic states such as plasma or atomic gas, which are contained in the fluid conveyed by the vacuum pump and are found in the vacuum pump, for example can "settle down” through adhesion, condensation, resublimation, solidification or chemical reaction.
  • the insert has an outlet opening, which can be aligned in particular with the outlet on the housing of the vacuum pump.
  • the fluid can thus pass through the volume of the insert into the outlet opening of the insert and further into the outlet of the vacuum pump.
  • the outlet opening can have a diameter which corresponds at least substantially to the diameter of the outlet of the vacuum pump.
  • the outlet opening can be formed, for example, by removing, in particular cutting out, material from the insert.
  • the outlet of the vacuum pump has a fore-vacuum nozzle in which the Chamber opens, and the insert has a mouth section which can be introduced or introduced into the fore-vacuum nozzle.
  • the mouth section can at least partially cover the inner wall of the fore-vacuum nozzle and thus protect it from deposits.
  • the mouth section is formed by the part of the insert material which was removed or cut out from the insert to create the outlet opening, the mouth section preferably being connected in one piece to the insert. No additional material is therefore required for the mouth section. Rather, only the material of the insert is used, which has "become free" by creating the outlet opening.
  • the mouth section can be insertable into the fore-vacuum nozzle.
  • the mouth section can be designed to match the fore-vacuum nozzle.
  • the outer diameter of the mouth section can thus essentially correspond to the inner diameter of the fore-vacuum nozzle.
  • the axial length of the mouth section can be adapted to the axial length of the fore-vacuum nozzle. The fitting mouth section inserted into the fore-vacuum nozzle can thus effectively protect the fore-vacuum nozzle from deposits.
  • the side delimiting the chamber which at least partially covers the insert, can be a side wall and / or the bottom of the chamber.
  • the insert can be designed such that it covers the largest possible surface area of the chamber or the chamber walls. As many deposits as possible can thus deposit on the insert and not on the chamber surfaces.
  • the insert can be designed like a bowl, a can or a container.
  • the insert can therefore have or define a volume that is accessible from the outside, in which the deposits can accumulate and accumulate.
  • the insert can be designed such that it covers, in particular at least largely completely, the bottom of the chamber and / or a side wall delimiting the chamber radially outwards and / or a side wall delimiting the chamber radially inwards.
  • the insert in particular the bottom and side walls thereof, preferably surrounds a volume, at least one opening being provided on at least one side of the insert, in particular on the top of the insert, so that the deposits can be caught in the volume through the opening.
  • the opening can be designed such that the insert has no wall on the corresponding side.
  • the opening can alternatively be designed such that one or more openings, such as slots, are provided in a wall.
  • the insert can thus be completely or at least partially opened on its upper side which is remote from the floor, so that the deposits can accumulate in the volume from above.
  • the insert is preferably designed and / or can be fitted in the chamber such that the at least one opening faces the pump stage upstream of the chamber. Deposits that are sucked in by the pump stage and conveyed towards the outlet can thus get directly into the volume of the insert and accumulate there. Possible contamination of the chamber walls by deposits can thus be further reduced.
  • the insert is preferably designed as a shell, the shape of which is particularly adapted to the shape of the chamber. Due to the shell shape, process impurities, deposits and other substances or particles can be captured particularly well and stored in the volume defined by the bowl.
  • the shell is preferably at least partially open on one side, in particular on the side which, in the intended installation position, is directed in the direction of the upstream pump stage. The deposits can thus be accumulated particularly well in the volume formed by the shell.
  • the chamber can extend in a ring, in particular below the pump stage, about a central axis of the vacuum pump, in particular about an axis of rotation of a rotor of the pump stage.
  • the chamber can thus form a kind of annular space under the pump stage, which among other things also has a favorable effect on the pumping speed of the pump stage.
  • the chamber preferably has an at least approximately rectangular cross section. This cross-sectional shape can be implemented particularly easily in terms of production technology.
  • the insert can be designed as a bowl-shaped shell with a bottom and, preferably vertically to the bottom, in particular upward, radially inside or radially outside, which is designed to correspond to the chamber and is at least partially open on its upper side.
  • the insert can thus be inserted, in particular in a suitable manner, into the annular chamber.
  • the shell like the chamber, can preferably have an at least approximately rectangular cross section.
  • the insert can be fixed and / or fixable in the chamber by means of at least one fixation.
  • the fixation can comprise, for example, at least one screw, by means of which the insert is fastened to the chamber or to an inner wall of the housing.
  • the screw can, for example, be screwed in or screwed into the bottom of the insert and the chamber bottom underneath.
  • a screw comes with a large one Head, such as a pan head screw or hexagon screw, because such a screw can be easily located on a floor covered with deposits and loosened with a tool.
  • the insert can also be designed and / or dimensioned in such a way that it can be fixed in the clamping assembly in the chamber with the stator package of the pump stage located above the chamber.
  • the stator package mentioned can be used as a kind of fixation for the insert.
  • the insert can be brought from a first form into a second form, in particular by pressing on the insert, the insert in the second form having a larger outside diameter and / or a smaller inside diameter compared to the first form, and / or wherein the insert has plastic and / or elastic changes in shape in the second form compared to the first form.
  • the insert can thus be inserted into the chamber in the first form and, in particular by pressing the insert or by inserting the insert into the chamber, the latter can be brought into the second form, as a result of which the outside diameter and / or the inside diameter of the Insert changes at least slightly, or as a result of plastic and / or elastic changes in shape of the insert.
  • the insert can be "clamped" in the chamber to a certain extent, so that the insert can be fixed in the chamber.
  • the shape change of the insert can be reversible. To remove or after removing the insert, it can be brought back into the first shape.
  • the change in shape can be made possible in that at least one side of the insert, in particular the radially outer side wall of the insert, is designed such that, for example, by pressing on the insert, the dimensions of the Side, especially their radial extent, is adjustable.
  • the change in shape can also be made possible in that at least one side of the insert, in particular the radially outer side wall of the insert, is designed such that the dimensioning of the side, in particular its axial extent, is adjustable, for example by pressing on the insert.
  • the side wall consists of at least two partial areas, which are connected by means of at least one peripheral deformation area with deformation elements and recesses, in particular in the axial direction, and is designed such that at least one deformation element is elastic or else by pressing on the insert is plastically deformed, with at least one recess being reduced and the axial extent of the side wall also being reduced.
  • the insert can be brought from a first shape into a second shape, in particular by pressing the insert, in which the insert, in particular the radially outer side wall, has a greater or lesser axial height than the first shape .
  • the axial extent of the insert can thus be adjustable.
  • At least one seal is preferably arranged between an outside of the insert and a side wall of the chamber.
  • the chamber wall behind the outside of the insert can thus be effectively protected against deposits.
  • the seal can also pinch the insert in the chamber and thus act as a fixation.
  • the seal which is preferably inserted between the upper edge of the insert and the side wall of the chamber behind it, can also act as a type of pressure distributor and distribute any existing tolerances or forces, in particular axial tolerances or forces, in such a way that the insert is firm on the one hand is fixed in the chamber and, on the other hand, a stator packet arranged upstream of the chamber is securely clamped.
  • the insert can be made from metal, in particular as sheet metal or foil, or from a, preferably inert, plastic, such as PTFE.
  • PTFE stands for polytetrafluoroethylene.
  • the insert may have at least one coating, in particular an anti-stick layer, e.g. with nickel or PTFE, and / or a foil-like layer.
  • an anti-stick layer e.g. with nickel or PTFE
  • the surfaces of the insert can be protected from aggressive deposits, for example.
  • the coating can be such that it can be removed by means of a cleaning agent, in particular with the deposits, and in particular can be rinsed out of the chamber.
  • the insert can be formed or produced by spraying or applying at least one layer of a spray film or the like on the sides of the chamber to be covered.
  • the layer can be removed from the chamber walls, in particular with the deposits accumulated thereon.
  • the layer can be such that it can be removed by means of a cleaning agent, in particular with the deposits, and in particular can be rinsed out of the chamber. A new layer can then be formed by spraying or applying again.
  • the insert can be made in one or more parts.
  • a backing pump e.g. a rotary vane pump.
  • a vacuum pump in particular a turbomolecular pump, comprising a housing with at least one inlet for fluid, in particular process gas or air, to which a recipient can be connected, and with at least one outlet for the fluid, and at least a pump stage arranged in the housing for conveying the fluid, in particular out of the recipient, through the vacuum pump from the inlet to the outlet, wherein in the housing, in particular a chamber opening into the outlet, preferably forming an ejection area of the vacuum pump, is formed, and wherein the chamber can be heated by means of at least one heating device. The chamber can thus be baked to remove the deposits from the chamber.
  • the in the Fig. 1 and 2nd The vacuum pump 10 shown comprises a housing 16 with a pump inlet 14 surrounded by an inlet flange 12, in the housing 16 a plurality of pump stages for conveying the gas present at the pump inlet 14 to a pump outlet 74 provided on the lower part 90 of the housing. Between the lower part 90 and the housing 16 there is one Seal 81 arranged.
  • the vacuum pump 10 comprises in the housing 16 or in the lower part 90 a stator and a rotor with a rotor shaft 20 which is rotatably mounted about an axis of rotation 18.
  • the vacuum pump 10 is designed as a turbomolecular pump and comprises a plurality of turbomolecular pump stages connected in series with one another with effective pumping, with a plurality of turbomolecular rotor disks 22 connected to the rotor shaft 20 and a plurality of turbomolecular stator disks 24 arranged in the axial direction between the rotor disks 22 and fixed in the housing 16, by spacer rings 26 are held at a desired axial distance from one another.
  • the pump-active system implemented by means of the turbomolecular pump stages is therefore built up in a regular alternation of rotor disks 22 and stator disks 24. Only some of the components shown for legibility have been identified with numbers.
  • the rotor disks 22 and stator disks 24 provide an axial pumping action in the direction of the arrow 30 in a scoop area 28.
  • the vacuum pump 10 can optionally have one or more Holweck pump stages, known per se, downstream of the turbomolecular pump stages, which are not shown.
  • Holweck pump stages known per se
  • three Holweck pump stages that are arranged one inside the other in the radial direction and have a pumping effect are connected in series with one another.
  • the rotor-side part of the Holweck pump stages can have a rotor hub connected to the rotor shaft 20 and two cylindrical jacket-shaped Holweck rotor sleeves attached to and supported by the rotor hub, which are oriented coaxially to the rotor axis 18 and in a radial direction Are nested in one another.
  • one, two or three cylindrical jacket-shaped Holweck stator sleeves can be provided, which are also oriented coaxially to the axis of rotation 18 and are nested in one another in the radial direction.
  • the pump-active surfaces of the Holweck pump stages are each formed by the radial jacket surfaces, each opposing one another with the formation of a narrow radial Holweck gap, of a Holweck rotor sleeve and a Holweck stator sleeve.
  • one of the pump-active surfaces is smooth, in particular that of the Holweck rotor sleeve, and the opposite pump-active surface, in particular the Holweck stator sleeve, has a structure with grooves running helically around the axis of rotation 18 in the axial direction, in which through the Rotation of the rotor propels the gas and is thereby pumped.
  • the Holweck pump stages are not provided.
  • a sealing area 34 is formed by a special, in this case asymmetrically shaped stator disk 24, which keeps the remaining gaps to the rotor disks 22 minimal in order to achieve a better seal against unwanted backflows between the first and second pump stages.
  • a preload and sealing ring 32 is arranged between the inner wall of the housing 16 and the turbomolecular pump stages, in particular between two spacer rings 26.
  • the preload and sealing ring 32 ensures that the stack of spacer rings 26, which is subject to tolerances, is securely axially preloaded between the housing 16 and the lower part 90. Furthermore, it additionally seals the gap between the stack of spacer rings 26 and the wall of the housing 16 against unwanted backflows from the fore-vacuum / ejection area into the high-vacuum / suction area.
  • a flood gas inlet 36 is arranged on the housing 16, via which the vacuum pump 10 can be flooded with flood gas.
  • the flood gas inlet 36 is advantageously located Downstream of the pump or below the prestressing and sealing ring 32.
  • the spacer ring 26 located at the level of the connection is preferably provided on its outer surface with a channel or a recess over the entire circumference, so that the flood gas is first distributed throughout the ring channel with a good conductance and then penetrates the gap or the recesses in the stator stack with a lower conductivity as uniformly as possible over the circumference and reaches the pumping stages that are mechanically more stable against flooding.
  • a coolant inlet 38 and a coolant outlet 40 are arranged on the lower part 90, between which runs a coolant line formed by at least one coolant pipe 76, which is guided in turns around the lower part 90.
  • a coolant pump can be connected to the coolant inlet 38 and the coolant outlet 40, by means of which coolant can be pumped through the coolant line in order to cool the vacuum pump 10.
  • the coolant tube 76 can be in preformed recesses in the lower part 90, for example in accordance with EP 3 070 335 A1 , be pressed in.
  • the pipe ends can either protrude from the contour of the pump 10 as a respective pipe section at any angle, for example to be connected to the inlet 38 or outlet 40 using insulation displacement screw connections or special plug connectors.
  • connection blocks which form the inlet 38 or the outlet 40 and in turn are fixed to the lower part 90.
  • the tight connection of tube 76 and connection block 38, 40 can be established in different ways, e.g. by soldering, welding, clamping / pressing / stretching or with separate sealing elements, e.g. (cutting) sealing rings or bands or with special connectors with integrated Sealing system.
  • a coolant line is shown which, starting from the inlet 38, has three complete, spirally arranged wraps of the lower part 90 and then ends at the outlet 40.
  • any number or parts of wraps can intersect one or more times at different radius and / or at different axial heights of the axis of rotation 18 or can also reverse one or more times in their direction of rotation, e.g. by means of U-shaped bends or arranged deflection blocks, which take up two pipe ends similar to the connection blocks and establish a connection between them.
  • Such connection and deflection blocks can also contain a valve that regulates the coolant flow or can interrupt it if necessary.
  • any block can also have a further connection, on which e.g. An additional, in particular parallel, coolant line or one or more valves for deflecting or distributing the coolant flow into different branches of the coolant pipe system, which can also serve as a bypass or diversion, depending on the need, is or are present.
  • the rotatable mounting of the rotor shaft 20 is effected by a roller bearing 42 in the area of the pump outlet 74 and a permanent magnet bearing 44 in the area of the pump inlet 14.
  • the permanent magnet bearing 44 comprises a bearing half 46 on the rotor side and a bearing half 48 on the stator side, each of which comprises an annular stack of a plurality of permanent magnetic rings 50, 52 stacked one on top of the other in the axial direction, the magnetic rings 50, 52 lying opposite one another to form a radial bearing gap 54.
  • an emergency or catch bearing 56 is provided, which is designed as an unlubricated rolling bearing and runs empty during normal operation of the vacuum pump without contact and only comes into engagement with an excessive radial deflection of the rotor relative to the stator to form a radial stop for the rotor, which prevents a collision of the rotor-side structures with the stator-side structures.
  • the emergency or catch bearing 56 is seized separately by an insert and can therefore be replaced independently of the permanent magnet bearing 44.
  • roller bearing 42 is held by a ring holder which, in turn, is received in an axially and radially decoupled manner by elastomeric elements in a roller bearing holder or roller bearing suspension 84 which is securely fixed to the lower part 90.
  • Mechanical stops limit the possible relative movements between the ring holder and rolling bearing suspension 84.
  • a conical injection screw 58 is provided on the rotor shaft 20 with an external diameter increasing toward the roller bearing 42, which can receive operating fluid, in particular lubricant, supplied by means of a lubricant channel 60 and feed it to the roller bearing.
  • the injection screw 58 can preferably according to EP 2 740 956 A2 be designed.
  • the operating medium is circulated by a lubricant pump 78.
  • the lubricant pump 78 is preferably in accordance with EP 2 060 794 A2 built up. In particular, it can supply a lubricant feed channel, which according to at least one segment EP 2 801 725 A2 is constructed as an O-ring sealed round channel.
  • the lubricant pump 78 can be used to implement an active, regulated supply of operating media.
  • the vacuum pump 10 comprises a drive motor 62 for rotatingly driving the rotor, the rotor of which is formed by the rotor shaft 20.
  • a control unit 64 controls the drive motor 62.
  • the vacuum pump 10 and in particular the control unit 64 and the drive motor can be connected via an electrical connection 66 62 can be supplied with electrical current.
  • the control unit 64 forms the lower region of the housing and is closed by the cover 80.
  • the control unit 64 with the cover 80 closes the lower part 90.
  • one or more seals 77 can be inserted all round between the control unit 64, cover 80 and / or lower part 90 or the corresponding transitions with other sealants, such as liquid sealants, adhesives or, in particular, mold seals that can be applied be closed to gain security against the ingress of media and / or contaminants.
  • sealants such as liquid sealants, adhesives or, in particular, mold seals that can be applied be closed to gain security against the ingress of media and / or contaminants.
  • Vacuum feedthrough 86 can be configured according to EP 1 843 043 A2 be configured, in the example described here a circuit board with a plurality of sealing rings, separate voltage potentials and signals separate from one another from the pump interior, that is to say from the vacuum region, to the outside, that is to say to the “atmosphere” and in particular to the control unit 64.
  • control unit 64 or the drive motor 62 or the pump-active components can mainly introduce undesirable heat into the pump via the housing 16.
  • the coolant such as water, advantageously flows from the inlet 38 to the outlet 40 since the control unit 64 is to be kept coolest.
  • a cover 88 can be arranged on the radial outer side of the lower part 90.
  • the cladding 88 which can be designed in the form of a jacket as a sheet metal sleeve slotted along the axis of rotation 18 of the pump 10, is advantageously not shown in the external view of the pump 10 in order to obtain a better view of the solutions underneath.
  • the cladding 88 can have one or more viewing windows or cutouts around any connections of the lower part 90, for example a sealing gas inlet 68, to the outside or to reveal the type data (type plate or engraving) of the pump 10, which are attached to the lower part in a non-detachable manner.
  • the sealing gas inlet 68 is also referred to as a purge gas connection.
  • Purge gas can be introduced via the sealing gas inlet 68 to protect the engine 62 in the engine compartment in which the engine 62 is accommodated.
  • the gas admitted in the area of the engine via the sealing gas inlet 68 protects the components located in the lower part 90 from corrosive and / or deposited media which can occur in the pump system, depending on the application.
  • a seal 83 is arranged between the motor mount 82 and the lower part 90, so that a labyrinth seal 72, as the only remaining passage, on the one hand, with its low conductance, represents a lock against inflowing media in the motor and roller bearing area and furthermore an increased saturation of the roller bearing and motor area with lock - / inert gas secures.
  • the labyrinth seal 72 is provided between a motor mount 82 which delimits the motor space upwards and the lower rotor disk 22.
  • the electric drive motor 62 is advantageously protected against corrosion by a casting compound.
  • the motor mount 82 is cast integrally with the drive motor, so that the entire unit, including the stator side of the labyrinth seal 72, which is made in one piece with the motor mount, can be optimally aligned or centered in one step with the lower part 90.
  • the forevacuum area is located radially outside of the labyrinth seal 72 and below the turbomolecular pump stages, in which, in particular, a chamber 70 is formed which surrounds the axis of rotation 18 and which, as in FIG Fig. 2 and 3rd can be seen has a substantially rectangular cross section.
  • This cross-sectional shape can only be seen as an example, so that another cross-sectional shape, for example a square or circular cross-section, can also be realized.
  • the chamber 70 can also be accommodated at another location in the housing 16 or in the lower part 90.
  • chamber 70 is where most of the deposits are, typically in the fore-vacuum area.
  • the chamber 70 is thus particularly preferably between the last pump stage and the pump outlet 74.
  • the chamber 70 opens into the pump outlet 74.
  • the chamber 70 therefore forms an ejection area for the gas conveyed by the vacuum pump 10 from the inlet 14, which can reach a fore-vacuum pump (not shown) connected to it via the pump outlet 74.
  • the backing pump can then deliver the gas further, for example into a line for exhaust gas, which is under normal pressure.
  • the sectional view of the Fig. 3 corresponds to the sectional view of Fig. 2 . It is according to Fig. 3 in the chamber 70 an insert 92 is arranged on which deposits can accumulate or accumulate, which get into the pump 10 via the gas sucked in by the pump 10 and which experience has shown to predominantly deposit in the chamber 70.
  • Deposits 92 such as substances, particles and / or liquid droplets, are not deposited directly on the walls of chamber 70 covered or covered by insert 92, but rather on insert 92 maintenance of the pump 10 are removed from the chamber 70 and cleaned or replaced by a new insert 92. The deposits can therefore be easily removed from the pump 10.
  • the insert 92 is essentially designed to match the shape of the chamber 70.
  • the insert 92 can thus be inserted into the chamber 70 in a suitable manner.
  • the insert 92 can then lie directly in front of the chamber walls to be covered.
  • the insert 92 like the chamber 70, a circular ring shape with a substantially rectangular cross section when viewed in the radial direction.
  • the insert 92 is preferably made of sheet metal. However, it can also be made of another material, such as plastic, in particular PTFE.
  • the insert 92 comprises a bottom 94, a radially inner side wall 96 and a radially outer side wall 98, which extend approximately or completely vertically away from the bottom 94. If, for example, the insert 92 is produced at least partially in a reshaping or original manner, one or more elements can advantageously have bevels.
  • the bottom 94 and the side walls 96, 98 enclose a volume 100 which is open at the top.
  • the insert 92 is therefore in the form of an annular shell or, more generally, the shape of an annular container.
  • the upper side facing the upstream pump stage is open. Gas discharged from the pump stage can thus get into the volume 100 without being blocked by a wall or the like, so that deposits can accumulate particularly well in the volume 100.
  • the insert 92 also has an outlet opening 102 (cf. 4 and 5 ), the cross section of which preferably corresponds to the cross section of the pump outlet 74.
  • the insert 92 is arranged in the chamber 70 such that the outlet opening 102 is aligned with the pump outlet 74. The gas can thus flow through the outlet opening 102 into the pump outlet 74 and thus out of the pump 10.
  • the outlet opening 102 can in particular be created in that it is cut out of the insert 92 or otherwise separated out.
  • the insert 92 is fixed in the chamber 70, preferably by means of at least one fixation.
  • the insert 92 can, for example, be fixed in the clamping association with the package of the stator disks 24. How Fig. 3 indicates that the radially outer side wall 98 can extend so far upwards that its upper end strikes the lowermost stator disk 24.
  • the insert 92 can therefore be fixed in the chamber 70 by means of the lowest stator disk 24.
  • the upper end of the radially inner side wall 96 can be directed radially inward. However, contrary to the illustration, it is preferably ensured that there is a small gap between the upper end of the side wall 96 and the lowermost rotor disk 22 located there, so that the rotor disk 22 can rotate about the axis of rotation 18 on the side wall 96 without abrasion.
  • Fig. 4 shows a section of the sectional view of Fig. 3 , in which part of a variant of the insert 92 can be seen in cross section.
  • the part of the insert 92 is located in the region of the pump outlet 74 and has the outlet opening 102 already mentioned above.
  • an orifice section 106 extends in the fore-vacuum connection 104 of the pump 10 having the pump outlet 74.
  • the orifice section 106 can be designed as a separate part, in particular as a tubular part with an outer diameter which essentially corresponds to the inner diameter of the fore-vacuum connection 104.
  • the mouth section 106 can be introduced into the fore-vacuum connection 104.
  • the channel 108 formed by the mouth section 106 can connect to the outlet opening 102 of the insert 92.
  • the mouth section 106 can also be formed in one piece with the insert 92.
  • Fig. 5 shows a section of the sectional view of Fig. 3 , in which in turn the part of the insert 92 can be seen in cross section, which is located in the region of the pump outlet 74 and has the outlet opening 102.
  • the mouth section 106 is formed according to the invention by the material which is obtained by cutting out the outlet opening 102.
  • the mouth section 106 can be formed by triangular pieces of material 110, which are formed by a kind of star-shaped opening or cutting out of the outlet opening 102.
  • the pieces of material 110 remain connected to the insert 92.
  • the pieces of material 110 can be pressed into the fore-vacuum nozzle 104 and in particular brought into contact with the inner wall of the fore-vacuum nozzle 104.
  • the covered inner wall areas of the socket 104 are thus protected against deposits.
  • Fig. 6 shows a section of the sectional view of Fig. 3 , in which a part of another variant of the insert 92 can be seen in cross section.
  • a screw 112 can be screwed into a hole in the bottom 94 of the insert 92 and into an underlying hole in the bottom of the chamber 70 in order to fix the insert 92.
  • the screw 112, as shown, is preferably a pan head screw so that it is easy to find when the bottom 94 is covered with debris.
  • a plurality of screws 112 for fixing the insert 92 can be screwed into the bottom 94 of the insert 92 or into the chamber bottom.
  • Fig. 7 shows a section of the sectional view of Fig. 3 , in which a part of yet another variant of the insert 92 can be seen in cross section, which in comparison to the variant of FIG Fig. 6 has no screw 112 for fixation.
  • the insert 92 is again open on its top 114.
  • the openings 116 are preferably as in FIG Fig. 7 is shown, arranged in the region of the upper edge of the side wall 98.
  • the upper edge of the side wall 98 has a wavy structure due to the openings 116.
  • the insert 92 can be brought from a first shape into a second shape, in particular by pressing the side wall 98 from above, the insert 92 being reduced or compressed in the second shape as seen in the axial direction.
  • the upper edge of the side wall 98 with the openings 116 forms a circumferential deformation area.
  • the openings 116 can be plastically or elastically deformed and reduced, so that the axial extension of the side wall 98 is reduced and the insert 92 is thus compressed in the axial direction.
  • the openings 114 therefore allow the side wall 98 to be axially deflected to vary the overall height.
  • the insert 92 can behave like a kind of spiral spring and can thus be clamped between the lowest stator disk 24 and the chamber bottom.
  • the insert 92 can also be designed such that the outer side wall 98 can be moved at least slightly radially outward and / or the inner side wall 96 radially inward by "pressing in” the insert 92, so that it lies in contact with the inner or reaches outer chamber wall.
  • the insert 92 can thereby also be fixed or tensioned in the chamber 70.
  • This can be made possible, for example, by the fact that the side wall 98 has a plurality of through openings 116 which are offset with respect to one another in the circumferential direction and which, starting from the upper edge of the side wall, run at least substantially in the axial direction downward (not shown).
  • the side wall 98 has a number offset at its upper edge in the circumferential direction tabs lying opposite one another, which can tilt radially outward, for example, in order to clamp the insert 98 in the chamber 70.
  • Fig. 7 also shows, in the radially outer wall of the chamber 70 one in the circumferential direction of the side wall 98 or in the direction of rotation of the axis of rotation 18 (cf. Fig. 3 ) circumferential groove 118 may be formed.
  • the radially outward, upper end of the side wall 98 can engage in the groove 118, as a result of which the fixation of the insert 92 in the chamber 70 can be further improved.
  • the groove 118 preferably runs directly below the lowermost stator disk 24.
  • the radially outer side wall 98 also has a slightly cranked, raised edge which abuts the first or lowermost stator disk 24 axially and is under axial pressure.
  • Fig. 8 shows a section of the sectional view of Fig. 3 , in which part of a variant of the insert 92 can be seen in cross section.
  • a seal 120 which extends around the axis of rotation 18 is arranged between the radially outer side wall 98 of the insert 92 and the outer wall of the chamber 70.
  • the seal 120 is preferably inserted into a circumferential groove 118 which is introduced into the outer side wall 98.
  • a seal 122 is inserted which extends around the axis of rotation 18.
  • the seals 120 and 122 act as a type of pressure distributor and fix the insert 92 in the chamber 70. In addition, they provide a sealing effect between the respective side wall 96, 98 of the insert 92 and the respective chamber wall located behind it.
  • Fig. 9 shows a section of the sectional view of Fig. 3 , in which part of a variant of the insert 92 can be seen in cross section.
  • a seal 124 is inserted which surrounds the axis of rotation 18, as a result of which the insert 92 is fixed in the chamber 70.
  • the in the 8 and 9 Seals 120, 122 and 124 shown are preferably designed as O-ring seals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vakuumpumpe nach Anspruch 1.
  • Vakuumpumpen, wie zum Beispiel Turbomolekularpumpen, werden in unterschiedlichen Bereichen der Technik eingesetzt, um ein für einen jeweiligen Prozess notwendiges Vakuum zu schaffen. Dabei kann das Problem auftreten, dass sich Ablagerungen, wie etwa Prozessverunreinigungen, Partikel und/oder Flüssigkeitsreste, aus dem durch die Pumpe gepumpten Fluid in der Vakuumpumpe und dort vornehmlich in deren Vorvakuumbereich ansammeln bzw. ablagern. Diese möglicherweise auch ätzenden und giftigen Ablagerungen müssen bei einer Wartung mit teilweise hohem Aufwand entfernt werden, insbesondere durch mechanische, physikalische und/oder chemische Reinigung. Das Gehäuse der Vakuumpumpe und insbesondere das den Vorvakuumbereich umschließende Unterteil des Gehäuses mit den dort eventuell angeordneten Baugruppen, wie etwa einer Elektronikbaugruppe, feinmechanischen Baugruppen, Dichtungen, usw. erschweren die Reinigung, da sich zum Beispiel Heißdampf, Reinigungsmittel und dergleichen schädlich auswirken können.
  • Eine Vakuumpumpe gemäß dem Oberbegriff von Anspruch 1 ist aus der US 2016/273552 A1 bekannt. Eine weitere Vakuumpumpe offenbart US 2002/114695 A1 .
  • Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Vakuumpumpe bereitzustellen, die sich einfach reinigen lässt. Insbesondere sollen sich Ablagerungen einfach aus dem Vorvakuumbereich der Vakuumpumpe entfernen lassen.
  • Die Aufgabe wird durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen und Weiterbildungen der Erfindung werden in den abhängigen Ansprüchen beschrieben.
  • Eine erfindungsgemäße Vakuumpumpe, insbesondere Turbomolekularpumpe, umfasst ein Gehäuse mit wenigstens einem Einlass und einem Auslass für Fluid, insbesondere Prozessgas oder Luft, wobei an den Einlass ein Rezipient anschließbar ist. Die erfindungsgemäße Vakuumpumpe umfasst außerdem wenigstens eine in dem Gehäuse angeordnete Pumpstufe zum Fördern des Fluids, insbesondere aus dem Rezipient, durch die Vakuumpumpe vom Einlass zum Auslass, wobei in dem Gehäuse ferner eine Kammer ausgebildet ist, und wobei in der Kammer wenigstens eine Einlage zur Aufnahme von Ablagerungen angeordnet ist, die wenigstens eine die Kammer begrenzende Seite überdeckt.
  • Die Kammer mündet vorzugsweise in den Auslass und bildet bevorzugt einen Ausstoßbereich der Vakuumpumpe. Die Kammer liegt daher vorzugsweise im Vorvakuumbereich der Pumpe. Die Kammer ist bevorzugt in Pumprichtung gesehen nachgeordnet zu der vorvakuum-nahesten Pumpstufe im Gehäuse angeordnet. Der durch die Vakuumpumpe verlaufende Pumpkanal, durch den das Fluid in der Pumpe strömt, erstreckt sich durch die Kammer. Die von der Pumpe angesaugten, im Fluid enthaltenen Ablagerungen können sich daher auf der Einlage ablagern. Durch Herausnahme der Einlage aus der Pumpe können die Ablagerungen entfernt werden. Die Einlage kann bevorzugt derart in der Kammer angeordnet sein, dass sie z.B. im Rahmen einer Wartung der Pumpe aus der Kammer herausgenommen werden kann. Die herausgenommene Einlage kann außerhalb der Pumpe gereinigt und anschließend wieder in die Pumpe eingesetzt werden. Alternativ kann die verschmutzte Einlage durch eine neue Einlage ersetzt werden. Der Aufwand der Reinigung der Kammer von den Ablagerungen lässt sich durch Verwendung der Einlage reduzieren oder im optimalen Fall ganz einsparen. Dadurch kann auch das Risiko der Beschädigung von empfindlichen Baugruppen im Vorvakuumbereich reduziert werden.
  • Der Begriff "Ablagerung" ist breit zu verstehen und kann jegliche Art von Stoffen, wie etwa Partikel, Flüssigkeiten, Gase oder exotische Zustände wie Plasma oder atomares Gas, umfassen, die in dem durch die Vakuumpumpe geförderten Fluid enthalten sind und sich in der Vakuumpumpe etwa durch Anhaftung, Kondensation, Resublimation, Erstarrung oder chemische Reaktion "niedersetzen" können.
  • Die Einlage weist erfindungsgemäß eine, insbesondere mit dem Auslass am Gehäuse der Vakuumpumpe ausrichtbare, Auslassöffnung auf. Das Fluid kann somit durch das Volumen der Einlage hindurch in die Auslassöffnung der Einlage und weiter in den Auslass der Vakuumpumpe gelangen. Die Auslassöffnung kann einen Durchmesser aufweisen, der zumindest im Wesentlichen dem Durchmesser des Auslasses der Vakuumpumpe entspricht. Die Auslassöffnung kann zum Beispiel durch Entfernen, insbesondere Ausschneiden, von Material aus der Einlage gebildet werden.
  • Der Auslass der Vakuumpumpe weist erfindungsgemäß einen Vorvakuumstutzen auf, in welchen die Kammer mündet, und die Einlage weist einen Mündungsabschnitt auf, der in den Vorvakuumstutzen einbringbar oder eingebracht ist. Der Mündungsabschnitt kann zumindest teilweise die Innenwand des Vorvakuumstutzens abdecken und diese somit vor Ablagerungen schützen.
  • Der Mündungsabschnitt ist erfindungsgemäß von dem Teil des Einlagenmaterials gebildet, welcher zur Schaffung der Auslassöffnung von der Einlage entfernt bzw. ausgeschnitten wurde, wobei der Mündungsabschnitt vorzugsweise einstückig mit der Einlage verbunden ist. Es wird somit kein zusätzliches Material für den Mündungsabschnitt benötigt. Vielmehr wird nur das Material der Einlage verwendet, welches durch Schaffung der Auslassöffnung "freigeworden" ist.
  • Der Mündungsabschnitt kann in den Vorvakuumstutzen einschiebbar sein. Der Mündungsabschnitt kann dabei passend zum Vorvakuumstutzen ausgebildet sein. Der Außendurchmesser des Mündungsabschnitts kann somit im Wesentlichen dem Innendurchmesser des Vorvakuumstutzens entsprechen. Ferner kann die axiale Länge des Mündungsabschnitts an die axiale Länge des Vorvakuumstutzens angepasst sein. Der in den Vorvakuumstutzen eingeschobene, passende Mündungsabschnitt kann den Vorvakuumstutzen somit effektiv vor Ablagerungen schützen.
  • Bei der die Kammer begrenzenden Seite, welche die Einlage zumindest teilweise überdeckt, kann es sich um eine seitliche Wand und/oder um den Boden der Kammer handeln. Die Einlage kann derart ausgebildet sein, dass sie eine möglichst große Oberfläche der Kammer bzw. der Kammerwände überdeckt. Möglichst viele Ablagerungen können sich somit auf der Einlage und nicht auf den Kammeroberflächen ablagern.
  • Die Einlage kann schalenartig, dosenartig oder behälterartig ausgestaltet sein. Die Einlage kann daher ein von außen zugängliches Volumen aufweisen bzw. definieren, in welchem sich die Ablagerungen ablagern und ansammeln können.
  • Die Einlage kann derart ausgebildet sein, dass sie den Boden der Kammer und/oder eine die Kammer nach radial außen begrenzende Seitenwand und/oder eine die Kammer nach radial innen begrenzende Seitenwand, insbesondere zumindest weitgehend vollständig, überdeckt.
  • Vorzugsweise umgibt die Einlage, insbesondere deren Boden und Seitenwände, ein Volumen, wobei an wenigstens einer Seite der Einlage, insbesondere an der Oberseite der Einlage, wenigstens eine Öffnung vorgesehen ist, so dass die Ablagerungen durch die Öffnung hindurch in dem Volumen aufgefangen werden können. Die Öffnung kann so ausgestaltet sein, dass die Einlage an der entsprechenden Seite keine Wandung aufweist. Die Öffnung kann alternativ so ausgestaltet sein, dass in einer Wandung eine oder mehrere Durchbrechungen, etwa Schlitze, vorgesehen werden. Die Einlage kann somit an ihrer vom Boden entfernt liegenden Oberseite vollständig oder wenigstens teilweise geöffnet sein, so dass sich die Ablagerungen von oben her in dem Volumen ansammeln können.
  • Vorzugsweise ist die Einlage derart ausgebildet und/oder kann derart in der Kammer angebracht werden, dass die wenigstens eine Öffnung der der Kammer vorgeordneten Pumpstufe zugewandt ist. Ablagerungen, die von der Pumpstufe angesaugt und in Richtung Auslass gefördert werden, können somit direkt in das Volumen der Einlage gelangen und dort angesammelt werden. Eine mögliche Kontamination der Kammerwände durch Ablagerungen kann somit weiter reduziert werden.
  • Die Einlage ist bevorzugt als Schale ausgebildet, deren Form insbesondere an die Form der Kammer angepasst ist. Durch die Schalenform können Prozessverunreinigungen, Ablagerungen und sonstige Stoffe bzw. Partikel besonders gut aufgefangen und in dem von der Schale definierten Volumen gespeichert werden. Die Schale ist vorzugsweise an einer Seite hin zumindest teilweise offen, insbesondere an der Seite, welche in der vorgesehenen Einbauposition in Richtung der vorgeordneten Pumpstufe gerichtet ist. Die Ablagerungen können somit besonders gut in dem von der Schale gebildeten Volumen angesammelt werden.
  • Die Kammer kann sich, insbesondere unterhalb der Pumpstufe, ringförmig um eine zentrale Achse der Vakuumpumpe, insbesondere um eine Drehachse eines Rotors der Pumpstufe, erstrecken. Die Kammer kann somit eine Art Ringraum unter der Pumpstufe bilden, was sich unter anderem auch auf das Saugvermögen der Pumpstufe günstig auswirkt.
  • Die Kammer weist vorzugsweise einen zumindest annähernd rechteckigen Querschnitt auf. Diese Querschnittsform kann herstellungstechnisch besonders einfach realisiert werden.
  • Die Einlage kann als eine korrespondierend zur Kammer ausgestaltete, an ihrer Oberseite zumindest teilweise offene, vorzugsweise ringförmige, Schale mit einem Boden und, vorzugsweise vertikal zum Boden, insbesondere nach oben, verlaufenden, radial innen bzw. radial außen liegenden Seitenwänden ausgestaltet sein. Die Einlage lässt sich somit, insbesondere passend, in die ringförmig ausgestaltete Kammer einlegen. Dabei kann bevorzugt die Schale, wie auch die Kammer, einen zumindest annähernd rechteckigen Querschnitt aufweisen.
  • Die Einlage kann mittels wenigstens einer Fixierung in der Kammer fixiert und/oder fixierbar sein. Die Fixierung kann zum Beispiel wenigstens eine Schraube umfassen, mittels der die Einlage an der Kammer bzw. an einer Innenwand des Gehäuses befestigt ist. Die Schraube kann beispielsweise von oben her in den Boden der Einlage und den darunter liegenden Kammerboden eingedreht werden bzw. eingedreht sein. Vorzugsweise kommt dabei eine Schraube mit einem großen Kopf, etwa eine Linsenkopfschraube oder Sechskantschraube, zum Einsatz, da eine solche Schraube bei einem mit Ablagerungen verdeckten Boden einfach lokalisiert und mit Werkzeug gelöst werden kann.
  • Die Einlage kann auch derart ausgebildet und/oder dimensioniert sein, dass sie im Klemmverband mit dem oberhalb der Kammer liegenden Statorpaket der Pumpstufe in der Kammer fixiert werden kann. D.h. das erwähnte Statorpaket kann als eine Art Fixierung für die Einlage eingesetzt werden.
  • Die Einlage kann, insbesondere durch Drücken auf die Einlage, von einer ersten Form in eine zweite Form bringbar sein, wobei die Einlage in der zweiten Form gegenüber der ersten Form einen größeren Außendurchmesser und/oder einen kleineren Innendurchmesser aufweist, und/oder wobei die Einlage in der zweiten Form gegenüber der ersten Form plastische und/oder elastische Formänderungen aufweist. Die Einlage kann somit in der ersten Form in die Kammer eingelegt werden und, insbesondere durch Drücken auf die Einlage oder durch das Einlegen der Einlage in die Kammer, kann diese in die zweite Form gebracht werden, wodurch sich der Außendurchmesser und/oder der Innendurchmesser der Einlage zumindest geringfügig ändert, oder wodurch sich plastische und/oder elastische Formänderungen der Einlage ergeben. Durch die Formänderung lässt sich die Einlage in die Kammer gewissermaßen "einspannen", so dass die Einlage in der Kammer fixiert werden kann.
  • Die Formänderung der Einlage kann reversibel sein. Zum Herausnehmen oder nach dem Herausnehmen der Einlage kann diese somit wieder in die erste Form gebracht werden.
  • Die Formänderung kann dadurch möglich gemacht sein, dass wenigstens eine Seite der Einlage, insbesondere die radial äußere Seitenwand der Einlage, so ausgestaltet ist, dass z.B. durch Drücken auf die Einlage die Dimensionierung der Seite, insbesondere deren radiale Ausdehnung, verstellbar ist. Die Formänderung kann auch dadurch möglich gemacht sein, dass wenigstens eine Seite der Einlage, insbesondere die radial äußere Seitenwand der Einlage, so ausgestaltet ist, dass z.B. durch Drücken auf die Einlage die Dimensionierung der Seite, insbesondere deren axiale Ausdehnung, verstellbar ist. Das kann zum Beispiel dadurch realisiert werden, dass die Seitenwand aus mindestens zwei Teilbereichen besteht, die durch mindestens einen umlaufenden Verformungsbereich mit Verformungselementen und Ausnehmungen insbesondere in axialer Richtung verbunden sind und derart ausgestaltet ist, dass durch Drücken auf die Einlage wenigstens ein Verformungselement elastisch oder auch plastisch verformt wird, wobei wenigstens eine Ausnehmung verkleinert und die axiale Ausdehnung der Seitenwand somit ebenfalls verkleinert wird.
  • Es kann auch vorgesehen sein, dass die Einlage, insbesondere durch Drücken auf die Einlage, von einer ersten Form in eine zweite Form bringbar ist, in welcher die Einlage, insbesondere die radial äußere Seitenwand, gegenüber der ersten Form eine größere oder kleinere axiale Höhe aufweist. Die axiale Ausdehnung der Einlage kann somit verstellbar sein.
  • Bevorzugt ist wenigstens eine Dichtung zwischen einer Außenseite der Einlage und einer Seitenwand der Kammer angeordnet. Die hinter der Außenseite der Einlage liegende Kammerwand kann dadurch effektiv vor Ablagerungen geschützt werden. Die Dichtung kann außerdem eine Einklemmung der Einlage in der Kammer bewirken und somit als Fixierung wirken. Die Dichtung, die vorzugsweise zwischen dem oberen Rand der Einlage und der dahinter liegenden Seitenwand der Kammer eingesetzt ist, kann außerdem als eine Art Druckverteiler wirken und eventuell vorhandene Toleranzen oder auftretende Kräfte, insbesondere Axialtoleranzen oder-Kräfte, so verteilen, dass einerseits die Einlage fest in der Kammer fixiert ist und andererseits ein der Kammer vorgeordnetes Statorpaket sicher geklemmt ist.
  • Die Einlage kann aus Metall, insbesondere als Blech oder Folie, oder aus einem, vorzugsweise inerten, Kunststoff, wie etwa PTFE, ausgestaltet sein. PTFE steht dabei für Polytetrafluorethylen.
  • Die Einlage kann wenigstens eine Beschichtung aufweisen, insbesondere eine Anti-Haft-Schicht, z.B. mit Nickel oder PTFE, und/oder eine folienartige Schicht. Die Oberflächen der Einlage können dadurch zum Beispiel vor aggressiven Ablagerungen geschützt werden. Die Beschichtung kann so beschaffen sein, dass sie sich mittels eines Reinigungsmittels, insbesondere mit den Ablagerungen, entfernen und insbesondere aus der Kammer spülen lässt.
  • Die Einlage kann durch Aufsprühen oder Auftragen wenigstens einer Schicht einer Sprühfolie oder ähnlichem auf den zu bedeckenden Seiten der Kammer gebildet sein bzw. erzeugt werden. Die Schicht kann, insbesondere mit den darauf angesammelten Ablagerungen, von den Kammerwänden abgezogen werden. Die Schicht kann so beschaffen sein, dass sie sich mittels eines Reinigungsmittels, insbesondere mit den Ablagerungen, entfernen und insbesondere aus der Kammer spülen lässt. Durch erneutes Aufsprühen bzw. Auftragen kann sodann eine neue Schicht gebildet werden.
  • Die Einlage kann ein- oder mehrteilig ausgebildet sein. An den Auslass des Gehäuses kann eine Vorvakuumpumpe, z.B. eine Drehschieberpumpe, angeschlossen werden.
  • Alternativ zur Erfindung, und nicht Teil der Erfindung, ist eine Vakuumpumpe, insbesondere Turbomolekularpumpe, umfassend ein Gehäuse mit wenigstens einem Einlass für Fluid, insbesondere Prozessgas oder Luft, an welchen ein Rezipient anschließbar ist, und mit wenigstens einem Auslass für das Fluid, und wenigstens eine in dem Gehäuse angeordnete Pumpstufe zum Fördern des Fluids, insbesondere aus dem Rezipient, durch die Vakuumpumpe vom Einlass zum Auslass, wobei in dem Gehäuse, insbesondere eine in den Auslass mündende, vorzugsweise einen Ausstoßbereich der Vakuumpumpe bildende, Kammer ausgebildet ist, und wobei die Kammer mittels wenigstens einer Heizeinrichtung beheizbar ist. Die Kammer kann somit ausgeheizt werden, um die Ablagerungen aus der Kammer zu entfernen.
  • Nachfolgend wird die Erfindung unter Bezugnahme auf die beigefügten Figuren beispielhaft beschrieben. Es zeigen, jeweils schematisch,
  • Fig. 1
    eine perspektivische Ansicht einer Vakuumpumpe,
    Fig. 2
    eine Schnittansicht der Vakuumpumpe von Fig. 1,
    Fig. 3
    die Schnittansicht von Fig. 2 mit einer in der Vakuumpumpe angeordneten Einlage,
    Fig. 4
    einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer Variante der Einlage im Querschnitt zu sehen ist,
    Fig. 5
    einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil der erfindungsgemäßen Einlage im Querschnitt zu sehen ist,
    Fig. 6
    einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer anderen Variante der Einlage im Querschnitt zu sehen ist,
    Fig. 7
    einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer anderen Variante der Einlage im Querschnitt zu sehen ist,
    Fig. 8
    einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer Variante der Einlage im Querschnitt zu sehen ist, und
    Fig. 9
    einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer Variante der Einlage im Querschnitt zu sehen ist.
  • Die in den Fig. 1 und 2 gezeigte Vakuumpumpe 10 umfasst ein Gehäuse 16 mit einem von einen Einlassflansch 12 umgebenen Pumpeneinlass 14, im Gehäuse 16 mehrere Pumpstufen zur Förderung des an dem Pumpeneinlass 14 anstehenden Gases zu einem am Unterteil 90 des Gehäuses vorgesehenen Pumpenauslass 74. Zwischen Unterteil 90 und Gehäuse 16 ist eine Dichtung 81 angeordnet. Die Vakuumpumpe 10 umfasst im Gehäuse 16 bzw. im Unterteil 90 einen Stator und einen Rotor mit einer um eine Rotationsachse 18 drehbar gelagerten Rotorwelle 20.
  • Die Vakuumpumpe 10 ist als Turbomolekularpumpe ausgebildet und umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren mit der Rotorwelle 20 verbundenen turbomolekularen Rotorscheiben 22 und mehreren in axialer Richtung zwischen den Rotorscheiben 22 angeordneten und in dem Gehäuse 16 festgelegten turbomolekularen Statorscheiben 24, die durch Distanzringe 26 in einem gewünschten axialen Abstand zueinander gehalten sind. Das mittels der turbomolekularen Pumpstufen realisierte pumpaktive System baut sich daher im regelmäßigen Wechsel von Rotorscheiben 22 und Statorscheiben 24 auf. Dabei wurden nur einige der gezeigten Bestandteile der Lesbarkeit wegen mit Nummern kenntlich gemacht. Die Rotorscheiben 22 und Statorscheiben 24 stellen in einem Schöpfbereich 28 eine in Richtung des Pfeils 30 gerichtete axiale Pumpwirkung bereit.
  • Die Vakuumpumpe 10 kann optional nachgeordnet zu den turbomolekularen Pumpstufen eine oder mehrere, an sich bekannte Holweck-Pumpstufen aufweisen, die nicht dargestellt sind. Beispielsweise können drei in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen vorgesehen sein. Der rotorseitige Teil der Holweck-Pumpstufen kann dabei eine mit der Rotorwelle 20 verbundene Rotornabe und zwei an der Rotornabe befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen aufweisen, die koaxial zu der Rotorachse 18 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner können ein, zwei oder drei zylindermantelförmige Holweck-Statorhülsen vorgesehen sein, die ebenfalls koaxial zu der Rotationsachse 18 orientiert und in radialer Richtung ineinander geschachtelt sind. Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind jeweils durch die einander unter Ausbildung eines engen radialen Holweck-Spalts gegenüberliegenden, radialen Mantelflächen jeweils einer Holweck-Rotorhülse und einer Holweck-Statorhülse gebildet. Dabei ist jeweils eine der pumpaktiven Oberflächen glatt ausgebildet, insbesondere die der Holweck-Rotorhülse, und die gegenüberliegende pumpaktive Oberfläche, insbesondere der Holweck-Statorhülse, weist eine Strukturierung mit schraubenlinienförmig um die Rotationsachse 18 herum in axialer Richtung verlaufenden Nuten auf, in denen durch die Rotation des Rotors das Gas vorangetrieben und dadurch gepumpt wird. Bei der dargestellten Vakuumpumpe 10 sind die Holweck-Pumpstufen allerdings nicht vorgesehen.
  • Ein Abdichtungsbereich 34 wird durch eine speziell, in diesem Fall asymmetrisch ausgeformte Statorscheibe 24 gebildet, die die verbleibenden Zwischenräume zu den Rotorscheiben 22 minimal hält, um eine bessere Dichtigkeit gegen ungewollte Rückströmungen zwischen der ersten und zweiten Pumpstufe zu erzielen.
  • Ein Vorspann- und Dichtring 32 ist zwischen der Innenwand des Gehäuses 16 und den turbomolekularen Pumpstufen, insbesondere zwischen zwei Distanzringen 26, angeordnet. Der Vorspann- und Dichtring 32 sorgt dafür, dass der toleranzbehaftete Stapel aus Distanzringen 26 sicher axial zwischen Gehäuse 16 und Unterteil 90 vorgespannt wird. Weiterhin dichtet er zusätzlich den Spalt zwischen dem Stapel von Distanzringen 26 und der Wandung des Gehäuses 16 gegen ungewollte Rückströmungen aus dem Vorvakuum-/Ausstossbereich in den Hochvakuum-/Ansaugbereich ab.
  • Am Gehäuse 16 ist ein Flutgaseinlass 36 angeordnet, über den die Vakuumpumpe 10 mit Flutgas geflutet werden kann. Der Flutgaseinlass 36 liegt vorteilhaft pumpstromabwärts bzw. unterhalb des Vorspann- und Dichtrings 32. Der auf Höhe des Anschlusses liegende Distanzring 26 ist vorzugsweise auf seiner Mantelfläche über den gesamten Umfang mit einem Kanal bzw. einer Aussparung versehen, so dass sich das Flutgas zuerst im gesamten Ringkanal mit gutem Leitwert verteilt und dann über den Umfang möglichst gleichmäßig den Spalt bzw. die Ausnehmungen im Statorstapel mit geringerem Leitwert durchdringt und die gegen Fluten mechanisch stabileren Vorvakuum-nahen Pumpstufen erreicht.
  • Am Unterteil 90 sind ein Kühlmitteleinlass 38 und ein Kühlmittelauslass 40 angeordnet, zwischen denen eine von wenigstens einem Kühlmittelrohr 76 gebildete Kühlmittelleitung verläuft, die in Windungen um das Unterteil 90 herum geführt ist. An den Kühlmitteleinlass 38 und den Kühlmittelauslass 40 kann eine Kühlmittelpumpe angeschlossen werden, mittels der Kühlflüssigkeit durch die Kühlmittelleitung gepumpt werden kann, um die Vakuumpumpe 10 zu kühlen.
  • Das Kühlmittelrohr 76 kann in vorgeformte Ausnehmungen des Unterteils 90, z.B. gemäß EP 3 070 335 A1 , eingepresst sein. Die Rohrenden können entweder als jeweiliger Rohrabschnitt in einem beliebigen Winkel aus der Kontur der Pumpe 10 herausstehen, um z.B. mit Schneid-Klemm-Verschraubungen oder speziellen Steckverbindern am Einlass 38 bzw. Auslass 40 angeschlossen zu werden.
  • Die Rohrenden können auch in den Anschlussblöcken, die den Einlass 38 bzw. den Auslass 40 bilden und ihrerseits an dem Unterteil 90 fixiert sind, aufgenommen werden. Dabei kann die dichte Verbindung von Rohr 76 und Anschlussblock 38, 40 auf verschiedene Arten hergestellt werden, z.B. durch Löten, Schweißen, Klemmen/Pressen/Dehnen oder mit separaten Dichtelementen, z.B. (schneidenden) Dichtringen oder -bändern oder auch mit speziellen Steckverbindern mit integriertem Dichtsystem.
  • Dargestellt wird eine Kühlmittelleitung, die beginnend vom Einlass 38 drei vollständige, spiralförmig angeordnete Umschlingungen des Unterteils 90 aufweist und dann am Auslass 40 endet. Alternativ können beliebige Anzahlen oder Teile von Umschlingungen sich ein- oder mehrmals auf verschiedenem Radius und/oder auf unterschiedlichen axialen Höhen der Rotationsachse 18 kreuzen oder auch in ihrer Umlaufrichtung ein- oder mehrmals umkehren, z.B. mittels U-förmigen Biegungen oder angeordneten Umlenkblöcken, die zwei Rohrstückenden ähnlich den Anschlussblöcken aufnehmen und eine Verbindung zwischen ihnen herstellen. Solche Anschluss- und Umlenkblöcke können auch ein Ventil enthalten, das den Kühlmittelfluss regelt oder bei Bedarf unterbrechen kann. Alternativ kann ein beliebiger Block auch einen weiteren Anschluss aufweisen, an dem z.B. ein zusätzlicher, insbesondere paralleler, Kühlmittelstrang bzw. ein oder mehrere Ventile für eine Umlenkung bzw. Verteilung des Kühlmittelstroms je nach Bedarfsfall in verschiedene Zweige des Kühlmittelrohrsystems, die auch als Bypass bzw. Umleitung dienen können, vorhanden ist bzw. vorhanden sind.
  • Die drehbare Lagerung der Rotorwelle 20 wird durch ein Wälzlager 42 im Bereich des Pumpenauslasses 74 und ein Permanentmagnetlager 44 im Bereich des Pumpeneinlasses 14 bewirkt.
  • Das Permanentmagnetlager 44 umfasst eine rotorseitige Lagerhälfte 46 und eine statorseitige Lagerhälfte 48, die jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinandergestapelten permanentmagnetischen Ringen 50, 52 umfassen, wobei die Magnetringe 50, 52 unter Ausbildung eines radialen Lagerspalts 54 einander gegenüberliegen.
  • Innerhalb des Permanentmagnetlagers 44 ist ein Not- oder Fanglager 56 vorgesehen, das als ungeschmiertes Wälzlager ausgebildet ist und im normalen Betrieb der Vakuumpumpe ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors gegenüber dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor zu bilden, der eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert. Das Not- oder Fanglager 56 wird über einen Einsatz separat gefasst und kann daher unabhängig vom Permanentmagnetlager 44 gewechselt werden.
  • Das Wälzlager 42 wird durch einen Ringhalter gefasst, der seinerseits durch elastomere Elemente sowohl axial als auch radial entkoppelt in einer Wälzlagerhalterung bzw. Wälzlageraufhängung 84 aufgenommen wird, die am Unterteil 90 sicher fixiert ist. Mechanische Anschläge begrenzen die möglichen Relativbewegungen zwischen Ringhalter und Wälzlageraufhängung 84.
  • Im Bereich des Wälzlagers 42 ist an der Rotorwelle 20 eine konische Spritzschraube 58 mit einem zu dem Wälzlager 42 hin zunehmenden Außendurchmesser vorgesehen, die mittels eines Schmiermittelkanals 60 zugeführtes Betriebsmittel, insbesondere Schmiermittel, aufnehmen und dem Wälzlager zuführen kann. Die Spritzschraube 58 kann bevorzugt gemäß EP 2 740 956 A2 ausgestaltet sein.
  • Das Betriebsmittel wird von einer Schmiermittelpumpe 78 umgewälzt. Die Schmiermittelpumpe 78 ist bevorzugt gemäß EP 2 060 794 A2 aufgebaut. Sie kann dabei insbesondere einen Schmiermittelvorlaufkanal versorgen, der zumindest in einem Segment gemäß EP 2 801 725 A2 als O-Ring gedichteter Rundkanal aufgebaut ist.
  • Durch die Schmiermittelpumpe 78 lässt sich eine aktive, geregelte Betriebsmittelversorgung realisieren.
  • Die Vakuumpumpe 10 umfasst einen Antriebsmotor 62 zum drehenden Antreiben des Rotors, dessen Läufer durch die Rotorwelle 20 gebildet ist. Eine Steuereinheit 64 steuert den Antriebsmotor 62 an. Über einen elektrischen Anschluss 66 können die Vakuumpumpe 10 und insbesondere die Steuereinheit 64 sowie der Antriebsmotor 62 mit elektrischem Strom versorgt werden. Die Steuereinheit 64 bildet den unteren Bereich des Gehäuses und wird durch den Deckel 80 verschlossen. Die Steuereinheit 64 mit dem Deckel 80 verschließt das Unterteil 90. Je nach Ausführung können zwischen Steuereinheit 64, Deckel 80 und/oder Unterteil 90 eine oder mehrere Dichtungen 77 umlaufend eingelegt oder mit anderen Dichtmitteln, etwa Flüssigdichtmitteln, Klebstoffen oder insbesondere applizierbaren Formdichtungen die entsprechenden Übergänge verschlossen werden, um Sicherheit gegen das Eindringen von Medien und/oder Verunreinigungen zu erlangen. Mittels wenigstens einer elektrischen Durchführung 86 kann der Strom durch den Deckel 80 hindurch in das Gehäuse geführt und insbesondere dem Antriebsmotor 62 zugeführt werden.
  • Die Vakuumdurchführung 86 kann gemäß EP 1 843 043 A2 ausgestaltet sein, wobei bei dem hier beschriebenen Beispiel eine Platine mit mehreren Dichtringen getrennt verschiedene Spannungspotentiale und Signale voneinander separat aus dem Pumpeninneren, also aus dem Vakuumbereich, nach außen, also zur "Atmosphäre" und insbesondere zur Steuereinheit 64 führt.
  • Je nach Anwendungsfall kann sowohl seitens der Steuereinheit 64 oder auch seitens des Antriebsmotors 62 oder seitens der pumpaktiven Bestandteile über das Gehäuse 16 hauptsächlich unerwünscht Wärme in die Pumpe eingebracht werden. Das Kühlmittel, etwa Wasser, fließt vorteilhaft vom Einlass 38 zum Auslass 40, da die Steuereinheit 64 am kühlsten gehalten werden soll.
  • An der radialen Außenseite des Unterteils 90 kann eine Verkleidung 88 angeordnet sein. Die Verkleidung 88, die mantelförmig als längs zur Rotationsachse 18 der Pumpe 10 geschlitzte Blechhülse ausgeführt sein kann, ist in der Außenansicht der Pumpe 10 vorteilhaft nicht dargestellt, um eine bessere Sicht auf die darunter liegenden Lösungen zu erlangen. Die Verkleidung 88 kann ein oder mehrere Sichtfenster bzw. Ausschnitte aufweisen, um beliebige Anschlüsse des Unterteils 90, z.B. einen Sperrgaseinlass 68, nach außen durchzuführen oder um den Blick auf die Typendaten (Typschild oder Gravur) der Pumpe 10 freizugeben, welche unlösbar am Unterteil angebracht sind.
  • Der Sperrgaseinlass 68 wird auch als Spülgasanschluss bezeichnet. Über den Sperrgaseinlass 68 kann Spülgas zum Schutz des Motors 62 in den Motorraum, in welchem der Motor 62 untergebracht ist, eingebracht werden. Das über den Sperrgaseinlass 68 im Bereich des Motors eingelassene Gas schützt die im Unterteil 90 befindlichen Bestandteile vor korrosiven und/oder sich ablagernden Medien, die je nach Anwendungsfall im Pumpsystem anfallen können. Zwischen Motorträger 82 und Unterteil 90 wird eine Dichtung 83 angeordnet, so dass eine Labyrinthdichtung 72 als einziger verbliebener Durchlass einerseits mit ihrem geringen Leitwert eine Sperre gegen einströmende Medien in den Motor- und Wälzlagerbereich darstellt und weiterhin eine erhöhte Sättigung des Wälzlager- und Motorbereichs mit Sperr-/Inertgas sichert.
  • Zwischen einem den Motorraum nach oben hin begrenzenden Motorträger 82 und der unteren Rotorscheibe 22 ist die Labyrinthdichtung 72 vorgesehen. Der elektrische Antriebsmotor 62 ist vorteilhaft durch eine Vergussmasse gegen Korrosion geschützt. Bei der dargestellten Ausführung wird der Motorträger 82 integral mit dem Antriebsmotor gemeinsam vergossen, so dass die gesamte Einheit inklusive der mit dem Motorträger einteilig ausgeführten Statorseite der Labyrinthdichtung 72 in einem Schritt mit dem Unterteil 90 optimal ausgerichtet bzw. zentriert verbunden werden kann.
  • Radial außerhalb der Labyrinthdichtung 72 und unterhalb der turbomolekularen Pumpstufen befindet sich der Vorvakuumbereich, in welchen insbesondere eine ringförmig um die Rotationsachse 18 umlaufende Kammer 70 ausgebildet ist, die, wie in Fig. 2 und 3 gesehen werden kann, einen im Wesentlichen rechteckigen Querschnitt aufweist. Diese Querschnittsform ist allerdings nur als Beispiel zu sehen, so dass auch eine andere Querschnittsform, z.B. ein quadratischer oder kreisförmiger Querschnitt, realisiert sein kann. Die Kammer 70 kann auch an einer anderen Stelle im Gehäuse 16 bzw. im Unterteil 90 untergebracht sein. Vorzugsweise liegt die Kammer 70 dort, wo die meisten Ablagerungen anfallen, also typischerweise im Vorvakuumbereich. Besonders bevorzugt liegt die Kammer 70 somit zwischen der letzten Pumpstufe und dem Pumpenauslass 74.
  • Bei der dargestellten Variante mündet die Kammer 70 in den Pumpenauslass 74. Die Kammer 70 bildet daher einen Austossbereich für das durch die Vakuumpumpe 10 vom Einlass 14 her geförderte Gas, welches über den Pumpenauslass 74 in eine daran angeschlossene Vorvakuumpumpe (nicht gezeigt) gelangen kann. Die Vorvakuumpumpe kann das Gas dann weiter, zum Beispiel in eine Leitung für Abgas, die unter Normaldruck steht, fördern.
  • Die Schnittansicht der Fig. 3 entspricht der Schnittansicht von Fig. 2. Dabei ist gemäß Fig. 3 in der Kammer 70 eine Einlage 92 angeordnet, auf der sich Ablagerungen absetzen bzw. ansammeln können, die über das von der Pumpe 10 angesaugte Gas in die Pumpe 10 gelangen und sich erfahrungsgemäß vorwiegend in der Kammer 70 ablagern. Durch die Einlage 92 lagern sich die Ablagerungen, wie etwa Stoffe, Partikel und/oder Flüssigkeitstropfen, nicht direkt auf den von der Einlage 92 überdeckten bzw. abgedeckten Wänden der Kammer 70 ab, sondern auf der Einlage 92. Die Einlage 92 kann zum Beispiel bei einer Wartung der Pumpe 10 aus der Kammer 70 herausgenommen und gereinigt oder durch eine neue Einlage 92 ersetzt werden. Die Ablagerungen lassen sich daher auf einfache Weise aus der Pumpe 10 entfernen.
  • Bei dem dargestellten Beispiel ist die Einlage 92 im Wesentlichen passend zur Form der Kammer 70 ausgebildet. Die Einlage 92 kann somit passend in die Kammer 70 eingelegt werden. Die Einlage 92 kann dann unmittelbar vor den abzudeckenden Kammerwänden liegen. Die Einlage 92 weist, wie die Kammer 70, eine Kreisringform mit einem in radialer Richtung gesehen im Wesentlichen rechteckigen Querschnitt auf.
  • Die Einlage 92 ist vorzugsweise aus Blech ausgebildet. Sie kann allerdings auch aus einem anderen Material, etwa Kunststoff, insbesondere PTFE, ausgebildet sein.
  • Die Einlage 92 umfasst einen Boden 94, eine radial innen liegende Seitenwand 96 und eine radial außen liegende Seitenwand 98, die annähernd oder vollständig vertikal vom Boden 94 weg nach oben verlaufen. Wird zum Beispiel die Einlage 92 mindestens zum Teil um- oder urformend hergestellt, so können eine oder mehrere Elemente vorteilhaft Formschrägen aufweisen. Der Boden 94 und die Seitenwände 96, 98 schließen ein oben offenes Volumen 100 ein. Die Einlage 92 hat daher die Form einer kreisringförmigen Schale bzw. allgemeiner ausgedrückt die Form eines kreisringförmigen Behälters.
  • Bei der Einlage 92 der Fig. 3 ist die obere, der vorgeordneten Pumpstufe zugewandte Seite offen. Von der Pumpstufe ausgestoßenes Gas kann somit, ohne durch eine Wandung oder dergleichen verblockt zu werden, in das Volumen 100 gelangen, so dass sich Ablagerungen besonders gut in dem Volumen 100 ansammeln können.
  • Die Einlage 92 weist ferner eine Auslassöffnung 102 auf (vgl. Fig. 4 und 5), deren Querschnitt vorzugsweise dem Querschnitt des Pumpenauslasses 74 entspricht. Die Einlage 92 wird dabei so in der Kammer 70 angeordnet, dass die Auslassöffnung 102 mit dem Pumpenauslass 74 ausgerichtet ist. Das Gas kann somit durch die Auslassöffnung 102 hindurch in den Pumpenauslass 74 und damit aus der Pumpe 10 strömen. Die Auslassöffnung 102 kann insbesondere dadurch geschaffen werden, dass diese aus der Einlage 92 herausgeschnitten oder anderweitig herausgetrennt wird.
  • Die Einlage 92 ist in der Kammer 70 fixiert, und zwar vorzugsweise mittels wenigstens einer Fixierung. Die Einlage 92 kann beispielsweise im Klemmverband mit dem Paket der Statorscheiben 24 fixiert werden. Wie Fig. 3 andeutet, kann die radial außen liegende Seitenwand 98 derart weit nach oben verlaufen, dass deren oberes Ende an der untersten Statorscheibe 24 anschlägt. Die Einlage 92 kann daher mittels der untersten Statorscheibe 24 in der Kammer 70 fixiert werden.
  • Wie Fig. 3 zeigt, kann das obere Ende der radial innen liegenden Seitenwand 96 nach radial innen gerichtet sein. Vorzugsweise wird jedoch - entgegen der Darstellung - sichergestellt, dass ein geringer Spalt zwischen dem oberen Ende der Seitenwand 96 und der dort liegenden untersten Rotorscheibe 22 vorhanden ist, so dass sich die Rotorscheibe 22 ohne Abrieb an der Seitenwand 96 um die Rotationsachse 18 drehen kann.
  • Fig. 4 zeigt einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer Variante der Einlage 92 im Querschnitt zu sehen ist. Der Teil der Einlage 92 befindet sich dabei im Bereich des Pumpenauslasses 74 und weist die vorstehend bereits erwähnte Auslassöffnung 102 auf.
  • Wie die Fig. 4 außerdem zeigt, erstreckt sich ein Mündungsabschnitt 106 in dem den Pumpenauslass 74 aufweisenden Vorvakuumstutzen 104 der Pumpe 10. Der Mündungsabschnitt 106 kann als separates Teil ausgeführt sein, insbesondere als rohrförmiges Teil mit einem Außendurchmesser, der im Wesentlichen dem Innendurchmesser des Vorvakuumstutzens 104 entspricht. Der Mündungsabschnitt 106 kann in den Vorvakuumstutzen 104 eingeführt sein. Der von dem Mündungsabschnitt 106 gebildete Kanal 108 kann sich dabei an die Auslassöffnung 102 der Einlage 92 anschließen. Der Mündungsabschnitt 106 kann auch einstückig mit der Einlage 92 ausgebildet sein.
  • Fig. 5 zeigt einen Ausschnitt der Schnittansicht von Fig. 3, in welchem wiederum der Teil der Einlage 92 im Querschnitt zu sehen ist, welcher sich im Bereich des Pumpenauslasses 74 befindet und die Auslassöffnung 102 aufweist. Bei der in Fig. 5 gezeigten Einlage 92 wird der Mündungsabschnitt 106 erfindungsgemäß von dem Material gebildet, das durch den Ausschnitt der Auslassöffnung 102 gewonnen wird.
  • Wie dargestellt, kann der Mündungsabschnitt 106 von dreieckförmigen Materialstücken 110 gebildet werden, die durch eine Art sternförmiges Öffnen bzw. Ausschneiden der Auslassöffnung 102 gebildet werden. Die Materialstücke 110 bleiben mit der Einlage 92 verbunden. Die Materialstücke 110 können in den Vorvakuumstutzen 104 gedrückt und insbesondere in Anlage mit der Innenwand des Vorvakuumstutzens 104 gebracht werden. Die abgedeckten Innenwandbereiche des Stutzens 104 sind somit vor Ablagerungen geschützt.
  • Fig. 6 zeigt einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer anderen Variante der Einlage 92 im Querschnitt zu sehen ist. Wie dargestellt, kann in eine Bohrung im Boden 94 der Einlage 92 und in eine darunter liegende Bohrung im Boden der Kammer 70 eine Schraube 112 eingedreht sein, um die Einlage 92 zu fixieren. Die Schraube 112 ist, wie dargestellt, vorzugsweise eine Linsenkopfschraube, so dass sie leicht auffindbar ist, wenn der Boden 94 mit Ablagerungen bedeckt ist. In Umdrehungsrichtung der Rotationsachse 18 (vgl. Fig. 3) gesehen können versetzt zueinander mehrere Schrauben 112 zur Fixierung der Einlage 92 in den Boden 94 der Einlage 92 bzw. in den Kammerboden eingedreht sein.
  • Fig. 7 zeigt einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil noch einer anderen Variante der Einlage 92 im Querschnitt zu sehen ist, die im Vergleich zu der Variante der Fig. 6 keine Schraube 112 zur Fixierung aufweist. Bei dieser Variante ist die Einlage 92 an ihrer Oberseite 114 wiederum offen. AIlerdings sind in der Seitenwand 98 längs der Umfangsrichtung der Seitenwand 98 versetzt zueinander liegende, längliche, durchgehende Öffnungen 116, insbesondere Schlitze oder Durchbrechungen, vorgesehen. Die Öffnungen 116 sind vorzugsweise, wie in Fig. 7 dargestellt ist, im Bereich des oberen Rands der Seitenwand 98 angeordnet. Der obere Rand der Seitenwand 98 weist aufgrund der Öffnungen 116 eine wellenförmige Struktur auf.
  • Die Einlage 92 kann, insbesondere durch Drücken auf die Seitenwand 98 von oben, von einer ersten Form in eine zweite Form gebracht werden, wobei die Einlage 92 in der zweiten Form in axialer Richtung gesehen verkleinert bzw. gestaucht ist. Der obere Rand der Seitenwand 98 mit den Öffnungen 116 bildet dabei einen umlaufenden Verformungsbereich. Durch Drücken auf die Seitenwand 98 können die Öffnungen 116 plastisch oder elastisch verformt und verkleinert werden, so dass die axiale Ausdehnung der Seitenwand 98 verkleinert und die Einlage 92 somit in axialer Richtung gestaucht wird. Die Öffnungen 114 erlauben daher ein axiales Einfedern der Seitenwand 98 zum Variieren der Gesamthöhe. Die Einlage 92 kann sich dabei wie eine Art Spiralfeder verhalten und somit zwischen der untersten Statorscheibe 24 und dem Kammerboden eingespannt werden.
  • Die Einlage 92 kann auch so ausgestaltet sein, dass durch "Eindrücken" der Einlage 92 zumindest geringfügig die äußere Seitenwand 98 nach radial außen und/oder die innere Seitenwand 96 nach radial innen bewegt werden kann, so dass sie in Anlage mit der inneren bzw. äußeren Kammerwandung gelangt. Die Einlage 92 kann dadurch ebenfalls in der Kammer 70 fixiert bzw. verspannt werden. Dies kann zum Beispiel dadurch ermöglicht sein, dass die Seitenwand 98 mehrere in Umfangsrichtung versetzt zueinander liegende, durchgehende Öffnungen 116 aufweist, die ausgehend vom oberen Rand der Seitenwand zumindest im Wesentlichen in axialer Richtung nach unten verlaufen (nicht gezeigt). Die Seitenwand 98 weist dadurch an ihrem oberen Rand mehrere in Umfangsrichtung versetzt zueinander liegende Laschen auf, die zum Beispiel nach radial außen verkippen können, um die Einlage 98 in der Kammer 70 einzuspannen.
  • Wie Fig. 7 außerdem zeigt, kann in der radial außen liegenden Wand der Kammer 70 eine in Umfangsrichtung der Seitenwand 98 bzw. in Umdrehungsrichtung der Rotationsachse 18 (vgl. Fig. 3) umlaufende Nut 118 ausgebildet sein. In die Nut 118 kann das nach radial außen gerichtete, obere Ende der Seitenwand 98 eingreifen, wodurch die Fixierung der Einlage 92 in der Kammer 70 weiter verbessert werden kann. Die Nut 118 verläuft vorzugsweise direkt unterhalb der untersten Statorscheibe 24. Die radial äußere Seitenwand 98 weist dazu außerdem einen leicht gekröpften, hochgezogenen Rand auf, der axial an der ersten bzw. untersten Statorscheibe 24 anschlägt und unter axialem Druck steht.
  • Fig. 8 zeigt einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer Variante der Einlage 92 im Querschnitt zu sehen ist. Dabei ist zwischen der radial äußeren Seitenwand 98 der Einlage 92 und der äußeren Wand der Kammer 70 eine um die Rotationsachse 18 umlaufende Dichtung 120 angeordnet. Die Dichtung 120 ist bevorzugt in eine umlaufende Nut 118 eingelegt, die in die äußere Seitenwand 98 eingebracht ist. Zwischen der radial inneren Seitenwand 96 und der radial inneren Wand der Kammer 70 ist eine um die Rotationsachse 18 umlaufende Dichtung 122 eingelegt. Die Dichtungen 120 und 122 wirken als eine Art Druckverteiler und bewirken eine Fixierung der Einlage 92 in der Kammer 70. Außerdem stellen sie eine Dichtwirkung zwischen der jeweiligen Seitenwand 96, 98 der Einlage 92 und der jeweiligen dahinter liegenden Kammerwand bereit.
  • Fig. 9 zeigt noch einen Ausschnitt der Schnittansicht von Fig. 3, in welchem ein Teil einer Variante der Einlage 92 im Querschnitt zu sehen ist. Zwischen dem äußeren, oberen Ende der Seitenwand 98 und der äußeren Wand der Kammer 70 bzw. der untersten Statorscheibe 24 ist eine um die Rotationsache 18 umlaufende Dichtung 124 eingelegt, wodurch die Einlage 92 in der Kammer 70 fixiert wird.
  • Die in den Fig. 8 und 9 gezeigten Dichtungen 120, 122 und 124 sind vorzugsweise als O-Ring-Dichtungen ausgeführt.
  • Bezugszeichenliste
  • 10
    Vakuumpumpe
    12
    Einlassflansch
    14
    Pumpeneinlass
    16
    Gehäuse
    18
    Rotationsachse
    20
    Rotorwelle
    22
    Rotorscheibe
    24
    Statorscheibe
    26
    Distanzring
    28
    Schöpfbereich
    30
    Pfeil
    32
    Vorspann- und Dichtring
    34
    Abdichtungsbereich
    36
    Flutgaseinlass
    38
    Kühlmitteleinlass
    40
    Kühlmittelauslass
    42
    Wälzlager
    44
    Permanentmagnetlager
    46
    rotorseitige Lagerhälfte
    48
    statorseitige Lagerhälfte
    50
    permanentmagnetischer Ring
    52
    permanentmagnetischer Ring
    54
    radialer Lagerspalt
    56
    Not- oder Fanglager
    58
    konische Spritzschraube
    60
    Schmiermittelkanal
    62
    Antriebsmotor
    64
    Steuereinheit
    66
    Elektrischer Anschluss
    68
    Sperrgaseinlass
    70
    Ausstossbereich, Kammer
    72
    Labyrinthdichtung
    74
    Pumpenauslass
    76
    Kühlmittelrohr
    77
    Dichtung
    78
    Schmiermittelpumpe
    80
    Deckel
    81
    Dichtung
    82
    Motorträger
    83
    Dichtung
    84
    Wälzlageraufhängung
    86
    Elektrische Durchführung
    88
    Verkleidung
    90
    Unterteil
    92
    Einlage
    94
    Boden
    96
    Seitenwand
    98
    Seitenwand
    100
    Volumen
    102
    Auslassöffnung
    104
    Vorvakuumstutzen
    106
    Mündungsabschnitt
    108
    Kanal
    110
    Materialstück
    112
    Schraube
    114
    Oberseite
    116
    Öffnung
    118
    Nut
    120
    Dichtung
    122
    Dichtung
    124
    Dichtung

Claims (12)

  1. Vakuumpumpe, insbesondere Turbomolekularpumpe, umfassend
    ein Gehäuse (16, 90) mit wenigstens einem Einlass (14) für Fluid, insbesondere Prozessgas oder Luft, an welchen ein Rezipient anschließbar ist, und mit wenigstens einem Auslass (74) für das Fluid, und
    wenigstens eine in dem Gehäuse (16, 90) angeordnete Pumpstufe zum Fördern des Fluids, insbesondere aus dem Rezipient, durch die Vakuumpumpe (10) vom Einlass (14) zum Auslass (74),
    wobei in dem Gehäuse (16, 90) eine Kammer (70) ausgebildet ist, und wobei in der Kammer (70) wenigstens eine Einlage (92) zur Aufnahme von Ablagerungen angeordnet ist, die wenigstens eine die Kammer (70) begrenzende Seite der Kammer (70) überdeckt,
    wobei
    die Einlage (92) eine, insbesondere mit dem Auslass (74) am Gehäuse (16, 90) der Vakuumpumpe (10) ausrichtbare, Auslassöffnung (102) aufweist,
    der Auslass (74) der Pumpe (10) einen Vorvakuumstutzen (104) aufweist, in welchen die Kammer (70) mündet, und die Einlage (92) zumindest einen Mündungsabschnitt (106) umfasst, der in den Vorvakuumstutzen (104) einbringbar oder eingebracht ist,
    dadurch gekennzeichnet, dass
    der Mündungsabschnitt (106), insbesondere ausschließlich, von dem Teil des Materials der Einlage (92) gebildet ist, welcher zur Schaffung der Auslassöffnung (102) aus der Einlage (92) herausgetrennt wurde.
  2. Vakuumpumpe nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Einlage (92) derart ausgebildet ist, dass sie den Boden der Kammer (70) und/oder eine die Kammer (70) nach radial außen begrenzende Seitenwand der Kammer (70) und/oder eine die Kammer (70) nach radial innen begrenzende Seitenwand der Kammer (70), insbesondere zumindest weitgehend vollständig, überdeckt.
  3. Vakuumpumpe nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Einlage (92) ein Volumen (100) zumindest teilweise umschließt und an wenigstens einer Seite, insbesondere Oberseite (114), wenigstens eine Öffnung aufweist oder an der Seite vollständig offen ist.
  4. Vakuumpumpe nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die Einlage (92) derart in der Kammer (70) anbringbar ist, dass die Seite, insbesondere die Oberseite (114), der Pumpstufe zugewandt ist.
  5. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Form der, insbesondere als Schale ausgebildeten, Einlage (92) zumindest im Wesentlichen an die Form der Kammer (70) angepasst ist.
  6. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    sich die Kammer (70), insbesondere unterhalb der Pumpstufe, ringförmig um eine zentrale Achse der Vakuumpumpe, insbesondere um eine Rotationsachse (18) einer Rotorwelle (20) der Pumpe (10), erstreckt, wobei, bevorzugt, die Kammer (70) einen zumindest annähernd rechteckigen Querschnitt aufweist.
  7. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Einlage (92) als eine korrespondierend zur Kammer (70) ausgestaltete, oben zumindest teilweise offene, vorzugsweise ringförmige, Schale mit einem Boden (94) und, vorzugsweise vertikal zum Boden (94) verlaufenden, radial innen bzw. radial außen liegenden Seitenwänden (96, 98) ausgestaltet ist.
  8. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Einlage (92) mittels wenigstens einer Fixierung (112, 120, 122, 124) in der Kammer (70) fixiert und/oder fixierbar ist.
  9. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Einlage (92), insbesondere durch Drücken auf die Einlage (92), von einer ersten Form in eine zweite Form bringbar ist, in welcher die Einlage (92) gegenüber der ersten Form einen größeren Außendurchmesser und/oder einen kleineren Innendurchmesser aufweist, und/oder in welcher die Einlage (92) plastische und/oder elastische Formänderungen aufweist, und/oder in welcher die Einlage (92) gegenüber der ersten Form eine größere oder kleinere axiale Höhe aufweist.
  10. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    wenigstens eine Dichtung (120, 122, 124) zwischen einer Wand (94, 96, 98) der Einlage (92) und einer Wand der Kammer (70) angeordnet ist.
  11. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Einlage (92) aus Metall, insbesondere in Art eines Blechs oder einer Folie, oder aus einem, vorzugsweise inerten, Kunststoff, wie etwa PTFE, ausgestaltet ist.
  12. Vakuumpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Einlage (92) wenigstens eine Beschichtung aufweist, insbesondere eine Anti-Haft-Schicht, z.B. mit Nickel oder PTFE, eine folienartige Schicht, oder eine von einer Sprühfolie gebildete Schicht.
EP16206042.0A 2016-12-22 2016-12-22 Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen Active EP3339652B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16206042.0A EP3339652B1 (de) 2016-12-22 2016-12-22 Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen
JP2017230365A JP6469205B2 (ja) 2016-12-22 2017-11-30 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16206042.0A EP3339652B1 (de) 2016-12-22 2016-12-22 Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen

Publications (2)

Publication Number Publication Date
EP3339652A1 EP3339652A1 (de) 2018-06-27
EP3339652B1 true EP3339652B1 (de) 2020-07-01

Family

ID=57588864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16206042.0A Active EP3339652B1 (de) 2016-12-22 2016-12-22 Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen

Country Status (2)

Country Link
EP (1) EP3339652B1 (de)
JP (1) JP6469205B2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526233B (zh) * 2022-03-02 2024-05-10 安徽理工大学 罗茨转子和螺杆转子串联的复合干式真空泵及使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116693U (ja) * 1991-03-29 1992-10-19 セイコー精機株式会社 真空ポンプ
JPH0599190A (ja) * 1991-10-08 1993-04-20 Mitsubishi Electric Corp 半導体製造装置
DE19857453B4 (de) * 1998-12-12 2008-03-20 Pfeiffer Vacuum Gmbh Temperaturüberwachung an Rotoren von Vakuumpumpen
DE10107341A1 (de) * 2001-02-16 2002-08-29 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102006016405B4 (de) 2006-04-07 2024-08-01 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Antriebsgerät
DE102007053979A1 (de) 2007-11-13 2009-05-14 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Schmiermittelpumpe
DE102012023727B4 (de) 2012-12-05 2020-03-19 Pfeiffer Vacuum Gmbh Schmiermitteleinrichtung für ein Wälzlager
DE102013208614A1 (de) 2013-05-10 2014-11-13 Pfeiffer Vacuum Gmbh Vorrichtung mit mindestens einem Kanal zum Führen eines gasförmigen oder flüssigen Betriebsmittels
JP6386737B2 (ja) * 2014-02-04 2018-09-05 エドワーズ株式会社 真空ポンプ
JP6390478B2 (ja) * 2015-03-18 2018-09-19 株式会社島津製作所 真空ポンプ
EP3070335B1 (de) 2015-03-20 2019-07-31 Pfeiffer Vacuum GmbH Gehäuse für eine vakuumpumpe und/oder für einen teil einer vakuumpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3339652A1 (de) 2018-06-27
JP6469205B2 (ja) 2019-02-13
JP2018109401A (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
EP3657021B1 (de) Vakuumpumpe
DE19907561B4 (de) Elektrisch betriebene Pumpenvorrichtung mit verbesserter Luftkanalkonstuktion
DE102018125031A1 (de) Pumpe, insbesondere für einen Flüssigkeitskreislauf in einem Fahrzeug
EP3339652B1 (de) Vakuumpumpe mit einer innenverkleidung zur aufnahme von ablagerungen
EP3608545B1 (de) Vakuumpumpe
EP3693610B1 (de) Molekularvakuumpumpe
EP2910791A1 (de) Vakuumpumpe
EP3026303A1 (de) Vakuumpumpe, vakuumzubehör und dichtung zu dessen abdichtung
EP3462034B1 (de) Vakuumpumpe
EP4212730A1 (de) Vakuumpumpe mit optimierter holweck-pumpstufe zur kompensation temperaturbedingter leistungseinbussen
DE4039712C2 (de) Peripheralpumpe
EP3617523A1 (de) Vakuumgerät und vakuumsystem
EP3196471B1 (de) Vakuumpumpe
EP3034882B1 (de) Vakuumpumpe
DE102015113821B4 (de) Vakuumpumpe
EP3431769A1 (de) Vakuumpumpe
EP3318763B1 (de) Vakuumdichtung, doppeldichtung, vakuumsystem und vakuumpumpe
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
EP3135932B1 (de) Vakuumpumpe und permanentmagnetlager
EP1353074A2 (de) Kreiselpumpe mit integriertem Magnetfilter
EP3628883B1 (de) Vakuumpumpe
EP3564538B1 (de) Vakuumsystem und verfahren zur herstellung eines solchen
EP3926175B1 (de) Vakuumpumpe mit wälzlager
EP4155549B1 (de) Vakuumpumpe mit verbessertem saugvermögen der holweck-pumpstufe
EP3133290B1 (de) Vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1286448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010369

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010369

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1286448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 8