WO2015043962A1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
WO2015043962A1
WO2015043962A1 PCT/EP2014/069344 EP2014069344W WO2015043962A1 WO 2015043962 A1 WO2015043962 A1 WO 2015043962A1 EP 2014069344 W EP2014069344 W EP 2014069344W WO 2015043962 A1 WO2015043962 A1 WO 2015043962A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing part
vacuum pump
pump according
housing
rotor shaft
Prior art date
Application number
PCT/EP2014/069344
Other languages
English (en)
French (fr)
Inventor
Rainer Hölzer
Original Assignee
Oerlikon Leybold Vacuum Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51518781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015043962(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oerlikon Leybold Vacuum Gmbh filed Critical Oerlikon Leybold Vacuum Gmbh
Priority to US15/022,448 priority Critical patent/US10221864B2/en
Priority to EP14761870.6A priority patent/EP3049676B1/de
Publication of WO2015043962A1 publication Critical patent/WO2015043962A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings

Definitions

  • the invention relates to a vacuum pump, in particular a turbomolecular pump.
  • Vacuum pumps have a rotor shaft, which is usually connected to a plurality of rotor elements.
  • the rotor elements are, for example, a plurality of rotor disks extending substantially radially relative to the rotor shaft. Between the rotor discs are usually connected to the housing or arranged in the housing stator, which is thus a plurality of individual stator devices, is provided. The individual stator disks are thus arranged between adjacent rotor disks.
  • a rotor element may, for example, be rotating components of a Holweck stage, a Siegbahn stage or Gaederase, as well as a rotor of a side channel compressor. Particularly in such types of pumps, high temperatures occur due to the compression.
  • the rotor shaft of the vacuum pump is further connected to a drive device such as an electric motor. Even such components often produce high temperatures. It is therefore necessary that such highly heat-generating components are cooled.
  • the rotor shaft is supported by bearings.
  • rolling bearings are temperature sensitive. At high operating temperatures, the lifetime decreases the rolling bearing.
  • the bearings in particular the bearing arranged on the pressure side, are arranged in a small installation space and thus close to the electric drive unit, as well as in the region in which high gas compression and thus high heat loss is generated. As a result, the bearings are operated at a high operating temperature.
  • the object of the invention is to reduce the operating temperature of bearings, in particular rolling bearings, with vacuum pumps with structurally simple means.
  • a vacuum pump has a rotor shaft and at least one rotor element. Furthermore, at least one stator device cooperating with the at least one rotor element is provided. Furthermore, with the rotor shaft, an electric drive device, and the rotor shaft bearing bearing connected. Furthermore, the vacuum pump has a housing in which the components of the pump are arranged. In particular, the housing carries the rotor shaft via the bearings. Furthermore, the at least one stator device is indirectly or directly connected to the housing. According to the invention, the housing has a plurality of housing parts, wherein heat-sensitive components are connected to a first housing part and highly heat-generating components are connected to a second housing part.
  • the high heat generated, for example, in the compressor part and / or by the drive means is dissipated, so that the operating temperature of heat-sensitive components such as in particular a bearing can be reduced.
  • the strong heat generated within the pump is thus introduced as little as possible in the camp. This is inventively achieved by a simple structural measure, since the housing at least two housing parts and carry either the heat-sensitive components or the highly heat-generating components.
  • the second housing part is thermally conductive connected to the drive device.
  • the heat generated by the drive means can be dissipated in a simple manner.
  • the second housing part is connected via a carrier part with the drive device.
  • the carrier part carries further components, via which heat can be dissipated to the second housing part.
  • these are components that are in communication with the compression area, so that the heat is dissipated to the second housing part from this.
  • at least one stator device is connected to the carrier device. These may be, in particular, stator devices of the Holweck stage, the Siegbahn stage, the Gaederase code or a side channel compressor. A connection with such stator devices is particularly advantageous because in such stages, a high compression and thus a high heat generation takes place.
  • the second housing part is therefore connected to the carrier part and / or the drive device and / or at least one stator good thermal conductivity.
  • the connection is made in particular via a pressing of the components with oversize. As a result, a good heat conduction can be realized.
  • the first housing part is connected to a bearing, in particular the pressure-side bearing.
  • the pressure side bearing is particularly influenced in a compact design of the vacuum pump greatly by the heat of the Antriebsw adopted and / or the compression range of the pump. This is in particular, the case when this camp is surrounded by a Holweckcut or the like.
  • the first housing part is additionally or instead of the connection to the bearing connected to a particular little heat-generating control device.
  • first housing part and the second housing part are connected to each other via a low thermal conductivity compound.
  • a low thermal conductivity compound is, for example, a screw connection, wherein optionally a sealing element such as an air gap or the like can be provided.
  • a sealing element such as an air gap or the like can be provided.
  • the chambers of the two housing parts are thermally decoupled from each other.
  • the first housing part can be cooled more strongly, so that the operating temperature of the bearing and / or a control device is low.
  • the life of a bearing can be significantly increased. This would only be possible with non-separate housing parts by the strong heat-generating components would be strongly cooled. This would involve a considerably higher energy expenditure.
  • the joining of the highly heat-generating components via a carrier part, in particular by pressing, has the further advantage that in addition to a good heat transfer, the positioning of these components is defined very precisely. This is particularly useful in terms of a supported by the support member stator Holweckcut or the like. It is further preferred that the stator of the motor is connected by pressing with the carrier part. As a result, the position of the motor stator is clearly defined.
  • the figure shows a highly simplified schematic sectional view of a part of a vacuum pump.
  • a rotor shaft 10 carries a plurality of rotor disks 12 formed as rotor elements.
  • Stator disks 16 are connected to an upper housing part 14 in the region of the turbomolecular stage or are carried by the upper housing part.
  • a disc-shaped carrier 18 is firmly connected.
  • the carrier 18 carries in the illustrated embodiment, two tube cylinders designed as rotor elements 20, 22 of a Holweckhand. Between the rotor elements 20, 22 of the Holweck stage, an inner stator 24 of the Holweck stage is arranged.
  • the outer rotor element 22 is surrounded by a further Stator worn 26 Holweckhand, said outer stator 26 is integrally connected in the illustrated embodiment with a second housing part 28 and formed on the inside of the second housing part 28.
  • the rotor shaft 10 carries a drive means 30.
  • the pressure-side, in the figure lower end of the rotor shaft 10 is supported by a roller bearing 32.
  • the rolling bearing 32 is arranged in a first housing part 34.
  • the motor stator is fixedly connected to a support member 36 for heat dissipation of the drive device 30 and the motor stator of the drive device 30.
  • the connection is made in particular by pressing.
  • the support member 36 also carries the stator 24, which also by pressing with the support member 36th connected is.
  • the support member 36 is then fixed and again good thermal conductivity connected to the second housing part 28. The strong heat generated in the region of the Holweck stage, as well as the strong heat generated by the drive device 30 is thus introduced to the outside in the second housing part 28 due to the good heat conductive compressions.
  • the bearing 32 is connected to the first housing part 34.
  • the first housing part 34 is connected to the second housing part 28, for example by means of screws or the like.
  • a seal 38 is additionally provided in this area.
  • the thermal conductivity between the first housing part 34 and the second housing part 28 is as low as possible. It is thereby possible to cool the first housing part 34 separately from the second housing part 28, so that the operating temperature of the bearing 32 can be reduced. This leads to an extension of the service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Eine Vakuumpumpe weist ein oder mehrere Rotorelemente (20, 22) tragende Rotorwelle (10) auf. Die Rotorwelle (10) ist von einer elektrischen Antriebseinrichtung (30) angetrieben. Zwischen den Rotorelementen (20, 22) ist eine Statoreinrichtung (24) angeordnet. Die Rotorwelle (10) ist von Lagern (32) getragen. Die stark wärmeerzeugenden Bauteile wie die Antriebseinrichtung (30) und die Statoreinrichtung (24) sind insbesondere über ein Trägerteil (36) mit einem zweiten Gehäuseteil (28) verbunden. Wärmeempfindliche Bauteile wie das Lager (32) sind über ein gesondertes erstes Gehäuseteil (34) getragen. Die beiden Gehäuseteile können beispielsweise durch gesonderte Kühleinrichtungen auf unterschiedlichen Temperaturen gehalten werden. Hierdurch kann die Betriebstemperatur des insbesondere druckseitigen Lagers (32) reduziert, und somit die Lebensdauer verlängert werden.

Description

Vakuumpumpe
Die Erfindung betrifft eine Vakuumpumpe, insbesondere eine Turbomolekularpumpe.
Vakuumpumpen weisen eine Rotorwelle auf, die üblicherweise mit mehreren Rotorelementen verbunden ist. Bei den Rotorelementen handelt es sich beispielsweise bei einer Turbomolekularpumpe um mehrere im Wesentlichen radial zur Rotorwelle verlaufende Rotorscheiben. Zwischen den Rotorscheiben sind üblicherweise mit dem Gehäuse verbundene oder im Gehäuse angeordnete Statorscheiben, bei denen es sich somit um mehrere einzelne Statoreinrichtungen handelt, vorgesehen. Die einzelnen Statorscheiben sind somit zwischen benachbarten Rotorscheiben angeordnet. Ebenso kann es sich bei einem Rotorelement beispielsweise um rotierende Bauteile einer Holweckstufe, einer Siegbahnstufe oder Gaedestufe, sowie auch um einen Rotor eines Seitenkanalverdichters, handeln. Insbesondere in derartigen Pumpentypen treten aufgrund der Verdichtung hohe Temperaturen auf. Die Rotorwelle der Vakuumpumpe ist ferner mit einer Antriebseinrichtung wie einem Elektromotor verbunden. Auch derartige Bauteile erzeugen häufig hohe Temperaturen. Es ist daher erforderlich, dass derartige stark wärmeerzeugende Bauteile gekühlt werden.
Die Rotorwelle ist von Lagern getragen. Insbesondere Wälzlager sind jedoch temperaturempfindlich. Bei hohen Betriebstemperaturen sinkt die Lebensdauer der Wälzlager. Häufig sind die Lager, insbesondere das druckseitig angeordnete Lager, auf engem Bauraum und insofern nahe der elektrischen Antriebseinheit, sowie auch des Bereichs, in dem eine hohe Gasverdichtung und somit hohe Verlustwärme erzeugt wird, angeordnet. Dies führt dazu, dass die Lager bei hoher Betriebstemperatur betrieben werden.
Aufgabe der Erfindung ist es mit konstruktiv einfachen Mitteln die Betriebstemperatur von Lagern, insbesondere Wälzlagern, bei Vakuumpumpen zu verringern.
Die Lösung der Aufgabe folgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Eine Vakuumpumpe weist eine Rotorwelle und mindestens ein Rotorelement auf. Ferner ist mindestens eine mit dem mindestens einen Rotorelement zusammenwirkende Statoreinrichtung vorgesehen. Desweiteren ist mit der Rotorwelle eine elektrische Antriebseinrichtung, sowie die Rotorwelle tragende Lager verbunden. Desweiteren weist die Vakuumpumpe ein Gehäuse auf, in dem die Bauteile der Pumpe angeordnet sind . Insbesondere trägt das Gehäuse über die Lager die Rotorwelle. Ferner ist mit dem Gehäuse mittelbar oder unmittelbar die mindestens eine Statoreinrichtung verbunden. Erfindungsgemäß weist das Gehäuse mehrere Gehäuseteile auf, wobei wärmeempfindliche Bauteile mit einem ersten Gehäuseteil und stark wärmeerzeugende Bauteile mit einem zweiten Gehäuseteil verbunden sind. Aufgrund dieser Anordnung ist es möglich, dass die beispielsweise im Verdichterteil und/oder von der Antriebseinrichtung erzeugte starke Wärme abgeführt wird, sodass die Betriebstemperatur wärmeempfindlicher Bauteile wie insbesondere eines Lagers reduziert werden kann. Erfindungsgemäß wird somit die innerhalb der Pumpe erzeugte starke Wärme nur möglichst wenig in das Lager eingebracht. Dies ist erfindungsgemäß durch eine einfache konstruktive Maßnahme gelöst, da das Gehäuse mindestens zwei Gehäuseteile aufweist, und diese entweder die wärmeempfindlichen Bauteile oder die stark wärmeerzeugenden Bauteile tragen.
Vorzugsweise ist das zweite Gehäuseteil wärmeleitfähig mit der Antriebseinrichtung verbunden. Hierdurch kann die von der Antriebseinrichtung erzeugte Wärme auf einfache Weise abgeführt werden. In der bevorzugten Weiterbildung ist das zweite Gehäuseteil über ein Trägerteil mit der Antriebseinrichtung verbunden. Hierdurch ist insbesondere die Montage vereinfacht. Ferner ist es desweiteren bevorzugt, dass das Trägerteil weitere Bauteile trägt, über die Wärme zum zweiten Gehäuseteil abgeführt werden kann. Insbesondere handelt es sich hierbei um Bauteile die mit dem Verdichtungsbereich in Verbindung stehen, sodass aus diesem die Wärme zum zweiten Gehäuseteil abgeführt wird. Bevorzugt ist es somit, dass mit der Trägereinrichtung zumindest eine Statoreinrichtung verbunden ist. Hierbei kann es sich insbesondere um Statoreinrichtungen der Holweckstufe, der Siegbahnstufe, der Gaedestufe oder eines Seitenkanalverdichters handeln. Eine Verbindung mit derartigen Statoreinrichtungen ist insbesondere vorteilhaft, da in derartigen Stufen eine hohe Verdichtung und insofern eine hohe Wärmeerzeugung erfolgt.
In besonders bevorzugter Ausführungsform ist das zweite Gehäuseteil daher mit dem Trägerteil und/oder der Antriebseinrichtung und/oder mindestens einer Statoreinrichtung gut wärmeleitend verbunden. Die Verbindung erfolgt insbesondere über ein Verpressen der Bauteile mit Übermaß. Hierdurch kann eine gute Wärmeleitung verwirklicht werden.
Bei einer bevorzugten Weiterbildung der Erfindung ist das erste Gehäuseteil mit einem Lager, insbesondere dem druckseitigen Lager, verbunden. Das druckseitige Lager ist insbesondere bei einer kompakten Bauweise der Vakuumpumpe stark von der Wärmeentwicklung der Antriebsweinrichtung und/oder des Verdichtungsbereichs der Pumpe beeinflusst. Dies ist insbesondere der Fall, wenn dieses Lager von einer Holweckstufe oder dergleichen umgeben ist.
Bei einer weiteren bevorzugten Weiterbildung ist das erste Gehäuseteil zusätzlich oder statt der Verbindung mit dem Lager mit einer insbesondere nur wenig wärmeerzeugenden Steuereinrichtung verbunden.
Desweitern ist es bevorzugt, dass das erste Gehäuseteil und das zweite Gehäuseteil über eine geringe Wärmeleitfähigkeit aufweisende Verbindung miteinander verbunden sind. Hierbei handelt es sich beispielsweise um eine Verschraubung, wobei gegebenenfalls ein Dichteelement wie ein Luftspalt oder dergleichen vorgesehen sein kann. Insbesondere ist es auch möglich, dass die Kammern der beiden Gehäuseteile thermisch voneinander entkoppelt sind.
Durch das Vorsehen zweier gesonderter Gehäuseteile ist es möglich diese auf unterschiedlichem Temperaturniveau durch eine gesonderte Kühlung zu halten. Insbesondere kann das erste Gehäuseteil stärker gekühlt werden, sodass die Betriebstemperatur des Lagers und/oder einer Steuereinrichtung gering ist. Hierdurch kann beispielsweise die Lebensdauer eines Lagers deutlich erhöht werden. Dies wäre bei nicht getrennten Gehäuseteilen nur möglich, indem auch die stark wärmeerzeugenden Bauteile stark gekühlt würden. Dies würde einen erheblich höheren Energieaufwand mit sich bringen.
Das Verbinden der stark wärmeerzeugenden Bauteile über ein Trägerteil insbesondere durch Verpressen hat ferner den Vorteil, dass neben einer guten Wärmeübertragung auch die Positionierung dieser Bauteile sehr exakt definiert ist. Dies ist insbesondere hinsichtlich eines von dem Trägerteil getragenen Stators einer Holweckstufe oder dergleichen zweckmäßig. Bevorzugt ist es ferner, dass mit dem Trägerteil der Stator des Motors durch Verpressen verbunden ist. Hierdurch ist auch die Position des Motorstators eindeutig definiert. Nachfolgend wir die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung näher erläutert.
Die Figur zeigt eine stark vereinfachte schematische Schnittansicht eines Teils einer Vakuumpumpe.
In der in der Figur schematisch dargestellten Vakuumpumpe trägt eine Rotorwelle 10 mehrere als Rotorscheiben 12 ausgebildete Rotorelemente. Mit einem oberen Gehäuseteil 14 sind im Bereich der Turbomolekularstufe Statorscheiben 16 verbunden bzw. werden von dem oberen Gehäuseteil getragen.
Desweiteren ist mit der Rotorwelle 10 ein scheibenförmiger Träger 18 fest verbunden. Der Träger 18 trägt im dargestellten Ausführungsbeispiel zwei als Rohrzylinder ausgebildete Rotorelemente 20, 22 einer Holweckstufe. Zwischen den Rotorelementen 20, 22 der Holweckstufe ist eine innere Statoreinrichtung 24 der Holweckstufe angeordnet. Das äußere Rotorelement 22 ist von einer weiteren Statoreinrichtung 26 der Holweckstufe umgeben, wobei diese äußere Statoreinrichtung 26 im dargestellten Ausführungsbeispiel einstückig mit einem zweiten Gehäuseteil 28 verbunden bzw. an der Innenseite des zweiten Gehäuseteils 28 ausgebildet ist.
Desweiteren trägt die Rotorwelle 10 eine Antriebseinrichtung 30. Das druckseitige, in der Figur untere Ende der Rotorwelle 10 ist von einem Wälzlager 32 getragen. Das Wälzlager 32 ist in einem ersten Gehäuseteil 34 angeordnet.
Im dargestellten Ausführungsbeispiel ist zur Wärmeabfuhr der Antriebseinrichtung 30 bzw. des Motorstators der Antriebseinrichtung 30 der Motorstator fest mit einem Trägerteil 36 verbunden. Die Verbindung erfolgt insbesondere durch Verpressen. Das Trägerteil 36 trägt ferner die Statoreinrichtung 24, die ebenfalls durch Verpressen mit dem Trägerteil 36 verbunden ist. Das Trägerteil 36 ist sodann fest und wiederum gut wärmeleitfähig mit dem zweiten Gehäuseteil 28 verbunden. Die im Bereich der Holweckstufe erzeugte starke Wärme, sowie die von der Antriebseinrichtung 30 erzeugte starke Wärme wird somit aufgrund der gut wärmeleitfähigen Verpressungen nach außen in das zweite Gehäuseteil 28 eingeleitet.
Getrennt hiervon ist das Lager 32 mit dem ersten Gehäuseteil 34 verbunden. Das erste Gehäuseteil 34 ist beispielweise mittels Schrauben oder dergleichen mit dem zweiten Gehäuseteil 28 verbunden. Gegebenenfalls ist in diesem Bereich zusätzlich eine Dichtung 38 vorgesehen. Insbesondere ist die Wärmeleitfähigkeit zwischen dem ersten Gehäuseteil 34 und dem zweiten Gehäusetel 28 möglichst gering. Es ist hierdurch möglich das erste Gehäuseteil 34 gesondert von dem zweiten Gehäuseteil 28 zu kühlen, sodass die Betriebstemperatur des Lagers 32 reduziert werden kann. Dies führt zu einer Verlängerung der Lebensdauer.

Claims

Ansprüche
1. Vakuumpumpe insbesondere Turbomolekularpumpe, mit einer Rotorwelle (10) verbundenen Rotorelementen (20, 22), mindestens einer mit einem Rotorelement (20, 22) zusammenwirkenden Statoreinrichtung (24, 26), einer die Rotorwelle (10) antreibenden elektrischen Antriebseinrichtung (30), die Rotorwelle (10) tragenden Lagern (32) und einem mehrere Gehäuseteile (14, 28, 34) aufweisenden Gehäuse, dadurch gekennzeichnet, dass wärmeempfindliche Bauteile (32) mit einem ersten Gehäuseteil (34) und stark wärmeerzeugende Bauteile (30, 24, 26) mit einem zweiten Gehäuseteil (28) verbunden sind .
2. Vakuumpumpe nach Anspruch 1 dadurch gekennzeichnet, dass das zweite Gehäuseteil (28) wärmeleitfähig mit der Antriebseinrichtung (30) verbunden ist.
3. Vakuumpumpe nach Anspruch 2 dadurch gekennzeichnet, dass das zweite Gehäuseteil (28) über ein Trägerteil (36) mit der Antriebseinrichtung (30) verbunden ist.
4. Vakuumpumpe nach Anspruch 3 dadurch gekennzeichnet, dass mit dem Trägerteil (36) zumindest eine Statoreinrichtung (24) insbesondere einer Holweckstufe, einer Siegbahnstufe, einer Gaedestufe oder eines Seitenkanalverdichters verbunden ist.
5. Vakuumpumpe nach den Ansprüchen 1 - 4 dadurch gekennzeichnet, dass das zweite Gehäuseteil (28) mit dem Trägerteil (36) und/oder der Antriebseinrichtung (30) und/oder der Statoreinrichtung (24) gut wärmeleitfähig verbunden, insbesondere verpresst ist.
6. Vakuumpumpe nach den Ansprüchen 1 - 5 dadurch gekennzeichnet, dass das erste Gehäuseteil (34) mit einem der Lager, insbesondere dem druckseitigen Lager (32), verbunden ist.
7. Vakuumpumpe nach den Ansprüchen 1 - 6 dadurch gekennzeichnet, dass das erste Gehäuseteil (34) mit einer insbesondere wenig wärmerzeugenden Steuereinrichtung verbunden ist.
8. Vakuumpumpe nach den Ansprüchen 1 - 7 dadurch gekennzeichnet, dass das erste Gehäuseteil (34) und das zweite Gehäuseteil (28) mittels einer gering wärmeleitfähig aufweisenden Verbindung miteinander verbunden sind.
9. Vakuumpumpe nach den Ansprüchen 1 - 7 dadurch gekennzeichnet, dass das erste Gehäuseteil (34) und das zweite Gehäuseteil (28) thermisch voneinander entkoppelt sind.
10. Vakuumpumpe nach den Ansprüchen 1 - 9 dadurch gekennzeichnet, dass das erste Gehäuseteil (34) und das zweite Gehäuseteil (28) mit einer gesonderten Kühleinrichtung verbunden sind .
PCT/EP2014/069344 2013-09-24 2014-09-11 Vakuumpumpe WO2015043962A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/022,448 US10221864B2 (en) 2013-09-24 2014-09-11 Vacuum pump
EP14761870.6A EP3049676B1 (de) 2013-09-24 2014-09-11 Vakuumpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202013008470.7U DE202013008470U1 (de) 2013-09-24 2013-09-24 Vakuumpumpe
DE202013008470.7 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015043962A1 true WO2015043962A1 (de) 2015-04-02

Family

ID=51518781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/069344 WO2015043962A1 (de) 2013-09-24 2014-09-11 Vakuumpumpe

Country Status (4)

Country Link
US (1) US10221864B2 (de)
EP (1) EP3049676B1 (de)
DE (1) DE202013008470U1 (de)
WO (1) WO2015043962A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013008470U1 (de) 2013-09-24 2015-01-08 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932228A1 (de) * 1988-09-28 1990-04-05 Hitachi Ltd Turbovakuumpumpe
WO1994000694A1 (de) * 1992-06-19 1994-01-06 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe
EP0855517A2 (de) * 1997-01-24 1998-07-29 Pfeiffer Vacuum GmbH Vakuumpumpe
EP1236906A1 (de) * 2001-02-16 2002-09-04 Pfeiffer Vacuum GmbH Vakuumpumpe
EP1344940A1 (de) * 2002-03-13 2003-09-17 BOC Edwards Technologies, Limited Vakuumpumpe

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508483A1 (de) * 1985-03-09 1986-10-23 Leybold-Heraeus GmbH, 5000 Köln Gehaeuse fuer eine turbomolekularvakuumpumpe
JPS62168993A (ja) 1985-11-27 1987-07-25 Shimadzu Corp ヒ−トパイプ冷却式タ−ボ分子ポンプ
DE3613344A1 (de) 1986-04-19 1987-10-22 Pfeiffer Vakuumtechnik Turbomolekular-vakuumpumpe fuer hoeheren druck
US6926493B1 (en) * 1997-06-27 2005-08-09 Ebara Corporation Turbo-molecular pump
DE60037353T2 (de) 1999-02-19 2008-12-04 Ebara Corp. Turbomolekularpumpe
JP2010025122A (ja) 2003-02-18 2010-02-04 Osaka Vacuum Ltd 分子ポンプの断熱構造
GB0309830D0 (en) * 2003-04-29 2003-06-04 Boc Group Plc A vacuum pump
WO2006001243A1 (ja) 2004-06-25 2006-01-05 Osaka Vacuum, Ltd. ターボ分子ポンプの軸受支持構造
JP4703279B2 (ja) 2004-06-25 2011-06-15 株式会社大阪真空機器製作所 複合分子ポンプの断熱構造
JP5420323B2 (ja) 2009-06-23 2014-02-19 株式会社大阪真空機器製作所 分子ポンプ
NO20110786A1 (no) 2011-05-31 2012-12-03 Fmc Kongsberg Subsea As Subsea kompressor direkte drevet av en permanentmagnetmotor med en stator og rotor nedsunket i vaeske
DE202013008470U1 (de) 2013-09-24 2015-01-08 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932228A1 (de) * 1988-09-28 1990-04-05 Hitachi Ltd Turbovakuumpumpe
WO1994000694A1 (de) * 1992-06-19 1994-01-06 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe
EP0855517A2 (de) * 1997-01-24 1998-07-29 Pfeiffer Vacuum GmbH Vakuumpumpe
EP1236906A1 (de) * 2001-02-16 2002-09-04 Pfeiffer Vacuum GmbH Vakuumpumpe
EP1344940A1 (de) * 2002-03-13 2003-09-17 BOC Edwards Technologies, Limited Vakuumpumpe

Also Published As

Publication number Publication date
US10221864B2 (en) 2019-03-05
DE202013008470U1 (de) 2015-01-08
EP3049676B1 (de) 2019-07-10
EP3049676A1 (de) 2016-08-03
US20160298649A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
EP3207567B1 (de) Antriebsvorrichtung für einen kraftfahrzeugantriebsstrang
EP1920522B1 (de) Rotorabdeckung und elektromotor
EP2310687B1 (de) Vakuumpumpe
DE102016115291A1 (de) Elektrische Kühlmittelpumpe
DE102011001394A1 (de) Elektrisch angetriebener Kältemittelverdichter
EP3899284B1 (de) Seitenkanalverdichter für ein brennstoffzellensystem zur förderung und/oder verdichtung eines gasförmigen mediums
EP2846044B1 (de) Vakuumpumpe sowie anordnung mit einer vakuumpumpe
EP2333344A2 (de) Vakuumpumpe
EP3472470B1 (de) Elektrische fluidpumpe für ein kraftfahrzeug
DE102004014865A1 (de) Elektrischer Nockenwellerversteller mit Scheibenläufermotor
DE102013210454A1 (de) Rotierende elektrische Maschine
EP3016254A2 (de) Kühlung einer elektrischen antriebseinrichtung
DE102008061450A1 (de) Elektrische Maschine
EP3049676B1 (de) Vakuumpumpe
DE202009013629U1 (de) Vakuum-Wälzlageranordnung sowie Vakuumpumpe
DE102010064190A1 (de) Elektrische Maschine mit verbesserten Wärmemanagement
WO2011058097A2 (de) Elektrische maschine, insbesondere spaltrohr-elektromotor
WO2016000936A1 (de) Elektrischer verdichter für eine verbrennungskraftmaschine
DE102011077777B3 (de) Tauchpumpe und Verfahren zum Zusammenbau einer Tauchpumpe
EP3460249B1 (de) Splitflow-vakuumpumpe
DE102016215089A1 (de) Elektrische Maschineneinheit mit einer einem Luftstrom ausgesetzten Schleifringanordnung
WO2007028684A1 (de) Elektrische maschine
DE102006005604B4 (de) Fluiddynamisches Lagersystem
EP3315802A1 (de) Rotationssystem mit axialer gaslagerung
DE102019002392A1 (de) Wärmesperre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761870

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014761870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014761870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15022448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE