EP1222197A4 - Mray gen und das enzym der pseudomonas aeruginosa - Google Patents

Mray gen und das enzym der pseudomonas aeruginosa

Info

Publication number
EP1222197A4
EP1222197A4 EP00968545A EP00968545A EP1222197A4 EP 1222197 A4 EP1222197 A4 EP 1222197A4 EP 00968545 A EP00968545 A EP 00968545A EP 00968545 A EP00968545 A EP 00968545A EP 1222197 A4 EP1222197 A4 EP 1222197A4
Authority
EP
European Patent Office
Prior art keywords
mray
polynucleotide
seq
pseudomonas aeruginosa
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00968545A
Other languages
English (en)
French (fr)
Other versions
EP1222197A1 (de
Inventor
Mohamed El-Sherbeini
Barbara Azzolina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Publication of EP1222197A1 publication Critical patent/EP1222197A1/de
Publication of EP1222197A4 publication Critical patent/EP1222197A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)

Definitions

  • This invention relates to the genes and enzymes involved in cell wall synthesis in bacteria.
  • PG peptidoglycan
  • MraY One enzyme intrinsic to the peptidoglycan biosynthesis is MraY. To date, no MraY sequences have been disclosed for Pseudomonas aeruginosa, an opportunistic pathogen causing infections in patients with burns or neutropenia.
  • Polynucleotides and polypeptides of Pseudomonas aeruginosa MraY, an enzyme involved in bacterial cell wall biosynthesis, are provided.
  • the recombinant MraY enzyme is catalytically active in the first step of the membrane cycle of peptidoglycan biosynthesis, transferring the N-acetylmuramic acid pentapeptide to a bactoprenol phosphate carrier molecule.
  • the enzyme is useful in in vitro assays to screen for antibacterial compounds that target cell wall biosynthesis.
  • the invention includes the polynucleotides, proteins encoded by the polynucleotides, and host cells expressing the recombinant enzyme, probes and primers, and the use of these molecules in assays.
  • An aspect of this invention is an isolated polynucleotide having a sequence encoding a Pseudomonas aeruginosa MraY protein, or a complementary sequence.
  • the encoded protein has a sequence corresponding to SEQ ID ⁇ O:2.
  • the polynucleotide can be DNA, RNA or a mixture of both, and can be single or double stranded.
  • the polynucleotide has a sequence shown in SEQ ID NO:l.
  • An aspect of this invention is a probe having a sequence of at least about 25 contiguous nucleotides that is specific for a naturally occurring polynucleotide encoding a Pseudomonas aeruginosa MraY protein. Probes in accordance with this description are useful for the specific detection of the presence of a polynucleotide encoding a Pseudomonas aeruginosa MraY protein. In preferred embodiments, the probes of this aspect can have additional components including, but not limited to, compounds, isotopes, proteins or sequences for ready detection.
  • An aspect of this invention is a primer having a sequence of at least about 25 contiguous nucleotides that is specific for a naturally occurring polynucleotide encoding a Pseudomonas aeruginosa MraY protein. Primers in accordance with this description are useful in nucleic acid amplification-based assays for the specific detection of the presence of a polynucleotide encoding a Pseudomonas aeruginosa MraY protein. In preferred embodiments, the primers of this aspect can have additional components including, but not limited to, compounds, isotopes, proteins or sequences for ready detection.
  • An aspect of this invention is an expression vector including a polynucleotide encoding a Pseudomonas aeruginosa MraY protein, or a complementary sequence, and regulatory regions.
  • the encoded protein has a sequence corresponding to SEQ ID NO:2.
  • the vector can have any of a variety of regulatory regions known and used in the art as appropriate for the types of host cells the vector can be used in.
  • the vector has regulatory regions appropriate for the expression of the encoded protein in gram-negative prokaryotic host cells.
  • the vector has regulatory regions appropriate for expression of the encoded protein in gram-positive host cells, yeasts, cyanobacteria or actinomycetes.
  • the regulatory regions provide for inducible expression while in other preferred embodiments the regulatory regions provide for constitutive expression.
  • the expression vector can be derived from a plasmid, phage, virus or a combination thereof.
  • An aspect of this invention is a host cell comprising an expression vector including a polynucleotide encoding a Pseudomonas aeruginosa MraY protein, or a complementary sequence, and regulatory regions.
  • the encoded protein has a sequence corresponding to SEQ ID NO:2.
  • the host cell is a yeast, gram-positive bacterium, cyanobacterium or actinomycete.
  • the host cell is a gram-negative bacterium.
  • An aspect of this invention is a process for expressing a MraY protein of P. aeruginosa in a host cell.
  • a host cell is transformed or transfected with an expression vector including a polynucleotide encoding a Pseudomonas aeruginosa MraY protein, or a complementary sequence.
  • the host cell is cultured under conditions conducive to the expression of the encoded MraY protein.
  • the expression is inducible or constitutive.
  • the encoded protein has a sequence corresponding to SEQ ID NO:2.
  • An aspect of this invention is a purified polypeptide having an amino acid sequence of SEQ ID NO:2.
  • Cellular extracts comprising a polypeptide having the above amino acid sequence are also included within the instant invention.
  • FIG. 1 Nucleotide sequence (SEQ ID NO: 1) and the predicted amino acid sequence (SEQ ID NO:2) of P. aeruginosa MraY.
  • the amino acid sequence (SEQ ID NO:2) is presented in a three-letter code below the nucleotide sequence (nucleotides 34 to 1113 of SEQ ID NO: 1).
  • This invention provides polynucleotides and polypeptides of a cell wall biosynthesis gene from Pseudomonas aeruginosa, referred to herein as MraY.
  • the polynucleotides and polypeptides are used to further provide expression vectors, host cells comprising the vectors, probes and primers, and assays for the presence or expression of MraY.
  • Bacterial mraY encodes for phoshpo-N-acetylmuramoyl-pentapeptide translocase, an enzyme responsible for catalyzing the first step of the membrane cycle of peptidoglycan biosynthesis, transfer of the N-acetylmuramic acid pentapeptide to a bactoprenol phosphate carrier molecule.
  • the mraY gene was cloned from Pseudomonas aeruginosa. Sequence analysis of the P. aeruginosa mraY gene revealed an open reading frame of 361 amino acids. Nucleic acids encoding MraY from Pseudomonas aeruginosa are useful in the expression and production of the P. aeruginosa MraY protein. The nucleic acids are also useful in providing probes for detecting the presence of P. aeruginosa MraY.
  • polynucleotide means a nucleic acid of more than one nucleotide.
  • a polynucleotide can be made up of multiple polynucleotide units that are referred to by description of the unit.
  • a polynucleotide can comprise within its bounds a polynucleotide(s) having a coding sequence(s), a polynucleotide(s) that is a regulatory region(s) and/or other polynucleotide units commonly used in the art.
  • expression vector means a polynucleotide having regulatory regions operably linked to a coding region such that, when in a host cell, the regulatory regions can direct the expression of the coding sequence.
  • expression vectors can be used in a variety of host cells and, therefore, the regulatory regions are preferably chosen as appropriate for the particular host cell.
  • regulatory region means a polynucleotide that can promote or enhance the initiation or termination of transcription or translation of a coding sequence.
  • a regulatory region includes a sequence that is recognized by the RNA polymerase, ribosome, or associated transcription or translation initiation or termination factors of a host cell. Regulatory regions that direct the initiation of transcription or translation can direct constitutive or inducible expression of a coding sequence.
  • purified and isolated are utilized interchangeably to stand for the proposition that the polynucleotide, protein and polypeptide, or respective fragments thereof in question have been removed from the in vivo environment so that they exist in a form or purity not found in nature. This, however, is not mandated of cDNA as understood by one of ordinary skill in the art.
  • substantially pure with regard to a polynucleotide means it is obtained purified from cellular components by standard methods at a concentration of at least about 100-fold higher than that found in nature.
  • a polynucleotide is considered essentially pure if it is obtained at a concentration of at least about 1000- fold higher than that found in nature.
  • Polynucleotides useful in the present invention include those described herein and those that one of skill in the art will be able to derive therefrom following the teachings of this specification.
  • An aspect of the present invention is a polynucleotide encoding a MraY protein of Pseudomonas aeruginosa. It is known that there is a substantial amount of redundancy in the various codons which code for specific amino acids. Therefore, this invention is also directed to those DNA sequences that encode RNA comprising alternative codons which code for the eventual translation of the identical amino acid. The present invention, thus, discloses codon redundancy which can result in different DNA molecules encoding an identical protein. For purposes of this specification, a sequence bearing one or more replaced codons will be defined as a degenerate variation.
  • a further aspect of the present invention is a cDNA encoding a MraY protein of Pseudomonas aeruginosa.
  • a preferred aspect of the present invention is an isolated nucleic acid encoding a MraY protein of Pseudomonas aeruginosa.
  • a preferred embodiment is a nucleic acid having the sequence disclosed in FIG. 1, SEQ ED NO: l.
  • the isolated nucleic acid molecule of the present invention can include a ribonucleic or deoxyribonucleic acid molecule, which can be single (coding or noncoding strand) or double stranded, as well as synthetic nucleic acid, such as a synthesized, single stranded polynucleotide.
  • Noncoding or antisense strands can be useful as modulators of the gene by interacting with RNA encoding the MraY protein.
  • Antisense strands are preferably less than full length strands having sequences unique or specific for RNA encoding the polypeptide.
  • polynucleotides that hybridize to P.aeruginosa mraY sequences under stringent conditions are also included in the present invention.
  • a procedure using conditions of high stringency is as follows: Prehybridization of filters containing DNA is carried out for 2 hr. to overnight at 65°C in buffer composed of 6X SSC, 5X Denhardt's solution, and 100 ⁇ g/ml denatured salmon sperm DNA. Filters are hybridized for 12 to 48 hrs at 65°C in prehybridization mixture containing 100 ⁇ g/ml denatured salmon sperm DNA and 5-20 X 106 cpm of 32p_ ⁇ a beled probe. Washing of filters is done at 37°C for 1 hr in a solution containing 2X SSC, 0.1% SDS. This is followed by a wash in 0.1X SSC, 0.1% SDS at 50°C for 45 min. before autoradiography.
  • a preferred aspect of the present invention is a substantially purified form of the MraY protein from Pseudomonas aeruginosa.
  • a preferred embodiment is a protein that has the amino acid sequence which is shown in FIG. 1, in SEQ ID NO:2.
  • Probes comprising full length or partial sequences of SEQ ID NO: 1 can be used to determine whether a cell or sample contains P. aeruginosa mraY ON A or RNA.
  • a preferred probe is a single stranded antisense probe having at least the full length of the coding sequence of MraY. It is also preferred to use probes that have less than the full length sequence, and contain sequences specific for P. aeruginosa mraY ON A or RNA.
  • the identification of a sequence(s) for use as a specific probe is well known in the art and involves choosing a sequence(s) that is unique to the target sequence, or is specific thereto.
  • probes have at least about 25 nucleotides, more preferably about 30 to 35 nucleotides.
  • the longer probes are believed to be more specific for P. aeruginosa mraY gene(s) and RNAs and can be used under more stringent hybridization conditions. Longer probes can be used but can be more difficult to prepare synthetically, or can result in lower yields from synthesis.
  • sequences that are useful as probes or primers for P. aeruginosa mraY gene(s) are Primer A (sense) 5 '- TT CAT ATG CTC CTG CTG CTG GCC GAA TAC -3' (SEQ ID NO:3) and Primer B (antisense) 5'- TT GGA TCC TCA ACG CAG CTT CAA GGT G -3' (SEQ ID NO:4). Restriction sites, underlined, for Ndel and BamHI are added to the 5' ends of the primers to allow cloning between the Ndel and BamHI sites of the expression vector pET-1 la. However, one skilled in the art will recognize that these are only a few of the useful probe or primer sequences that can be derived from SEQ ID NO: 1.
  • Polynucleotides having sequences that are unique or specific for P. aeruginosa MraY can be used as primers in amplification reaction assays. These assays can be used in tissue typing as described herein. Additionally, amplification reactions employing primers derived from P. aeruginosa MraY sequences can be used to obtain amplified P. aeruginosa mraY ON A using the rnr ⁇ FDNA of the cells as an initial template. Many types of amplification reactions are known in the art and include, without limitation, Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Strand Displacement Amplification and Self-Sustained Sequence Reaction. Any of these or like reactions can be used with primers derived from SEQ ID NO: 1.
  • expression vectors can be used to express recombinant MraY in host cells.
  • Expression vectors are defined herein as nucleic acid sequences that include regulatory sequences for the transcription of cloned DNA and the translation of their mRNAs in an appropriate host.
  • Such vectors can be used to express a bacterial gene in a variety of hosts such as bacteria, bluegreen algae, plant cells, insect cells and animal cells. Specifically designed vectors allow the shuttling of genes between hosts such as bacteria- yeast or bacteria-animal cells.
  • An appropriately constructed expression vector should contain: an origin of replication for autonomous replication in host cells, selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and regulatory sequences.
  • Expression vectors can include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses.
  • bacterial expression vectors can be used to express recombinant MraY in bacterial cells.
  • Commercially available bacterial expression vectors which are suitable for recombinant MraY expression include, but are not limited to pQE (Qiagen), pETl la (Novagen), lambda gtll (Invitrogen), and pKK223-3 (Pharmacia).
  • mraY DNA in cell-free transcription- translation systems, or mr ⁇ FRNA in cell-free translation systems.
  • Cell-free synthesis of MraY can be in batch or continuous formats known in the art.
  • MraY chemically, although this method is not preferred.
  • a variety of host cells can be employed with expression vectors to synthesize MraY protein. These can include E. coli, Bacillus, and Salmonella. Insect and yeast cells can also be appropriate.
  • MraY polypeptides can be recovered.
  • MraY protein and polypeptides can be purified from cell lysates and extracts, or from culture medium, by various combinations of, or individual application of methods including ultrafiltration, acid extraction, alcohol precipitation, salt fractionation, ionic exchange chromatography, phosphocellulose chromatography, lecithin chromatography, affinity (e.g., antibody or His-Ni) chromatography, size exclusion chromatography, hydroxylapatite adsorption chromatography and chromatography based on hydrophobic or hydrophillic interactions.
  • protein denaturation and refolding steps can be employed.
  • High performance liquid chromatography (HPLC) and reversed phase HPLC can also be useful. Dialysis can be used to adjust the final buffer composition.
  • Genomic DNA from P. aeruginosa was prepared from 100 ml late stationary phase culture in Brain Heart Infusion broth (DIFCO, Detroit, MI). Cells were washed with 0.2 M sodium acetate, suspended in 10 ml of TEG (100 mM Tris, pH 7, containing 10 mM EDTA and 25% glucose) and lysed by incubation with 200 ⁇ g of N-acetylmuramidase (SIGMA) for lh at 37°C. Chromosomal DNA was purified from the cell lysate using a QIAGEN (Santa Clarita, CA) genomic DNA preparation kit following the manufacturers' protocol.
  • the cell lysate was treated with protease K at 50°C for 45 min, loaded onto an equilibrated QIAGEN genomic tip, and entered into the resin by centrifugation at 3000 rpm for 2 min. Following washing the genomic tip, the genomic DNA was eluted in distilled water and kept at 4°C. Approximately 50 ng genomic DNA was used as a template in PCR reactions to clone mraY. Two oligonucleotide primers (GIBCO/BRL, Bethesda, MD) complementary to sequences at the 5' and the 3' ends of P.
  • aeruginosa mraY were used to clone this gene using KLENTAQ ADVANTAGETM polymerase (CLONTECH, Palo Alto, CA).
  • the primer nucleotide sequences were as follows: 5'- TT CAT ATG CTC CTG CTG CTG GCC GAA TAC -3' (SEQ ID NO:3) and 5'- TT GGA TCC TCA ACG CAG CTT CAA GGT G -3' (SEQ ID NO:4).
  • aeruginosa mraY was verified by nucleotide sequence, digested with Ndel and BamHI, and cloned between the Ndel and BamHI sites of pET-1 la, creating plasmid pPaeMraY. This plasmid was used for expression of the mraY gene in E. coli.
  • the mraY was cloned into the expression vector pET-1 la (Novagen) as described above to create plasmid pPaeMraY.
  • the pET-1 la vector allows expression of authentic, non-fusion, proteins.
  • the pET (Plasmids for Expression by T7 RNA polymerase) plasmids are derived from pBR322 and designed for protein over- production in E. coli.
  • the vector pET-1 la contains the ampicillin resistance gene, and ColEl origin of replication, in addition to T7 phage promoter and terminator.
  • the T7 promoter is recognized by the phage T7 RNA polymerase but not by the E. coli RNA polymerase.
  • a host E coli strain such as BL21(DE3)pLysS is engineered to contain integrated copies of T7 RNA polymerase under the control of lacUV5 that is inducible by IPTG. Production of a recombinant protein in the E. coli strain BL21(DE3)pLysS occurs after expression of T7RNA polymerase is induced.
  • NOVAGEN M9ZB medium
  • MraY (translocase I) assay was performed using the butanol extraction method described by Brandish and coworkers (Brandish et al, 1996 J. Biol. Chem. 271(13):7609-7614). The assay was performed at room temperature with assay components held at concentrations of: 100 mM TRIS, pH 7.5; 30 mM MgCl2;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
EP00968545A 1999-10-04 2000-09-29 Mray gen und das enzym der pseudomonas aeruginosa Withdrawn EP1222197A4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15758099P 1999-10-04 1999-10-04
US157580P 1999-10-04
PCT/US2000/027056 WO2001025251A1 (en) 1999-10-04 2000-09-29 Mray gene and enzyme of pseudomonas aeruginosa

Publications (2)

Publication Number Publication Date
EP1222197A1 EP1222197A1 (de) 2002-07-17
EP1222197A4 true EP1222197A4 (de) 2004-07-21

Family

ID=22564366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00968545A Withdrawn EP1222197A4 (de) 1999-10-04 2000-09-29 Mray gen und das enzym der pseudomonas aeruginosa

Country Status (3)

Country Link
EP (1) EP1222197A4 (de)
CA (1) CA2386235A1 (de)
WO (1) WO2001025251A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231076A (zh) * 2014-08-20 2014-12-24 中国农业科学院哈尔滨兽医研究所 抗大肠杆菌感染的治疗性单克隆抗体、产生该单克隆抗体的杂交瘤细胞株及其用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004018782D1 (de) 2003-07-31 2009-02-12 Tranzyme Pharma Inc Räumlich definierte makrocyclen, die peptidbindungssurrogate enthalten

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070955A2 (en) * 2000-03-21 2001-09-27 Elitra Pharmaceuticals, Inc. Identification of essential genes in prokaryotes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040893A1 (en) * 1995-06-07 1996-12-19 Astra Aktiebolag Nucleic acid and amino acid sequences relating to helicobacter pylori for diagnostics and therapeutics
US6156537A (en) * 1997-08-12 2000-12-05 Smithkline Beecham Corporation Phospho-N-acetylmuramoyl-pentapeptide transferase of Streptococcus pneumoniae
JP2002516076A (ja) * 1998-05-29 2002-06-04 メルク・アンド・カンパニー・インコーポレーテッド 緑膿菌のMurDタンパク質及び遺伝子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070955A2 (en) * 2000-03-21 2001-09-27 Elitra Pharmaceuticals, Inc. Identification of essential genes in prokaryotes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AZZOLINA BARBARA A ET AL: "The cell wall and cell division gene cluster in the mra operon of Pseudomonas aeruginosa: Cloning, production, and purification of active enzymes", PROTEIN EXPRESSION AND PURIFICATION, vol. 21, no. 3, April 2001 (2001-04-01), pages 393 - 400, XP002280175, ISSN: 1046-5928 *
DATABASE EMBL [online] EMBL; 1 September 2000 (2000-09-01), STOVER C.K. ET AL.: "Pseudomonas aeruginosa PAO1", XP002280177, retrieved from EBI Database accession no. AE004856;AE004091 *
DATABASE EMBL [online] EMBL; 8 March 1990 (1990-03-08), IKEDA M.: "Escherichia coli murD gene and ORF-Y (EC 6.3.2.9)", XP002280176, retrieved from EBI Database accession no. X51584;X52117 *
See also references of WO0125251A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231076A (zh) * 2014-08-20 2014-12-24 中国农业科学院哈尔滨兽医研究所 抗大肠杆菌感染的治疗性单克隆抗体、产生该单克隆抗体的杂交瘤细胞株及其用途
CN104231076B (zh) * 2014-08-20 2017-03-15 中国农业科学院哈尔滨兽医研究所 抗大肠杆菌感染的治疗性单克隆抗体、产生该单克隆抗体的杂交瘤细胞株及其用途

Also Published As

Publication number Publication date
CA2386235A1 (en) 2001-04-12
EP1222197A1 (de) 2002-07-17
WO2001025251A1 (en) 2001-04-12

Similar Documents

Publication Publication Date Title
JP5224572B2 (ja) デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
US6818752B2 (en) Synthetic genes for enhanced expression
EP0739983B1 (de) Für Lacto-N-biosidase kodierendes Gen
TWI719140B (zh) 新型多磷酸鹽依存性葡萄糖激酶與使用其製備葡萄糖-6-磷酸的方法
WO2001025251A1 (en) Mray gene and enzyme of pseudomonas aeruginosa
US6861516B1 (en) MraY gene and enzyme of pseudomonas aeruginosa
WO2021125514A1 (ko) 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
US5922540A (en) Monofunctional glycosyltransferase gene of Staphylococcus aureus
JP2001061478A (ja) コエンザイムq10の製造法
JPH0698769A (ja) コンドロイチナーゼ及びその遺伝子
JP4022784B2 (ja) 新規なヘキソキナーゼ
JP2000503525A (ja) 新規dna分子
Lee et al. Cloning, expression, and biochemical characterization of dTDP-glucose 4, 6-dehydratase gene (gerE) from Streptomyces sp. GERI-155
WO2023090495A1 (ko) 열 안정성이 우수한 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
JP3508871B2 (ja) クレアチニンデイミナーゼ活性を有する蛋白質の遺伝情報を有するdna並びにクレアチニンデイミナーゼの製造法
JPH10248574A (ja) 新規な乳酸酸化酵素
WO1998016542A1 (en) NOVEL PENICILLIN BINDING PROTEIN FROM $i(STREPTOCOCCUS PNEUMONIAE)
JP3829950B2 (ja) 新規なクレアチニンアミドヒドロラーゼ
JP3173619B2 (ja) ピログルタミルアミノペプチダーゼの製造法
JPH11225769A (ja) 糖類変換酵素をコードするdna、それを含む組換えdna並びに形質転換体
US6870041B1 (en) MurE protein and gene of pseudomonas aeruginosa
JPH08205861A (ja) 新規なピラノース・オキシダーゼ、ピラノース・オキシダーゼ遺伝子、新規な組み換え体dna及びピラノース・オキシダーゼの製造法
JP3335287B2 (ja) ヘキソキナーゼ遺伝子
JPH10262674A (ja) アルカリホスファターゼをコードする遺伝子
Tian et al. Purification and crystallization of Pseudomonas aeruginosa chloramphenicol acetyltransferase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20040609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070226