EP1222099B1 - Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr - Google Patents

Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr Download PDF

Info

Publication number
EP1222099B1
EP1222099B1 EP00967415A EP00967415A EP1222099B1 EP 1222099 B1 EP1222099 B1 EP 1222099B1 EP 00967415 A EP00967415 A EP 00967415A EP 00967415 A EP00967415 A EP 00967415A EP 1222099 B1 EP1222099 B1 EP 1222099B1
Authority
EP
European Patent Office
Prior art keywords
deflection mirrors
mirror
measuring
infrared rays
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00967415A
Other languages
English (en)
French (fr)
Other versions
EP1222099A1 (de
Inventor
Wolfgang Nayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Railway Systems GmbH
Original Assignee
Voestalpine VAE GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine VAE GmbH filed Critical Voestalpine VAE GmbH
Publication of EP1222099A1 publication Critical patent/EP1222099A1/de
Application granted granted Critical
Publication of EP1222099B1 publication Critical patent/EP1222099B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/04Detectors for indicating the overheating of axle bearings and the like, e.g. associated with the brake system for applying the brakes in case of a fault
    • B61K9/06Detectors for indicating the overheating of axle bearings and the like, e.g. associated with the brake system for applying the brakes in case of a fault by detecting or indicating heat radiation from overheated axles

Definitions

  • the invention relates to a device for measuring Axle or bearing temperatures for locating hot runners or overheated brakes in rolling rail traffic, in which the Infrared rays of the measuring points over an oscillating Oscillating mirrors are directed onto an infrared receiver, whereby infrared rays emitted transversely to the longitudinal direction of the rail in that defined by the oscillation of the oscillating mirror Scanning plane can be detected.
  • HOA hot runner location systems
  • detectors thermal detectors such as bolometers or quickly responding heat radiation sensors, such as HgCd, HgTe, InSb, PbSe or combinations of such semiconductors used.
  • Such semiconductor detectors talk through thermal excitation of free charge carriers for changes to and are able to resolve radiation with a high pulse train, however for the continuous detection of a certain temperature level without additional facilities such as Modulators or deflection devices, which the incident Interrupt the beam cyclically or to other temperature levels direct, not suitable.
  • Such facilities are usually in the track area arranged and the measuring beam passes through a window of the Device and corresponding deflection devices on the in general cooled detector.
  • the arrangement is usually made so that the active window including an angle to the normal warehouse of a rolling rail vehicle can capture.
  • sine wave Developed a series of special evaluation methods with which actually the hottest part of an axis or one Bearing can be detected transversely to the longitudinal direction of the rail, wherein a special measurement and evaluation method, for example is described in AT 398 413 B.
  • a common disadvantage of the previously known device is in the fact that very different wheel sizes, in particular different wheel sizes for passenger cars or heavy-duty wagons, especially so-called low-floor wagons, significantly influence the possible scanning range, which results from the distance of the oscillating mirror to the scanning surface derives. Due to the geometry of different vehicles and especially the geometry of different bearings it is usually only very much with a single facility difficult to do, several scanning areas simultaneously with different To register car groups.
  • the invention now aims to provide a simple device of the type mentioned at the beginning with an oscillating oscillating mirror, which covers a scanning plane to create with which it regardless of the geometry of the particular rolling It is possible to have defined positions in the field of vehicles Axle of a vehicle, especially bearing axles, brakes, such as for example, disc brakes or others may be prohibited to detect heated parts and with only one Detector device to obtain complete information.
  • the device according to the invention is used to achieve this object essentially in that within the scan plane at least two deflecting mirrors at a distance transversely to the longitudinal direction of the rail are arranged from each other, the deflected Infrared rays corresponding to the oscillation of the oscillating mirror be recorded in chronological order.
  • the inventive design is particularly advantageous hiebei hit so that the deflecting mirror as one Deflecting mirror rotating axis normal to the mirror plane are trained.
  • Such rotating deflecting mirror can with a correspondingly high rotational speed on the Dust particles striking the mirror surface by centrifugal force throw off again, so that a self-cleaning effect of Deflecting mirror is observed.
  • the training can advantageously be made such that the Levels of the mirror surfaces of the deflecting mirror essentially are arranged parallel to each other. If such mirror surfaces the deflecting mirror essentially parallel to one another are arranged within the through the Oscillating mirrors define a plurality of scanning levels positions above such a deflecting mirror assigned and successively recorded, whereby a particularly simple compensation of heterodyne signals when changing from one deflecting mirror to the next deflecting mirror within the oscillation range of the oscillating mirror is made possible.
  • the training is made in a particularly simple manner that the deflecting mirror in the driving plane or relative to the level spanned by the rail sleepers different Height or different vertical spacing arranged are.
  • the threshold axis for recording exact positions of a Axis or of a bearing without the optical axis of the detector should be inclined in such a way that it due to different geometrical designs of the chassis could be affected by vehicles. This applies in particular to a preferably essentially horizontal one Arrangement of the optical axis of the input optics of the Detector.
  • the training according to the invention is advantageously made such that the rotating deflecting mirror within a hollow Threshold are arranged and that the threshold in vertical Direction above the respective mirror openings or Has windows for the passage of infrared rays.
  • the rotating deflecting mirror can be protected itself can be arranged and it can be done with a narrowly defined and scanning angle not disturbed by external influences within that defined by the oscillation of the mirror Scanning plane a plurality of measuring points or measuring ranges be grasped safely.
  • the openings or windows of the Threshold can be suitably through infrared transparent Glasses or protected by screens or sliders, so the risk of pollution of the mirrors is significant can be reduced.
  • the training is advantageously made so that the optical Axis of the entrance lens of the oscillating oscillating mirror and the detector containing the infrared receiver runs parallel to the driving level.
  • Such an orientation the optical axis of the optics of the detector and in particular the optical axis of the entrance lens of the detector allows the detector itself to be protected, for example to be arranged within a hollow threshold, so that impairments due to mechanical influences or pollution can be further reduced.
  • this allows Training to ensure that even in the case of low-floor wagons or parts of the measuring beam hanging from wagons can not be interrupted in any way and therefore The required measurement values are available for all axes can be put.
  • the training is made so that the levels the deflecting mirror is inclined approximately 45 ° to the driving level are, preferably the optical axis of the entrance lens of the detector within the hollow threshold in the longitudinal direction of the threshold is arranged axially or axially parallel.
  • An exact one Assignment to each staggered in the longitudinal direction of the axes Measuring ranges or measuring points, such as Bearings or disc brakes can be achieved with advantage that the deflecting mirror below the one to be detected Measuring points are arranged, with a particularly high Measurement accuracy can be guaranteed if the rotating Deflecting mirror within the vertical projection of the respective Measuring surface are arranged. This way each time the entire measuring area in the oscillation range of the Vibration level scanned so that complete information obtained over the axial width of the area to be measured can be.
  • Hot runner location system are the deflection mirrors as convex or concave deflecting mirror.
  • the scanning area can be enlarged and at Using a concave mirror limits the scanning area become.
  • FIG. 1 shows a schematic arrangement of with two rotating deflecting mirrors relative to a detector an oscillating mirror and
  • Fig. 2 is a schematic arrangement the device inside a hollow measuring threshold.
  • Fig. 1 are two rotating deflecting mirrors 1 and 2 in the axial direction a threshold offset by a distance a, the detector 3 being axially spaced from the two rotating deflecting mirrors 1 and 2 with essentially horizontal Axis 4 of the input optics or input lens 5 is arranged is.
  • Axis 4 denotes the central beam, which with the interposition of the focusing optical Element, namely the input lens 5 on a field lens 6 arrives.
  • At 7 there is an autocollimation element at which the temperature of the infrared detector 8 a corresponding oscillating position of the oscillating mirror 9 provided that it is reflected on itself, so that a Reference value can be obtained.
  • the oscillating mirror 9 swings in the direction of the double arrow 10, whereby one in the Scanning plane spanning the drawing plane and in the course the oscillating oscillation of the oscillating mirror 9 initially a first partial scan over area b with interposition of the deflecting mirror 2 and subsequently another partial scan over an axial length c using the deflecting mirror 1 takes place, the respective measuring beams lying in the plane by the angular ranges ⁇ and ⁇ in chronological order from Detector 8 can be detected. It goes without saying that a further rotating mirror, not shown, the scanning other measuring points, such as a disc brake allows.
  • planar mirrors can be used or, as indicated in FIG. 1 with dashed lines, Convex or concave mirror can be used.
  • the measuring threshold has windows 12 and 13, through which originate from the partial area to be measured Infrared rays reach deflecting mirrors 1 and 2 can, these windows 12 and 13 with sliders can be closed. 2 the measuring beam entering through the window 13 is oriented in such a way that a portion d of a bearing in the direction of Axis of the bearing can be detected and the corresponding Temperature measurements over this sub-area d are detected by the detector can be.
  • the partial area lying above the measuring window 12 is part of the axis 14 of a rail vehicle, whose impeller is designated 15.
  • the Rail itself is indicated schematically at 16 and across Threshold longitudinal axis set at the threshold.
  • the windows 12 and 13 and possibly other windows can be vertically below the area to be measured be arranged, the axial central beam of the measuring device itself, i.e. the optical axis of the focusing optical element 5 protected inside the threshold in can run essentially horizontally, but so different Training of chassis and different Dimensions of wheels and bearings as little as by depending part of a vehicle are interrupted can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radiation Pyrometers (AREA)
  • Braking Arrangements (AREA)
  • Rolling Contact Bearings (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

Die Erfindung bezieht sich auf eine Einrichtung zum Messen von Achs- bzw. Lagertemperaturen zur Ortung von Heißläufern oder überhitzten Bremsen im rollenden Bahnverkehr, bei welcher die Infrarotstrahlen der Meßstellen über einen oszillierenden Schwingspiegel auf einen Infrarotempfänger gelenkt werden, wobei quer zur Schienenlängsrichtung ausgesandte Infrarotstrahlen in der durch die Oszillation des Schwingspiegels definierten Abtastebene erfaßt werden.
Einrichtungen der eingangs genannten Art sind beispielsweise in der AT 395 571 B oder der AT 398 413 B beschrieben. Derartige Einrichtungen werden auch als Heißläuferortungsanlagen (HOA) bezeichnet, wobei je nach erfaßtem Meßbereich mit analogen Einrichtungen auch blockierende Bremsen oder andere unzulässig erhitzte Teile von Schienenfahrzeugen erfaßt werden können. In derartigen Einrichtungen werden als Detektoren thermische Detektoren, wie beispielsweise Bolometer oder aber rasch ansprechende Wärmestrahlungsfühler, wie beispielsweise HgCd, HgTe, InSb, PbSe oder Kombinationen derartiger Halbleiter eingesetzt. Derartige Halbleiterdetektoren sprechen durch thermische Anregung freier Ladungsträger auf Änderungen an und vermögen Strahlung hoher Impulsfolge aufzulösen, sind jedoch für die kontinuierliche Erfassung eines bestimmten Temperaturniveaus ohne zusätzliche Einrichtungen, wie beispielsweise Modulatoren oder Ablenkeinrichtungen, welche den einfallenden Strahl zyklisch unterbrechen oder auf andere Temperaturniveaus lenken, nicht geeignet.
Üblicherweise werden derartige Einrichtungen im Gleisbereich angeordent und der Meßstrahl gelangt durch ein Fenster der Einrichtung und entsprechende Umlenkeinrichtungen auf den im allgemeinen gekühlten Detektor. Üblicherweise erfolgt die Anordnung so, daß das aktive Fenster unter Einschluß eines Winkels zur Normalen Lager eines rollenden Schienenfahrzeuges erfassen kann. Um die Meßgenauigkeit und insbesondere Fehllauf aufgrund des sogenannten Sinuslaufes zu vermeiden, wurden eine Reihe von speziellen Auswerteverfahren entwickelt, mit welchen tatsächlich die jeweils heißeste Stelle einer Achse oder eines Lagers quer zur Schienenlängsrichtung erfaßt werden kann, wobei ein spezielles Meß- und Auswerteverfahren, beispielsweise in der AT 398 413 B beschrieben ist.
Ein gemeinsamer Nachteil der bisher bekannten Einrichtung besteht darin, daß stark unterschiedliche Laufradgrößen, insbesondere unterschiedliche Laufradgrößen bei Personenwaggons oder Schwerlastwaggons, insbesondere sogenannten Niederflurwaggons, den möglichen Abtastbereich wesentlich beeinflussen, der sich aus dem Abstand des Schwingspiegels zur Abtastfläche ableitet. Bedingt durch die Geometrie unterschiedlicher Fahrzeuge und insbesondere die Geometrie unterschiedlicher Lager ist es mit einer einzigen Einrichtung in der Regel nur sehr schwer möglich, mehrere Abtastflächen gleichzeitig bei unterschiedlichen Wagengruppen zu erfassen.
Die Erfindung zielt nun darauf ab, eine einfache Einrichtung der eingangs genannten Art mit einem oszillierenden Schwingspiegel, welcher eine Abtastebene erfaßt zu schaffen, mit welchem es unabhängig von der Geometrie der jeweilig rollenden Fahrzeuge möglich ist, definierte Positionen im Bereich der Achse eines Fahrzeuges, insbesondere Lagerachsen, Bremsen, wie beispielsweise Scheibenbremsen oder andere möglicherweise unzulässig erwärmte Teile zu erfassen und mit nur einer einzigen Detektoreinrichtung eine vollständige Information zu erlangen. Zur Lösung dieser Aufgabe besteht die erfindungsgemäße Einrichtung im wesentlichen darin, daß innerhalb der Abtastebene wenigstens zwei Umlenkspiegel in einem Abstand quer zur Schienenlängsrichtung voneinander angeordnet sind, deren umgelenkte Infrarotstrahlen entsprechend der Oszillation des Schwingspiegels in zeitlicher Abfolge erfaßt werden. Dadurch, daß innerhalb der Abtastebene wenigstens zwei Umlenkspiegel in einem Abstand quer zur Schienenlängsrichtung voneinander angeordnet sind, lassen sich eine Mehrzahl von Meßbereichen bzw. Meßstellen in eine der Oszillation des Schwingspiegels entsprechende definierte Abtastebene umlenken und einem gemeinsamen Detektor zuführen, wenn die jeweils den einzelnen Meßstellen zugeordneten Umlenkspiegel in seitlichem Abstand voneinander angeordnet sind, und im Zuge der Abtastung die umgelenkten Infrarotstrahlen in zeitlicher Abfolge aufgrund der Oszillation des Schwingspiegels auf den Infrarotdetektor gelenkt werden.
In besonders vorteilhafter Weise ist die erfindungsgemäße Ausbildung hiebei so getroffen, daß die Umlenkspiegel als um eine normal zur Spiegelebene stehende Achse rotierende Umlenkspiegel ausgebildet sind. Derartige rotierende Umlenkspiegel können bei entsprechend hoher Rotationsgeschwindigkeit auf die Spiegelfläche auftreffende Staubpartikel durch Zentrifugalkraft wiederum abwerfen, sodaß ein Selbsreinigungseffekt der Umlenkspiegel beobachtet wird.
Mit Vorteil kann die Ausbildung so getroffen sein, daß die Ebenen der Spiegeloberflächen der Umlenkspiegel im wesentlichen parallel zueinander angeordnet sind. Wenn derartige Spiegeloberflächen der Umlenkspiegel im wesentlichen parallel zueinander angeordnet sind, können innerhalb der durch den Schwingspiegel definierten Abtastebene eine Mehrzahl von darüberliegenden Positionen jeweils einem derartigen Umlenkspiegel zugeordnet und sukzessive sicher erfaßt werden, wobei eine besonders einfache Kompensation von Überlagerungssignalen beim Übergang von einem Umlenkspiegel zum nächsten Umlenkspiegel innerhalb des Oszillationsbereiches des Schwingspiegels ermöglicht wird.
In besonders einfacher Weise ist die Ausbildung so getroffen, daß die Umlenkspiegel in zur Fahrebene bzw. relativ zu der durch die Schienenschwellen aufgespannten Ebene unterschiedlicher Höhe bzw. unterschiedlichem Vertikalabstand angeordnet sind. Bei im wesentlichen paralleler Anordnung der Ebenen der Spiegeloberflächen der Umlenkspiegel führt eine derartige Versetzung quer zur Schienenlängsrichtung bzw. in Längsrichtung der Schwellenachse zur Erfassung exakter Positionen einer Achse oder eines Lagers, ohne daß hiebei die optische Achse des Detektors in einer Weise geneigt werden müßte, daß sie durch unterschiedliche geometrische Ausgestaltungen des Fahrgestells von Fahrzeugen beeinträchtigt werden könnte. Dies gilt insbesondere für eine bevorzugt im wesentlichen horizontale Anordnung der optischen Achse der Eingangsoptik des Detektors.
Mit Vorteil ist die erfindungsgemäße Ausbildung so getroffen, daß die rotierenden Umlenkspiegel innerhalb einer hohlen Schwelle angeordnet sind und daß die Schwelle in vertikaler Richtung oberhalb der jeweiligen Spiegel Durchbrechungen bzw. Fenster für den Durchtritt von Infrarotstrahlen aufweist. Auf diese Weise können die rotierenden Umlenkspiegel selbst geschützt angeordnet werden und es kann mit einem eng definierten und durch Fremdeinflüsse nicht gestörten Abtastwinkel innerhalb der durch die Oszillation des Spiegels definierten Abtastebene eine Mehrzahl von Meßstellen oder Meßbereichen sicher erfaßt werden. Die Durchbrechungen bzw. Fenster der Schwelle können in geeigneter Weise durch infrarotdurchlässige Gläser oder aber durch Blenden oder Schieber geschützt werden, sodaß die Gefahr der Verschmutzung der Spiegel wesentlich herabgesetzt werden kann.
Mit Vorteil ist die Ausbildung so getroffen, daß die optische Achse der Eintrittslinse des den oszillierenden Schwingspiegel und den Infrarotempfänger enthaltenden Detektors im wesentlichen parallel zur Fahrebene verläuft. Eine derartige Orientierung der optischen Achse der Optik des Detektors und insbesondere der optischen Achse der Eintrittslinse des Detektors erlaubt es, den Detektor selbst geschützt, beispielsweise innerhalb einer hohlen Schwelle anzuordnen, sodaß Beeinträchtigungen durch mechanische Einflüsse oder durch Verschmutzung weiter herabgesetzt werden können. Insbesondere erlaubt diese Ausbildung sicherzustellen, daß auch im Falle von von Niederflurwaggons oder von Waggons herabhängenden Teilen der Meßstrahl in keiner Weise unterbrochen werden kann und daher sicher für alle Achsen die erforderlichen Meßwerte zur Verfügung gestellt werden können.
Mit Vorteil ist die Ausbildung so getroffen, daß die Ebenen der Umlenkspiegel etwa 45° zur Fahrebene geneigt angeordnet sind, wobei vorzugsweise die optische Achse der Eintrittslinse des Detektors innerhalb der hohlen Schwelle in Schwellenlängsrichtung axial oder achsparallel angeordnet ist. Eine exakte Zuordnung zu jeweils in Längsrichtung der Achsen versetzt angeordneten Meßbereichen oder Meßstellen, wie beispielsweise Lagern oder Scheibenbremsen, gelingt hiebei mit Vorteil dadurch, daß die Umlenkspiegel jeweils unterhalb der zu erfassenden Meßstellen angeordnet sind, wobei eine besonders hohe Meßgenauigkeit dann gewährleistet werden kann, wenn die rotierenden Umlenkspiegel innerhalb der Vertikalprojektion der jeweiligen Meßfläche angeordnet sind. Auf diese Weise wird jeweils die gesamte Meßfläche im Oszillationsbereich des Schwingspiegels abgetastet, sodaß vollständige Informationen über die axiale Breite des zu messenden Bereiches gewonnen werden können.
Gemäß einer bevorzugten Ausbildung der erfindungsgemäßen Heißläuferortungsanlage sind die Umlenkspiegel als konvexe oder konkave Umlenkspiegel ausgebildet. Bei Verwendung eines konvexen Spiegels kann der Abtastbereich vergrößert und bei Verwendung eines konkaven Spiegels der Abtastbereich eingeschränkt werden.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert. In dieser zeigen Fig. 1 eine schematische Anordnung von zwei rotierenden Umlenkspiegeln relativ zu einem Detektor mit einem Schwingspiegel und Fig. 2 eine schematische Anordnung der Einrichtung im Inneren einer hohlen Meßschwelle.
In Fig. 1 sind zwei rotierende Umlenkspiegel 1 und 2 in Achsrichtung einer Schwelle um einen Abstand a versetzt angeordnet, wobei der Detektor 3 in axialem Abstand von den beiden rotierenden Umlenkspiegeln 1 und 2 mit im wesentlichen horizontaler Achse 4 der Eingangsoptik bzw. Eingangslinse 5 angeordnet ist. Die Achse 4 bezeichnet hiebei den Zentralstrahl, welcher unter Zwischenschaltung des fokusierenden optischen Elementes, nämlich der Eingangslinse 5 auf eine Bildfeldlinse 6 gelangt. Mit 7 ist hiebei ein Autokollimationselement bezeichnet, bei welchem die Temperatur des Infrarotdetektors 8 eine entsprechende Schwingstellung des Schwingspiegels 9 vorausgesetzt auf sich selbst reflektiert wird, sodaß ein Referenzwert gewonnen werden kann. Der Schwingspiegel 9 schwingt im Sinne des Doppelpfeiles 10, wodurch eine in der Zeichenebene verlaufende Abtastebene aufgespannt und im Zuge des oszillierenden Schwingens des Schwingspiegels 9 zunächst ein erster Teilscan über den Bereich b unter Zwischenschaltung des Umlenkspiegels 2 und in der Folge ein weiterer Teilscan über eine axiale Länge c unter Verwendung des Umlenkspiegels 1 erfolgt, wobei die jeweilig in der Ebene liegenden Meßstrahlen durch die Winkelbereich α und β in zeitlicher Reihenfolge vom Detektor 8 erfaßt werden. Es versteht sich von selbst, daß ein weiterer nicht dargestellter rotierender Spiegel die Abtastung weiterer Meßstellen, wie beispielsweise einer Scheibenbremse ermöglicht. Für die Umlenkspiegel 1 bzw. 2 können Planspiegel oder, wie in Fig. 1 mit strichlierten Linien angedeutet, Konvex- bzw. Konkavspiegel verwendet werden.
Bei der Darstellung nach Fig. 2 sind der Detektor 3 und die beiden rotierenden Spiegel 1 und 2 im Inneren einer hohlen Meßschwelle 11 angeordnet, wobei die optische Achse 4 im wesentlichen mit der Längsachse der Meßschwelle 11 übereinstimmt. Die Meßschwelle verfügt über Fenster 12 und 13, durch welche die von dem jeweils zu messenden Teilbereich ausgehenden Infrarotstrahlen auf die Umlenkspiegel 1 und 2 gelangen können, wobei diese Fenster 12 und 13 mit Schiebern verschlossen werden können. Bei der Darstellung nach Fig. 2 ist der durch das Fenster 13 eintretende Meßstrahl so orientiert, daß ein Teilbereich d eines Lagers in Richtung der Achse des Lagers erfaßt werden kann und die entsprechenden Temperaturmeßwerte über diesen Teilbereich d vom Detektor erfaßt werden können. Der über dem Meßfenster 12 liegende Teilbereich ist hiebei ein Teilbereich der Achse 14 eines Schienenfahrzeuges, dessen Laufrad mit 15 bezeichnet ist. Die Schiene selbst ist schematisch mit 16 angedeutet und quer zur Schwellenlängsachse an der Schwelle festgelegt.
Die Fenster 12 und 13 sowie gegebenenfalls weitere Fenster können jeweils vertikal unterhalb des zu messenden Bereiches angeordnet werden, wobei der axiale Zentralstrahl der Meßeinrichtung selbst, d.h. die optische Achse des fokusierenden optischen Elementes 5 geschützt im Inneren der Schwelle im wesentlichen horizontal verlaufen kann, sodaß jedoch unterschiedliche Ausbildungen von Fahrgestellen und unterschiedliche Dimensionen von Rädern und Lagern ebensowenig wie durch herabhängende Teiles eines Fahrzeuges unterbrochen werden kann.

Claims (11)

  1. Einrichtung zum Messen von Achs- bzw. Lagertemperaturen zur Ortung von Heißläufern oder überhitzten Bremsen im rollenden Bahnverkehr, bei welcher die Infrarotstrahlen der Meßstellen über einen oszillierenden Schwingspiegel (9) auf einen Infrarotempfänger (8) gelenkt werden, wobei quer zur Schienenlängsrichtung ausgesandte Infrarotstrahlen in der durch die Oszillation des Schwingspiegels (9) definierten Abtastebene erfaßt werden, dadurch gekennzeichnet, daß innerhalb der Abtastebene wenigstens zwei Umlenkspiegel (1,2) in einem Abstand (a) quer zur Schienenlängsrichtung voneinander angeordnet sind, deren umgelenkte Infrarotstrahlen entsprechend der Oszillation des Schwingspiegels (9) in zeitlicher Abfolge erfaßt werden.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Umlenkspiegel (1,2) als um eine normal zur Spiegelebene stehende Achse rotierende Umlenkspiegel (1,2) ausgebildet sind.
  3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ebenen der Spiegeloberflächen der Umlenkspiegel (1,2) im wesentlichen parallel zueinander angeordnet sind.
  4. Einrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Umlenkspiegel (1,2) in zur Fahrebene bzw. relativ zu der durch die Schienenschwellen aufgespannten Ebene unterschiedlicher Höhe bzw. unterschiedlichen Vertikalabstand angeordnet sind.
  5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die rotierenden Umlenkspiegel (1,2) innerhalb einer hohlen Schwelle (11) angeordnet sind und daß die Schwelle (11) in vertikaler Richtung oberhalb der jeweiligen Spiegel (1,2) Durchbrechungen bzw. Fenster (12,13) für den Durchtritt von Infrarotstrahlen aufweist.
  6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die optische Achse (4) der Eintrittslinse (5) des den oszillierenden Schwingspiegel (9) und den Infrarotempfänger (8) enthaltenden Detektors (3) im wesentlichen parallel zur Fahrebene verläuft.
  7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Ebenen der Umlenkspiegel (1,2) etwa 45° zur Fahrebene geneigt angeordnet sind.
  8. Einrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die optische Achse (4) der Eintrittslinse (5) des Detektors (3) innerhalb der hohlen Schwelle (11) in Schwellenlängsrichtung axial oder achsparallel angeordnet ist.
  9. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Umlenkspiegel (1,2) jeweils unterhalb der zu erfassenden Meßstellen angeordnet sind.
  10. Einrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die rotierenden Umlenkspiegel (1,2) innerhalb der Vertikalprojektion der jeweiligen Meßfläche angeordnet sind.
  11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Umlenkspiegel als konvexe oder konkave Umlenkspiegel ausgebildet sind.
EP00967415A 1999-10-19 2000-10-09 Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr Expired - Lifetime EP1222099B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT176999 1999-10-19
AT0176999A AT408092B (de) 1999-10-19 1999-10-19 Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr
PCT/AT2000/000262 WO2001028838A1 (de) 1999-10-19 2000-10-09 Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr

Publications (2)

Publication Number Publication Date
EP1222099A1 EP1222099A1 (de) 2002-07-17
EP1222099B1 true EP1222099B1 (de) 2003-05-21

Family

ID=3520612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967415A Expired - Lifetime EP1222099B1 (de) 1999-10-19 2000-10-09 Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr

Country Status (11)

Country Link
US (1) US6695472B1 (de)
EP (1) EP1222099B1 (de)
CN (1) CN1283509C (de)
AT (2) AT408092B (de)
AU (1) AU7761500A (de)
CA (1) CA2386409C (de)
DE (1) DE50002291D1 (de)
DK (1) DK1222099T3 (de)
HU (1) HU225351B1 (de)
PL (1) PL354198A1 (de)
WO (1) WO2001028838A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478480B2 (en) * 2006-10-27 2013-07-02 International Electronic Machines Corp. Vehicle evaluation using infrared data
US7769564B2 (en) * 2007-01-26 2010-08-03 Progress Rail Services Corp. Method and apparatus for monitoring bearings
US7752015B2 (en) * 2007-01-26 2010-07-06 Progress Rail Services Corp Method and apparatus for monitoring bearings
KR100715235B1 (ko) * 2007-02-05 2007-05-11 이화여자대학교 산학협력단 사건이나 사물을 관찰하기 위한 광학 모듈
DE102007058993A1 (de) * 2007-12-07 2009-06-10 General Electric Co. Vorrichtung zum berührungslosen Messen von Temperaturen an einem Schienenwagen
US8335606B2 (en) * 2008-10-22 2012-12-18 International Electronic Machines Corporation Thermal imaging-based vehicle analysis
US8112237B2 (en) * 2009-03-11 2012-02-07 Progress Rail Services Corp. System and method for correcting signal polarities and detection thresholds in a rail vehicle inspection system
US8280675B2 (en) * 2009-08-04 2012-10-02 Progress Rail Services Corp System and method for filtering temperature profiles of a wheel
RU2512804C1 (ru) * 2012-11-12 2014-04-10 Общество с ограниченной ответственностью "Инфотэкс Автоматика Телемеханика" - ООО "Инфотэкс АТ" Напольная камера устройства для теплового контроля ходовых частей рельсового подвижного состава
US8927936B2 (en) * 2012-12-19 2015-01-06 Progress Rail Services Corp Multi-beam detector retrofitted from single-beam detector
ES2748453T3 (es) * 2013-03-15 2020-03-16 Ecm S P A Verificación de integridad de detectores de ir para un vehículo ferroviario
CN103863355B (zh) * 2014-03-21 2016-04-20 南京理工大学 一种城轨交通探头角度智能调整的轴温探测装置
US9714871B2 (en) * 2014-05-20 2017-07-25 Fca Us Llc Real-time virtual axle assembly temperature sensor
US9908545B2 (en) * 2014-09-22 2018-03-06 General Electric Company Method and system for operating a vehicle system to reduce wheel and track wear
US9415784B2 (en) 2014-10-10 2016-08-16 Progress Rail Services Corporation System and method for detecting wheel condition
US9518947B2 (en) 2014-10-10 2016-12-13 Progress Rail Services Corporation System and method for detecting wheel bearing condition
CN116080702B (zh) * 2023-03-13 2023-07-04 广汉科峰电子有限责任公司 一种车辆轴温智能探测系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646343A (en) * 1970-02-26 1972-02-29 Gen Electric Method and apparatus for monitoring hot boxes
US3816741A (en) * 1971-08-04 1974-06-11 Midland Capitol Corp Infrared scanning system
DE2343904C3 (de) * 1973-08-31 1979-11-29 Industrie Automation Gmbh & Co, 6900 Heidelberg Verfahren zur Messung der Temperatur von Achslagern bei Schienenfahrzeugen
US4015476A (en) * 1974-11-08 1977-04-05 Bethlehem Steel Corporation Scanning pyrometer system
US4659043A (en) * 1981-10-05 1987-04-21 Servo Corporation Of America Railroad hot box detector
US4538181A (en) * 1983-02-28 1985-08-27 Kollmorgen Technologies Optical scanner
FR2656182B1 (fr) * 1983-06-14 1992-07-10 Thomson Trt Defense Dispositif de surveillance infrarouge.
US4600837A (en) * 1983-12-01 1986-07-15 International Business Machines Corporation Optical scanning apparatus with dynamic scan path control
DE3674212D1 (de) * 1986-10-17 1990-10-18 Signaltechnik Gmbh Verfahren zur externen messung von achs-bzw. achslagertemperaturen an fahrenden eisenbahnwagen und vorrichtung zur durchfuehrung des verfahrens.
AT390928B (de) * 1986-10-17 1990-07-25 Voest Alpine Ag Einrichtung zum erfassen von unzulaessig erwaermten radlagern und radreifen von schienenfahrzeugen
AT395571B (de) 1986-10-17 1993-01-25 Voest Alpine Eisenbahnsysteme Einrichtung zum erfassen der raeumlichen orientierung von unzulaessig erwaermten stellen von radlagern und/oder radlaufflaechen von schienenfahrzeugen
US5552592A (en) * 1989-10-30 1996-09-03 Symbol Technologies, Inc. Slim scan module with dual detectors
AT398413B (de) 1990-05-18 1994-12-27 Voest Alpine Eisenbahnsysteme Verfahren zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern
DE4217681C3 (de) 1992-05-29 1999-02-25 Rabotek Ind Computer Gmbh Radsatzdiagnoseeinrichtung zur Überwachung vorbeifahrender Eisenbahnfahrzeuge
EP0597524B1 (de) * 1992-11-09 1997-08-06 Koninklijke Philips Electronics N.V. Verfahren und Vorrichtung zur Untersuchung eines Objektes mittels eines reflektierbaren Strahlungsbündels
AT400989B (de) * 1992-12-21 1996-05-28 Vae Ag Einrichtung zum erkennen unzulässig erwärmter bauteile bzw. stellen an bewegten objekten
US5671047A (en) * 1995-05-15 1997-09-23 Bio-Rad Laboratories Laser beamsplitter for generating a plurality of parallel beams
US5565983A (en) * 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5660470A (en) * 1996-02-06 1997-08-26 Southern Technologies Corp. Rail mounted scanner
US5831762A (en) * 1996-06-21 1998-11-03 Raytheon Company Imaging sensor having multiple fields of view and utilizing all-reflective optics
FR2760528B1 (fr) * 1997-03-05 1999-05-21 Framatome Sa Procede et dispositif d'examen photothermique d'un materiau
DE19846995C2 (de) * 1998-10-13 2000-11-30 Fraunhofer Ges Forschung Vorrichtung zum berührungslosen Detektieren von Prüfkörpern
US6286992B1 (en) * 1999-02-12 2001-09-11 Meritor Heavy Vehicle Systems, Llc Axle temperature monitor
US6515781B2 (en) * 1999-08-05 2003-02-04 Microvision, Inc. Scanned imaging apparatus with switched feeds

Also Published As

Publication number Publication date
EP1222099A1 (de) 2002-07-17
DE50002291D1 (de) 2003-06-26
CN1379720A (zh) 2002-11-13
PL354198A1 (en) 2003-12-29
AT408092B (de) 2001-08-27
ATE240862T1 (de) 2003-06-15
AU7761500A (en) 2001-04-30
HUP0203073A3 (en) 2003-04-28
ATA176999A (de) 2001-01-15
US6695472B1 (en) 2004-02-24
DK1222099T3 (da) 2003-09-22
HU225351B1 (en) 2006-10-28
HUP0203073A2 (hu) 2003-01-28
CA2386409A1 (en) 2001-04-26
CN1283509C (zh) 2006-11-08
CA2386409C (en) 2007-05-01
WO2001028838A1 (de) 2001-04-26

Similar Documents

Publication Publication Date Title
EP1222099B1 (de) Einrichtung zum messen von achs- bzw. lagertemperaturen zur ortung von heissläufern oder überhitzten bremsen im rollenden bahnverkehr
DE60015268T2 (de) Fahrzeug zur Vermessung des geometrischen Zustandes eines Gleises
DE3334976C2 (de)
DE4217681C2 (de) Radsatzdiagnoseeinrichtung zur Überwachung vorbeifahrender Eisenbahnfahrzeuge
DE4136904A1 (de) Einrichtung zur beruehrungslosen abstandsmessung von schienen eines gleises
DE1154146B (de) Vorrichtung zum Feststellen der Erwaermung von Achslagerkaesten
EP3580393A1 (de) Verfahren zur berührungslosen erfassung einer gleisgeometrie
DE10217295B4 (de) Bestimmung der Ausrichtung eines optoelektronischen Sensors
EP0604389B1 (de) Einrichtung zum Erkennen unzulässig erwärmter Bauteile bzw. Stellen an bewegten Objekten
EP0457752B1 (de) Verfahren zum Messen von Achs- und Lagertemperaturen zur Ortung von Heissläufern
AT396778B (de) Einrichtung zum erfassen von unzulässig erwärmten radlagern und/oder radreifen
DE19510560A1 (de) Meßvorrichtung zur berührungsfreien Vermessung des Schienenprofils
EP0265538B1 (de) Vorrichtung zum berührungslosen Messen der Bremsentemperaturen an vorüberfahrenden Eisenbahnwagen
DE19747872A1 (de) System für die Vermessung von Schienen, insbesondere Laufschienen für Krane, Regalbediengeräte, Laufradblöcke
EP1186856B1 (de) Vorrichtung zum Messen von Profilen
DE1279942B (de) Vorrichtung zum periodischen Abtasten eines Gegenstandes mit einem Strahlendetektor
JPS63172398A (ja) 車両の侵入検出・確認装置
AT395571B (de) Einrichtung zum erfassen der raeumlichen orientierung von unzulaessig erwaermten stellen von radlagern und/oder radlaufflaechen von schienenfahrzeugen
DE940785C (de) Verfahren zur Feststellung von Heisslaeufern von Eisenbahnwaggons
DE1918317B2 (de) Vorrichtung zum Feststellen der Erwärmung von Achslagern
EP0263896B1 (de) Verfahren zur externen Messung von Achs-bzw. Achslagertemperaturen an fahrenden Eisenbahnwagen und Vorrichtung zur Durchführung des Verfahrens
EP0263217B1 (de) System zum Erkennen unzulässig erwärmter Bauteile an fahrenden Schienenfahrzeugen
DE102007058993A1 (de) Vorrichtung zum berührungslosen Messen von Temperaturen an einem Schienenwagen
EP0677739B1 (de) Vorrichtung zur Messwerterfassung
EP0949134B1 (de) Vorrichtung zum berührungslosen Messen der Temperatur von Lagern fahrender schienengebundener Fahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VAE GMBH

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030521

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030521

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030521

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50002291

Country of ref document: DE

Date of ref document: 20030626

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PPS POLYVALENT PATENT SERVICE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030901

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031009

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1222099E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
BERE Be: lapsed

Owner name: *VAE G.M.B.H.

Effective date: 20031031

26N No opposition filed

Effective date: 20040224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071025

Year of fee payment: 8

Ref country code: DK

Payment date: 20071015

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071015

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071012

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071016

Year of fee payment: 8

Ref country code: GB

Payment date: 20071023

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081009

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071009

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101014

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 240862

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111009