EP1216766A2 - Konturmesseinrichtung und Verfahren zur Messung einer Kontur - Google Patents
Konturmesseinrichtung und Verfahren zur Messung einer Kontur Download PDFInfo
- Publication number
- EP1216766A2 EP1216766A2 EP01128696A EP01128696A EP1216766A2 EP 1216766 A2 EP1216766 A2 EP 1216766A2 EP 01128696 A EP01128696 A EP 01128696A EP 01128696 A EP01128696 A EP 01128696A EP 1216766 A2 EP1216766 A2 EP 1216766A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- contour
- distance
- measuring device
- roller
- roll stand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005259 measurement Methods 0.000 title description 13
- 230000003287 optical effect Effects 0.000 claims abstract description 21
- 238000005096 rolling process Methods 0.000 description 32
- 230000002411 adverse Effects 0.000 description 5
- 238000004886 process control Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/12—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll camber
Definitions
- the invention relates to a contour measuring device for measuring the contour a roller arranged in a roll stand with a number of distance sensors, each of which is used to determine its respective distance from Surface of the roller is designed. It also relates to a method of measurement such a contour.
- a roll stand can be used to roll a rolling stock, for example in a rolling mill or a rolling mill with a number of work and as needed Back-up rollers are used.
- the roll stand or the rolling mill can in particular for rolling so-called cold or hot flat products, For example, metal strips can be provided.
- the rolling process regarding the operating parameters that characterize it and the quality of the rolled product depend particularly on the geometry of the rollers. in the Ideally, the rollers should be absolutely round and free of Be eccentricity. Deviations from this and in particular an eccentricity that occurs of the rolls can namely on the product through the rolling process are transferred and thus directly to loss of quality in the rolled product to lead.
- the profile of a roller parallel to the roller axis influence the flatness and the profile of the rolling stock.
- control and / or regulation systems for Use about the deviations of one or more rollers from the desired contour or from the desired profile can be compensated.
- one Process control that is sufficiently precise is as timely and exact as possible Knowledge of the contour of the respective rollers, in particular of their Crowning, of particular importance.
- This monitoring can also be extended Period continuously over time, in order to make changes the parameters mentioned, for example as a result of thermal growth, Wear, or so-called chatter marks, is sufficient in the process control consider.
- sufficient process control can meet high quality standards in addition to monitoring the geometry of the rolls, monitoring their position relative to each other and / or relative to the actual roll stand or the roll stand may be provided.
- the vertical Misalignment and the deflection of one or each roller are monitored, via which the profile of the rolling stock can be specifically influenced.
- a contour measuring device can provide suitable input values be provided for measuring the contour of the respective rollers.
- Such Contour measuring device is known for example from DE 195 47 438 A1.
- This Contour measuring device comprises a number of at one in a longitudinal direction extended carrier spaced-apart distance sensors, which each determine the distance of their measuring head to the surface of the respective roller.
- vibrations can occur and due to thermal distortion in the attachment of the sensors Measurement values have a comparatively large measurement error, so that a sufficiently precise process control is only possible to a limited extent.
- decoupling the distance sensors from component vibrations that occur is not possible or only with considerable effort.
- the invention is therefore based on the object, a contour measuring device Specify above type, even under comparatively adverse conditions a determination of the contour of a roller with particularly high accuracy guaranteed and also a determination of the spatial position of the Roller, especially in relation to other rollers, allows. Furthermore should a particularly reliable and accurate method for measuring the contour of a be arranged in a roll stand arranged roll.
- this object is achieved according to the invention with a measuring system for determining the position of each distance sensor relative to a fixed point on the roll stand.
- the invention is based on the consideration that a determination of Contour of a roller with high accuracy even under adverse conditions, like them can prevail in a rolling mill, for example, through a systematic Avoiding or reducing essential sources of error is achievable.
- An essential source of error in determining the contour was the due to vibrations or thermal distortion changing and often only insufficiently known position of the distance sensors per se. This would mean keeping the absolute positions of the distance sensors constant during the determination of the contour and - especially in the case of regulation - considered over an extended period; but this is due to the prevailing forces and vibrations and especially because of thermal Effects only with limited accuracy and with a particularly high effort possible.
- a two-stage concept is envisaged here a computational compensation, for example of disturbing component vibrations is possible. This is on the one hand like a first step the determination of the distance of the respective distance sensor to the roller surface and in the manner of a second step, on the other hand, the determination of the position each distance sensor is provided relative to a fixed point of the roll stand.
- the center of the roll or the roll axis can be provided as a fixed point be a locally due to their end storage in the roll stand has a sufficiently fixed position.
- the single measuring gear is a plurality of Distance sensors are provided on a substantially parallel to the roller axis aligned carrier are spaced from each other.
- the measuring system should be especially with regard to a particularly high reliability to the high expected in the intended use in a rolling mill Loads designed, but on the other hand can be provided with only a limited effort his.
- the measuring system is advantageously an optical system educated.
- the measuring system has further advantageous embodiment, a source for directional emission of light, in particular a laser light source. It is precisely because of the directional spread of light in a particularly simple way a reliable and in itself Non-contact position determination of the distance sensors possible.
- the measuring system expediently comprises a number of optical detectors, each of which is assigned to a distance sensor and is rigidly connected to it.
- the optical detectors can be Act photodetectors that provide an output signal that depends on the intensity of the incident light depends.
- a target position of the distance sensor can be used be defined by that vertical position in the roll stand, in the associated photodetector from the directionally emitted light beam or Laser beam is fully illuminated and thus delivers a maximum output signal.
- a deviation from the target position for example due to thermal Effects, can then be seen from a drop in the output signal, so that that supplied by the distance sensor, for its distance from the roller surface characteristic output signal in a subsequent control device can be compensated accordingly.
- the optical detectors are each designed as a photodiode array. This means that the recording is spatially resolved of the directed light beam or laser beam possible; an acquisition a deviation of the position of the assigned distance sensor from it The target position can thus be determined directly.
- an upstream Lens is a spatial resolution down to the micrometer ( ⁇ m) range reachable.
- Detectors advantageously within a carrier tube provided as a carrier, for example, a square tube. With this configuration penetrate the distance sensors, each rigidly connected to a detector the pipe jacket in such a way that its respective measuring head or measuring range is exposed and facing the surface of the respective roller.
- the carrier tube under pressure with a filling medium, in particular is flooded with air or gas.
- the measuring system expediently has a rigidly connected to the roll stand Reference detector, which is used to form the fixed point.
- the stated object is achieved by, on the one hand, for a number of distance sensors their respective distance from the surface of the roller is determined, on the other hand the position of each distance sensor relative to a fixed point of the roll stand is determined.
- the method is based on the two-component concept mentioned thus on the coupling of two measuring methods, the first measuring method being the Distance between the distance sensor (s) and the roller surface is determined, and in the second measuring method the position of the distance sensor or sensors determined relative to the roll stand or the roll stands becomes.
- the respective distance of the distance sensors from the surface is advantageously determined contactlessly, in particular by means of eddy current sensors.
- position of each distance sensor optically determined relative to a fixed point of the roll stand.
- the advantages achieved with the invention are in particular that the two-stage or two-component concept is particularly high Accuracy in determining the contour of a roller even in the comparative adverse conditions in a rolling mill is guaranteed. It is through the measurement of the positions, which can be updated over time or can be carried out in real time the distance sensors the measurement errors due to thermal distortion or due kept particularly low by vibrations of the respective roll stand. This is the only way to use the distance sensors satisfactorily in the present sense, in particular the eddy current sensors provided for this purpose.
- the design of the for determining the position of the distance sensors provided measuring system as an optical system also enables in particular simple and therefore economical design a non-contact Measurement of the relevant positions, the results of which are highly accurate particularly high measuring speed and are therefore available promptly.
- FIG. 1 An embodiment of the invention is explained in more detail with reference to a drawing.
- the figure shows part of a rolling mill with a contour measuring device.
- the rolling train 1 shown only partially in the figure is for rolling so-called Flat hot products, for example of metal strips, in particular high quality.
- the rolling mill 1 comprises a plurality of in one Rolling direction seen one behind the other rolling stands 2, of which in only one is shown in the figure.
- each of the roll stands 2 is - its position in Walz Identification 1 and thus according to its respective function - one Number of rollers 4 arranged.
- the rollers 4 can - also depending dependent on the position of the roll stand 2 in the rolling mill 1 on the function of the respective mill stand 2 - as so-called work rolls or be designed as so-called backup rolls.
- There is a roller in the figure 4 shown the ends 6, 8 in a manner not shown in the associated Roll stand 2 about a roller axis 10 in indicated by the line the center of the roller is rotatably mounted.
- the rolling mill 1 is with a control system not shown in the figure equipped, one for each roller 4 during a rolling process Number of setting parameters such as a contact pressure on the one to be processed Rolling stock can be specified.
- a contour measuring device 12 for measuring the contour of the roller 4 is on the roll stand 2 according to the figure.
- the contour measuring device 12 comprises a substantially horizontal and parallel to the support tube 14 aligned with the roller axis 10 indicated by the line.
- the carrier tube 14, which is designed as a square tube in the exemplary embodiment, is fixed at its ends with a support strut 16 or 18 of the roll stand 2 connected.
- a number of distance sensors are spaced apart from one another on the carrier tube 14 20 arranged; the carrier tube 14 thus serves as a common Carrier for the distance sensors 20.
- the distance sensors 20 are each designed as so-called eddy current sensors and to determine the distance of the respective distance sensor 20 Surface 22 of the roller 4 is provided.
- each distance sensor 20 includes in each case one measuring head 24, via the surface facing it during operation 22 of the roller 4 eddy currents are induced. These in turn generate in respective measuring head 24 an electromagnetic signal, the intensity of the distance the surface 22 depends on the distance sensor 20 or its measuring head 24.
- each distance sensor is 20 designed such that the distance to the surface 22 of the roller 4 can be determined with an accuracy of about a few micrometers ( ⁇ m).
- the contour measuring device 12 is for a reliable measurement of the contour of the Roller 4 even under comparatively unfavorable conditions, such as during the Operation of rolling mill 1 can prevail, designed.
- the contour measuring device 12 in particular designed for the eventual occurrence Component vibrations in the roll stand 2 and also thermal expansions or Contractions do not significantly affect the accuracy of the distance measurements.
- the contour measuring device 12 comprises a measuring system 30 for determination the position of each distance sensor 20 relative to a fixed point 32 of the Roll stand 2.
- the measuring system 30 is designed as an optical system and comprises a source for the directed emission of light a fixed to the support strut 18 of the roll stand 2 arranged laser light source 34.
- the laser light source 34 is for Emission of a laser beam 36 fanned out in a horizontal plane is formed.
- each distance sensor 20 is part of the Measuring system 30 each assigned an optical detector 38 with which the respective Distance sensor 20 is rigidly connected.
- optical detector 38 each have a photodiode array. This provides, stimulated by the incident fanned laser beam 36, an output signal, whose intensity depends on the location of the impact of the laser beam 36.
- the output signal of the respective photodiode array is therefore characteristic for the vertical position of the respective optical detector 38 and thus also for the position of the distance sensor 20 firmly connected to it.
- an optical detector 38 can also be used as a PSD or position sensing Detector designated photo detector can be used.
- Measuring system 30 also a rigidly connected to the support strut 16 of the roll stand 2 Reference detector 40, which works in the same way as the optical detectors 38 is formed. That by the laser light source 34 and the central detection point The optical line predetermined by the reference detector 40 is essentially aligned horizontally and guided parallel to the roller axis 10. On this ensures that even when moved from a horizontal position Positioning of the roller axis 10 and the associated roll stand 2 at least one in its contour from the parallel orientation to the roller axis 10 deviating surface 22 is reliably and reliably recognizable at all times.
- the measuring system 30 is designed in a particularly robust design. To do this among other things, the optical detectors 38 within that provided as a carrier Carrier tube 14 arranged. The distance sensors 20 penetrate the tubular jacket of the support tube 14, so that the measuring heads 24 each in the outside arranged of the support tube 14 and facing the surface 22 of the roller 4 are. In addition, the carrier tube 14 with air or gas as the filling medium is below Flooded overpressure.
- the distance sensors 20 continuously and promptly their respective distance from the surface 22 of the Roll 4 determined.
- promptly and continuously Measuring system 30 the position of each spacer 20 relative to the fixed point 32, in particular in the vertical direction.
- the optical detectors 38 are in both embodiments in terms of their Operating parameters designed such that a calculation of the position of the respective Distance sensors 20 with a clock frequency of more than 500 Hz possible is, so that the influence of possible natural frequencies when determining the position the distance sensors 20 is safely eliminated.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
- 1
- Walzstraße
- 2
- Walzgerüst
- 4
- Walze
- 6, 8
- Enden
- 10
- Walzenachse
- 12
- Konturmeßeinrichtung
- 14
- Trägerrohr
- 16, 18
- Stützstreben
- 20
- Abstandssensor
- 22
- Oberfläche
- 24
- Meßkopf
- 30
- Meßsystem
- 32
- Fixpunkt
- 34
- Laserlichtquelle
- 36
- gefächerter Laserstrahl
- 38
- optischer Detektor
- 40
- Referenzdetektor
Claims (13)
- Konturmeßeinrichtung (12) zur Messung der Kontur einer in einem Walzgerüst (2) angeordneten Walze (4) mit einer Anzahl von Abstandssensoren (20), von denen jeder zur Ermittlung seines jeweiligen Abstands zur Oberfläche (22) der Walze (4) ausgelegt ist,
dadurch gekennzeichnet, dass diese mit einem Meßsystem (30) zur Ermittlung der Position jedes Abstandssensors (20) relativ zu einem Fixpunkt (32) des Walzgerüsts (2) versehen ist. - Konturmeßeinrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass deren Abstandssensoren (20) als Wirbelstromsensoren ausgebildet sind. - Konturmeßeinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass eine Mehrzahl der Abstandssensoren (20) an einem im wesentlichen parallel zur Walzenachse (10) ausgerichteten Träger beabstandet zueinander angeordnet sind. - Konturmeßeinrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass deren Meßsystem (30) als optisches System ausgebildet ist. - Konturmeßeinrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass deren Meßsystem (30) eine Quelle zur gerichteten Emission von Licht, insbesondere eine Laserlichtquelle (34), aufweist. - Konturmeßeinrichtung nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass deren Meßsystem (30) eine Anzahl von optischen Detektoren (38) umfaßt, von denen jeder jeweils einem Abstandssensor (20) zugeordnet und mit diesem starr verbunden ist. - Konturmeßeinrichtung nach Anspruch 6,
dadurch gekennzeichnet, dass deren optische Detektoren (38) jeweils als Fotodiodenarray ausgebildet sind. - Konturmeßeinrichtung nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass die optischen Detektoren (38) innerhalb eines als Träger vorgesehenen Trägerrohres (14) angeordnet sind, dessen Rohrmantel die Abstandssensoren (20) durchdringt. - Konturmeßeinrichtung nach Anspruch 8,
dadurch gekennzeichnet, dass das Trägerrohr (14) unter Überdruck mit einem Füllmedium, insbesondere mit Luft oder Gas, geflutet ist. - Konturmeßeinrichtung nach einem der Ansprüche 4 bis 9,
dadurch gekennzeichnet, dass deren Meßsystem (30) einen mit dem Walzgerüst (2) starr verbundenen Referenzdetektor (40) aufweist. - Verfahren zur Messung der Kontur einer in einem Walzgerüst (2) angeordneten Walze (4), bei dem für eine Anzahl von Abstandssensoren (20) ihr jeweiliger Abstand zur Oberfläche (22) der Walze (4) ermittelt wird,
dadurch gekennzeichnet, dass zusätzlich die Position jedes Abstandssensors (20) relativ zu einem Fixpunkt (32) des Walzgerüsts (2) ermittelt wird. - Verfahren nach Anspruch 11,
dadurch gekennzeichnet, dass der jeweilige Abstand der Abstandssensoren (20) zur Oberfläche berührungslos, insbesondere mittels Wirbelstromsensoren, ermittelt wird. - Verfahren nach Anspruch 11 oder 12,
dadurch gekennzeichnet, dass die Position jedes Abstandssensors (20) relativ zu einem Fixpunkt (32) des Walzgerüsts (2) optisch ermittelt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10063773 | 2000-12-21 | ||
DE2000163773 DE10063773A1 (de) | 2000-12-21 | 2000-12-21 | Konturmeßeinrichtung und Verfahren zur Messung einer Kontur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1216766A2 true EP1216766A2 (de) | 2002-06-26 |
EP1216766A3 EP1216766A3 (de) | 2004-05-06 |
Family
ID=7668123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01128696A Withdrawn EP1216766A3 (de) | 2000-12-21 | 2001-12-01 | Konturmesseinrichtung und Verfahren zur Messung einer Kontur |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1216766A3 (de) |
DE (1) | DE10063773A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103302111A (zh) * | 2013-07-01 | 2013-09-18 | 莱芜钢铁集团有限公司 | 一种型钢弯曲度在线测量装置及型钢弯曲度在线测量方法 |
US10010916B2 (en) | 2013-03-12 | 2018-07-03 | Novelis Inc. | Measuring thermal expansion and the thermal crown of rolls |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892807A (ja) * | 1981-11-27 | 1983-06-02 | Sumitomo Metal Ind Ltd | ロ−ル形状測定方法 |
JPS5892809A (ja) * | 1981-11-27 | 1983-06-02 | Sumitomo Metal Ind Ltd | ロ−ル形状測定方法及び装置 |
EP0221785A2 (de) * | 1985-10-21 | 1987-05-13 | Kawasaki Steel Corporation | Ultraschallabstandssensor und Überwachung des Oberflächenprofils unter Verwendung eines solchen Sensors |
DE19547438A1 (de) * | 1995-12-11 | 1997-06-12 | Mannesmann Ag | Sensorträger |
DE19844305A1 (de) * | 1998-09-17 | 2000-03-30 | Mannesmann Ag | Kombiniertes Regelungssystem zur Erzeugung bestimmter Produkteigenschaften beim Walzen von Stahlqualitäten im austenitischen, gemischt austenitisch-ferritischen und ferritischen Bereich |
EP1210992A2 (de) * | 2000-11-29 | 2002-06-05 | SMS Demag AG | Konturmesseinrichtung zur Messung der Kontur einer in einem Walzengerüst angeordneten Walze |
-
2000
- 2000-12-21 DE DE2000163773 patent/DE10063773A1/de not_active Withdrawn
-
2001
- 2001-12-01 EP EP01128696A patent/EP1216766A3/de not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892807A (ja) * | 1981-11-27 | 1983-06-02 | Sumitomo Metal Ind Ltd | ロ−ル形状測定方法 |
JPS5892809A (ja) * | 1981-11-27 | 1983-06-02 | Sumitomo Metal Ind Ltd | ロ−ル形状測定方法及び装置 |
EP0221785A2 (de) * | 1985-10-21 | 1987-05-13 | Kawasaki Steel Corporation | Ultraschallabstandssensor und Überwachung des Oberflächenprofils unter Verwendung eines solchen Sensors |
DE19547438A1 (de) * | 1995-12-11 | 1997-06-12 | Mannesmann Ag | Sensorträger |
DE19844305A1 (de) * | 1998-09-17 | 2000-03-30 | Mannesmann Ag | Kombiniertes Regelungssystem zur Erzeugung bestimmter Produkteigenschaften beim Walzen von Stahlqualitäten im austenitischen, gemischt austenitisch-ferritischen und ferritischen Bereich |
EP1210992A2 (de) * | 2000-11-29 | 2002-06-05 | SMS Demag AG | Konturmesseinrichtung zur Messung der Kontur einer in einem Walzengerüst angeordneten Walze |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 007, no. 192 (P-218), 23. August 1983 (1983-08-23) -& JP 58 092807 A (SUMITOMO KINZOKU KOGYO KK), 2. Juni 1983 (1983-06-02) * |
PATENT ABSTRACTS OF JAPAN vol. 007, no. 192 (P-218), 23. August 1983 (1983-08-23) -& JP 58 092809 A (SUMITOMO KINZOKU KOGYO KK), 2. Juni 1983 (1983-06-02) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10010916B2 (en) | 2013-03-12 | 2018-07-03 | Novelis Inc. | Measuring thermal expansion and the thermal crown of rolls |
US10799926B2 (en) | 2013-03-12 | 2020-10-13 | Novelis Inc. | Measuring thermal expansion and the thermal crown of rolls |
CN103302111A (zh) * | 2013-07-01 | 2013-09-18 | 莱芜钢铁集团有限公司 | 一种型钢弯曲度在线测量装置及型钢弯曲度在线测量方法 |
CN103302111B (zh) * | 2013-07-01 | 2015-05-27 | 莱芜钢铁集团有限公司 | 一种型钢弯曲度在线测量装置及型钢弯曲度在线测量方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1216766A3 (de) | 2004-05-06 |
DE10063773A1 (de) | 2002-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60033272T2 (de) | Sondenartiger formmessaufnehmer sowie nc-bearbeitungsvorrichtung und formmessverfahren unter verwendung des messaufnehmers | |
DE4006889C2 (de) | Verfahren und Gerät zur Bestimmung von Meßgrößen zur Berechnung des Außendurchmessers, der Wandstärke oder des Innendurchmessers eines Rohrs | |
EP2920544A1 (de) | Optische messverfahren und messvorrichtung mit einem messkopf zum erfassen einer oberflachentopographie mittels kalibrierung der orientierung des messkopfs | |
EP2590761B1 (de) | Walzanlage mit vorrichtung zur bestimmung der walz- bzw. führungskaliber der walz- bzw. führungsgerüste in einer mehrgerüstigen walzanlage | |
EP0377796A2 (de) | Mess- und Ausrichteinrichtung an einer Rundschleifmaschine | |
WO2007017068A1 (de) | Verfahren und vorrichtung zum führen eines maschinenteils entlang einer definierten bewegungsbahn über einer werkstückoberfläche | |
DE69912162T2 (de) | Schleifmaschine | |
EP2344286A1 (de) | Verfahren und vorrichtung zur ermittlung einer planheit eines metallbandes | |
DE102016100745B3 (de) | Verfahren zur optischen Abstandsmessung sowie ein Abstandsmessgerät | |
EP2062675A1 (de) | Verfahren zum Bestimmen einer Kenngröße für die Genauigkeit einer Nahtlageregelung | |
DE10315086B4 (de) | Verfahren und Vorrichtung zum Ausrichten von Halbleiterwafern bei der Halbleiterherstellung | |
DE3817387C2 (de) | ||
DE102010019656A1 (de) | Messgerät | |
WO2011092104A1 (de) | Verfahren zur bestimmung der position eines werkzeuges | |
DE10248458B4 (de) | Verfahren und Vorrichtung zum Einstellen der Fokuslage eines auf ein Werkstück gerichteten Laserstrahls | |
DE69414475T2 (de) | Verformungsüberwachungssystem für Ausrichtvorrichtung | |
EP3794308B1 (de) | Vorrichtung zur ermittlung einer ausrichtung von wenigstens einem objekt und verfahren zum relativen ausrichten von rollen | |
EP1112129B1 (de) | Verfahren zur erzeugung bestimmter produkteigenschaften beim walzen von stahlqualitäten im austenitischen, gemischt austenitisch-ferritischen und ferritischen bereich | |
EP1216766A2 (de) | Konturmesseinrichtung und Verfahren zur Messung einer Kontur | |
EP0908698A2 (de) | Vorrichtung zum Messen von Langprodukten | |
DE3528047C2 (de) | ||
EP2292899A1 (de) | Verfahren und Apparatur zur Prüfung von Profilnuten | |
DE10214489A1 (de) | Verfahren zur Bestimmung und Korrektur von Führungsfehlern bei einem Koordinatenmeßgerät | |
EP3816014B1 (de) | Vorrichtung und verfahren zur erfassung von geometrischen daten eines aus zwei schienen gebildeten gleises mit einem auf dem gleis verfahrbaren rahmengestell | |
DE102013107791B4 (de) | Werkzeugmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011201 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHULZE, STEFAN |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040102 |