EP1216352B1 - Verfahren zum steuern einer brennkraftmaschine - Google Patents

Verfahren zum steuern einer brennkraftmaschine Download PDF

Info

Publication number
EP1216352B1
EP1216352B1 EP00945597A EP00945597A EP1216352B1 EP 1216352 B1 EP1216352 B1 EP 1216352B1 EP 00945597 A EP00945597 A EP 00945597A EP 00945597 A EP00945597 A EP 00945597A EP 1216352 B1 EP1216352 B1 EP 1216352B1
Authority
EP
European Patent Office
Prior art keywords
cylinders
cylinder
air
variable
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00945597A
Other languages
English (en)
French (fr)
Other versions
EP1216352A1 (de
Inventor
Johann Graf
Michael Henn
Gerhard Schopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1216352A1 publication Critical patent/EP1216352A1/de
Application granted granted Critical
Publication of EP1216352B1 publication Critical patent/EP1216352B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • the invention relates to a method for controlling an internal combustion engine, in particular an internal combustion engine with Quantity control, that is one according to the Otto principle working internal combustion engine.
  • From US 5 515 828 is a method for air / fuel ratio control and torque control in an internal combustion engine known.
  • Control signals for the injection valves and the actuators for adjusting the air mass are determined and are corrected depending on correction signals.
  • For individual cylinder correction of the air ratio and of the torque become in a stationary operating state The actual values of the air ratio are simultaneously displayed for each segment and the torque determined and the respective Assigned to cylinders. All 720 ° crankshaft angles are off these values are then determined the correction signals and the Control signals then for the injectors and the Adjusted to adjust the air mass.
  • the object of the invention is to provide a method this is a low-emission and at the same time comfortable control an internal combustion engine guaranteed.
  • An internal combustion engine (FIG. 1) comprises an intake tract, a throttle valve 10 and at least one injection valve 15 are assigned, and an engine block 2, a cylinder 20 and a crankshaft 23 has.
  • a piston 21 and a connecting rod 22 are associated with the cylinder 20.
  • the Connecting rod 22 is connected to the piston 21 and the crankshaft 23rd connected.
  • the injection valve 15 is either for injection of fuel in several cylinders of the internal combustion engine or only for injecting fuel into each cylinder provided the internal combustion engine. In the latter case
  • Each cylinder 20 of the internal combustion engine is an injection valve 15 assigned.
  • the injection valve 15 may alternatively be provided in a cylinder head 3 and arranged so be that the fuel is directly into the combustion chamber of the cylinder 20 is metered.
  • the injection valve 15 also to a mixing chamber of a Gemischinjektors be arranged, which is the air / fuel mixture from the Mixing chamber blows directly into the cylinder 20.
  • a valve train is also arranged, with at least one inlet valve 30 and one outlet valve 31.
  • the valvetrain comprises at least one not shown Camshaft with a transmission device that the Nokkenhub to the intake valve 30 or the exhaust valve 31 transmits.
  • Such a device for adjusting the Ventilhubverlaufs a gas exchange valve is known from DE 42 44 550 A1 known.
  • This device is preferably for throttle-free Load control of gasoline engines used.
  • the device has two opposing camshafts, which have a Swing lever act on the gas exchange valve.
  • One of the Camshafts determines the opening function and the other camshaft the closing function of the gas exchange valve.
  • the gas exchange valve that is, the stroke and the opening time, can be changed in many areas by a relative rotation of the two camshafts against each other by means of a four-wheeled linkage, wherein a corresponding actuator for adjusting the relative Twist is provided.
  • an electromechanical actuator may also be provided be, the valve lift of the intake or exhaust valve 30, 31 controls.
  • Such an electromechanical actuator is known for example from DE 297 12 502 U1.
  • the actuator comprises a spring-mass oscillator with an armature.
  • the actuator comprises two electromagnets.
  • the anchor acts on the gas exchange valves, so the inlet valve 30th or the exhaust valve 31 a. If an electromechanical Actuator is provided for controlling the gas exchange valves, so There is no camshaft.
  • a spark plug 34 is further introduced.
  • the internal combustion engine is in the figure 1 with a Cylinder 20 shown. However, it includes more cylinders Z2, Z3, Z4.
  • the cylinders Z2 to Z4 are preferably identical formed to the cylinder 20. Further, they are too in each case at least one outlet valve 31 and an inlet valve 30 assigned.
  • An exhaust tract 4 with a catalyst 40 and an oxygen probe 41 is assigned to the internal combustion engine.
  • a Control device 6 is provided, assigned to the sensors are that capture different measures and each of the Determine measured value of the measured variable.
  • the control device 6 determines one or more depending on at least one measured variable Control signals, each controlling a positioning device.
  • the Sensors are a pedal position sensor 71, which is a pedal position the accelerator pedal 7 detected, a throttle position sensor 11, which detects an opening degree of the throttle valve 10, a Air mass meter 12, which detects an air mass flow MAF and / or a Saugrohr horrsensor 13, the intake manifold pressure detected in the intake tract 1, a first temperature sensor 14, detects an intake air temperature, a speed sensor 24, detects a rotational speed N of the crankshaft 23, a second Temperature sensor 25, which detects a coolant temperature TCO, a combustion chamber pressure sensor 26, the pressure P_BR in the Interior of the cylinder 20, so in the combustion chamber, detected, and the oxygen probe 41, which determines the residual oxygen content of the Exhaust gas detected in the exhaust system 4 and this the measured value the air ratio ⁇ assigns.
  • the air ratio ⁇ is the ratio of the cylinder 20 supplied air mass to the theoretical air requirement for stoichiometric ratios at the injected fuel quantity. The air ratio is thus a characterizing the air / fuel ratio Size.
  • a torque sensor 28 is preferably provided, the torque that is in each cylinder 20, Z2 - Z4 generated is detected on the crankshaft 23.
  • the invention may be any subset of be mentioned sensors or additional sensors.
  • the actuators each include an actuator and a Actuator.
  • the actuator is an electric motor drive, an electromagnetic drive or another dem Professional known drive.
  • the actuators are called throttle 10, as an injection valve 15, as a spark plug 34 or as a means for adjusting the valve lift of the or exhaust valves 30, 31 or as electromechanical actuators for controlling the valve lift of the intake and exhaust valves 30, 31 formed. On the actuators will in the following with taken the respective associated actuator reference.
  • the control device 6 is preferably designed as an electronic engine control. However, it may also include multiple controllers that are electrically connected to each other, such. B. over a bus system.
  • FIG. 2 is a flowchart of a method for controlling the internal combustion engine shown, the equality the cylinder 20, Z2 to Z4 causes.
  • the program is in the control device 6 is stored and processed there.
  • the program can either be at predetermined intervals during operation of the internal combustion engine or in predetermined Operating conditions of the internal combustion engine processed become.
  • Such an operating state can, for example be a stationary partial load operation or an idling or be characterized in that the coolant temperature TCO exceeds a predetermined threshold.
  • a step S1 the program is started.
  • the air ratio ⁇ is determined individually for each cylinder, which is represented by the ⁇ indicated by i.
  • the air ratio ⁇ i attributable to them is calculated, which is then a measure for the respective air / fuel ratio in the respective cylinder 20, Z2 to Z4.
  • the cylinder-specific determination of the air ratio ⁇ i for each cylinder averaged over several cycles.
  • a first correction value K1 i for each of the cylinders 20, Z2 to Z4 is determined as a function of the air ratio ⁇ i assigned to the respective cylinder and a desired value ⁇ sp of the air ratio.
  • the desired value ⁇ sp may be equal to one in order to ensure a stoichiometric air / fuel mixture in the cylinders 20, Z 2 to Z 4.
  • the first correction value K1 i is used in the program for general control of the internal combustion engine shown in FIG. 3 and will be described in more detail below.
  • step S4 the program for a predetermined Duration remain in a wait state or alternatively directly go to step S5.
  • step S5 for each cylinder 20, Z2 to Z4, the torque TQ i generated respectively by it is determined.
  • the measurement signal of the torque sensor 28 or the measurement signal of the combustion chamber pressure sensor 26 is evaluated or, for example, the measurement signal of the speed sensor 24.
  • average values of the torques TQ i related to the respective cylinders are determined over several operating cycles of the internal combustion engine.
  • a second correction value K2 i is determined individually for each cylinder 20, Z2 calculated to Z4 depending on the particular a cylinder Z2 to Z4, 20 associated torque TQ i and by averaging all torques TQ i calculated average TQ_MV of the torques.
  • the second correction value K2 i is used in the general program for controlling the internal combustion engine described in FIG. The program is subsequently terminated in a step S7.
  • a main program for Control of the internal combustion engine started.
  • step S11 becomes a target value TQI_SP of the engine torque to be generated depending on the speed N, the Accelerator pedal value PV and other operating variables of the internal combustion engine, such as the coolant temperature TCO, and others Calculated torque contributions, such as from a electronic transmission control or traction control.
  • a fuel injection time period T KSTi for the one or more injectors 15 is calculated individually for each cylinder.
  • the fuel injection time duration T KSTi is calculated for each cylinder 20, Z2 to Z4 as a function of the setpoint value of the torque, the respectively assigned first correction value K1 i and optionally further variables.
  • the dependence of the fuel injection time period T KSTi on the respective correction value K1 i associated with the cylinder 20, Z2 through Z4 ensures that the air / fuel ratio in all cylinders approximates within narrow limits the predetermined desired value of the air / fuel ratio , As a result, caused by manufacturing tolerances different flow rates of the fuel in the injectors 15 can be compensated.
  • a valve lift time T VHi is calculated for each individual cylinder 20, Z2 to Z4 as a function of the desired value TQI_SP of the torque, the second correction value K2 i assigned to the respective cylinder 20, Z2 to Z4 and optionally further variables.
  • the throttle valve 10 or electromechanical actuators or the means or devices are controlled to adjust the valve lift.
  • step S13 a maximum valve lift or a Ventilhubverlauf as a control variable for driving the means for adjusting the Ventilhubverlaufs determined become.
  • steps S12 and S13 is thus advantageously Ensures that both the air / fuel ratio in each cylinder 20, Z2 to Z4 of the internal combustion engine the predetermined Setpoint corresponds as well as in the respective Cylinders torque is equal. This is on the one hand an efficient and gentle operation of the catalyst 14 ensured with a corresponding emission reduction and on the other hand ensures a high level of ride comfort of a vehicle, in which the internal combustion engine is arranged.
  • the program is ended.
  • the program according to FIG. 3 is preferably at predetermined time intervals or depending on the speed N called.
  • FIG. 4 shows a further method for equalizing the cylinders.
  • the steps S1 to S4 are identical to the corresponding steps in FIG. 2.
  • the speed N i assigned to the respective cylinder is determined individually for each cylinder 20, Z2 to Z4.
  • the rotational speed during the expansion stroke of the respective cylinder or in a subsequent cycle or segment is determined.
  • a segment is determined by the time interval of the top dead centers of two cylinders following each other in the firing order.
  • a rough-running value LU i is determined as a function of the speed N i determined for the respective cylinder 17.
  • a dependence on the third power of the respective rotational speed N i has proved to be particularly advantageous.
  • the uneven running is a measure of differences between the torques generated in the cylinders.
  • the rough-running values LU i can also be determined as a function of a change in the rotational speed N i assigned to the respective cylinder.
  • the second correction value K2 i is determined individually for each cylinder as a function of the respective rough running value LU i . This takes place in the sense of an approximation of the torques generated by the individual cylinders. For an existing torque sensor 28, a deviation of the individual torque from the torque averaged over all cylinders can be calculated individually for each cylinder and then the second correction value K2 i can be calculated as a function of this deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Eine Brennkraftmaschine hat mehrere Zylinder, denen mindestens ein Kraftstoffeinspritzventil und mindestens ein Stellglied zum Einstellen der den Zylindern zuzuführenden Luftmasse zugeordnet sind, wobei mindestens ein Sensor zum Erfassen einer das Luft-/Kraftstoff-Verhältnis in den einzelnen Zylindern charakterisierenden Größe und mindestens ein Sensor zum Erfassen einer das Drehmoment, das in den einzelnen Zylindern erzeugt wird, charakterisierenden Größe oder zum Erfassen einer Größe, die charakteristisch ist für Unterschiede der in den Zylindern erzeugten Drehmomente, vorgesehen sind, mit folgenden Schritten: das Luft-/Kraftstoff-Verhältnis wird zylinderindividuell bestimmt, die Ansteuerung des mindestens einen Kraftstoffeinspritzventils wird zylinderindividuell korrigiert abhängig von dem erfaßten Luft-/Kraftstoff-Verhältnis und einem Sollwert des Luft-/Kraftstoff-Verhältnisses. Die das Drehmoment oder die Unterschiede des Drehmoments charakterisierende Größe wird für jeden Zylinder bestimmt und die Ansteuerung des mindestens einen Stellgliedes zum Einstellen der Luftmasse wird zylinderindividuell korrigiert abhängig von dem erfaßten Wert der das Drehmoment charakterisierenden Größe oder der den Unterschied des Drehmoments charakterisierenden Größe und zwar im Sinne einer Angleichung der von den einzelnen Zylindern erzeugten Drehmomente.

Description

Die Erfindung betrifft ein Verfahren zum Steuern einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit Quantitätssteuerung, das heißt einer nach dem Otto-Prinzip arbeitenden Brennkraftmaschine.
Bei einem bekannten Verfahren zum Steuern einer Brennkraftmaschine (DE 38 39 611 A1) wird für jeden Zylinder einzeln die Luftzahl mit einer Lambdasonde bestimmt. Abhängig von der für den jeweiligen Zylinder bestimmten Luftzahl wird ein Korrektursignal zur Korrektur der Ansteuerung eines Brennstoffeinspritzventils bestimmt und zwar im Sinne einer Annäherung aller Luftzahlen in den jeweiligen Zylindern der Brennkraftmaschine an den Wert λ = 1. Alternativ dazu ist es aus der DE 38 39 611 A1 bekannt, abhängig von der jeweiligen zylinderindividuellen Luftzahl ein Korrektursignal für die Ansteuerung eines Stellers eines Drosselorgans der Brennkraftmaschine zu ermitteln. Der Nachteil beider Alternativen des bekannten Verfahrens ist jedoch, daß zwar das Luft-/Kraftstoff-Verhältnis in den einzelnen Zylindern aneinander angenähert wird, jedoch die in den einzelnen Zylindern erzeugten Drehmomente variieren können, was von einem Fahrer eines Fahrzeugs, in dem die Brennkraftmaschine angeordnet ist, als ungleichförmig laufenden Brennkraftmaschine beziehungsweise als Rukkeln wahrgenommen wird.
Bei einem weiteren bekannten Verfahren (WO 90/07051) erfolgt eine Angleichung der Drehmomentbeiträge der einzelnen Zylinder der Brennkraftmaschine durch ein Überwachen der von den jeweiligen Zylindern abgegebenen Leistung und einer zylinderindividuellen Korrektur der Kraftstoffmasse abhängig von der jeweiligen Leistung in dem Zylinder. Durch dieses Verfahren wird.zwar eine Angleichung der Drehmomentbeiträge der einzelnen Zylinder erreicht, jedoch kann dieses Verfahren zu Abweichungen der Luftzahl in einzelnen Zylindern von einem vorgegebenen Sollwert für die Luftzahl führen, die zu einer Schädigung eines in einem Abgastrakt der Brennkraftmaschine angeordneten Dreiwege-Katalysators führen können.
Aus US 5 515 828 ist ein Verfahren zur Luft-/Kraftstoff-Verhältnis-Regelung und Drehmomentregelung bei einer Brennkraftmaschine bekannt. Stellsignale für die Einspritzventile und die Stellglieder zum Einstellen der Luftmasse werden ermittelt und werden abhängig von Korrektursignalen korrigiert. Zur zylinderindividuellen Korrektur des Luftverhältnisses und des Drehmoments werden in einem stationären Betriebszustand pro Segment jeweils gleichzeitig die Istwerte des Luftverhältnisses und des Drehmoments bestimmt und den jeweiligen Zylindern zugeordnet. Alle 720° Kurbelwellenwinkel werden aus diesen Werten dann die Korrektursignale ermittelt und die Stellsignale anschließend für die Einspritzventile und die Stellglieder zum Einstellen der Luftmasse korrigiert.
Die Aufgabe der Erfindung ist es, ein Verfahren zu schaffen, das eine emissionsarme und gleichzeitig komfortable Steuerung einer Brennkraftmaschine gewährleistet.
Die Aufgabe wird erfindungsgemäß gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnungen näher erläutert. Es zeigen:
Figur 1
eine Brennkraftmaschine mit einer Steuereinrichtung,
Figur 2
ein Ablaufdiagramm zur Zylindergleichstellung,
Figur 3
ein Ablaufdiagramm einer Hauptsteuerfunktion in der Steuereinrichtung 6,
Figur 4
ein weiteres Ablaufdiagramm zur Zylindergleichstellung.
Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.
Eine Brennkraftmaschine (Figur 1) umfaßt einen Ansaugtrakt, dem eine Drosselklappe 10 und mindestens ein Einspritzventil 15 zugeordnet sind, und einen Motorblock 2, der einen Zylinder 20 und eine Kurbelwelle 23 aufweist. Ein Kolben 21 und eine Pleuelstange 22 sind dem Zylinder 20 zugeordnet. Die Pleuelstange 22 ist mit dem Kolben 21 und der Kurbelwelle 23 verbunden. Das Einspritzventil 15 ist entweder zum Einspritzen von Kraftstoff in mehrere Zylinder der Brennkraftmaschine oder nur zum Einspritzen von Kraftstoff in jeweils einen Zylinder der Brennkraftmaschine vorgesehen. Im letzteren Fall ist jedem Zylinder 20 der Brennkraftmaschine ein Einspritzventil 15 zugeordnet. Das Einspritzventil 15 kann alternativ auch in einem Zylinderkopf 3 vorgesehen sein und so angeordnet sein, daß der Kraftstoff direkt in den Brennraum des Zylinders 20 zugemessen wird. Alternativ kann das Einspritzventil 15 auch hin zu einer Mischkammer eines Gemischinjektors angeordnet sein, der das Luft-/Kraftstoff-Gemisch aus der Mischkammer direkt in den Zylinder 20 bläst.
In dem Zylinderkopf 3 ist ferner ein Ventiltrieb angeordnet, mit mindestens einem Einlaßventil 30 und einem Auslaßventil 31. Der Ventiltrieb umfaßt mindestens eine nicht dargestellte Nockenwelle mit einer Übertragungseinrichtung, die den Nokkenhub auf das Einlaßventil 30 oder das Auslaßventil 31 überträgt. Vorzugsweise sind auch Einrichtungen zum Verstellen der Ventilhubzeiten und/oder des Ventilhubverlaufs vorgesehen. Eine derartige Vorrichtung zum Verstellen des Ventilhubverlaufs eines Gaswechselventils ist aus der DE 42 44 550 A1 bekannt. Diese Vorrichtung wird vorzugsweise zur drosselfreien Laststeuerung von Ottomotoren eingesetzt. Die Vorrichtung hat zwei gegensinnig liegende Nockenwellen, welche über einen Schwinghebel auf das Gaswechselventil einwirken. Eine der Nockenwellen bestimmt die Öffnen-Funktion und die andere Nokkenwelle die Schließt-Funktion des Gaswechselventils. Der Ventilhubverlauf des Gaswechselventils, das heißt der Hub und die Öffnungsdauer, kann in weiten Bereichen verändert werden durch eine relative Verdrehung der beiden Nockenwellen gegeneinander mittels eines vier-rädrigen Koppelgetriebes, wobei ein entsprechender Stellantrieb zum Einstellen der relativen Verdrehung vorgesehen ist.
Alternativ kann auch ein elektromechanischer Aktuator vorgesehen sein, der den Ventilhubverlauf des Ein- oder Auslaßventils 30, 31 steuert. Ein derartiger elektromechanischer Aktuator ist beispielsweise aus der DE 297 12 502 U1 bekannt. Der Aktuator umfaßt einen Feder-Masse-Schwinger mit einem Anker. Ferner umfaßt der Aktuator zwei Elektromagnete. Der Anker wirkt auf die Gaswechselventile, also das Einlaßventil 30 oder das Auslaßventil 31 ein. Wenn ein elektromechanischer Aktuator zum Steuern der Gaswechselventile vorgesehen ist, so ist keine Nockenwelle vorhanden.
In den Zylinderkopf 3 ist ferner eine Zündkerze 34 eingebracht. Die Brennkraftmaschine ist in der Figur 1 mit einem Zylinder 20 dargestellt. Sie umfaßt jedoch weitere Zylinder Z2, Z3, Z4. Die Zylinder Z2 bis Z4 sind vorzugsweise identisch zu dem Zylinder 20 ausgebildet. Ferner sind ihnen auch jeweils mindestens ein Auslaßventil 31 und ein Einlaßventil 30 zugeordnet.
Ein Abgastrakt 4 mit einem Katalysator 40 und einer Sauerstoffsonde 41 ist der Brennkraftmaschine zugeordnet. Eine Steuereinrichtung 6 ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Meßgrößen erfassen und jeweils den Meßwert der Meßgröße ermitteln. Die Steuereinrichtung 6 ermittelt abhängig von mindestens einer Meßgröße ein oder mehrere Stellsignale, die jeweils ein Stellgerät steuern. Die Sensoren sind ein Pedalstellungsgeber 71, der eine Pedalstellung des Fahrpedals 7 erfaßt, ein Drosselklappenstellungsgeber 11, der ein Öffnungsgrad der Drosselklappe 10 erfaßt, ein Luftmassenmesser 12, der einen Luftmassenstrom MAF erfaßt und/oder ein Saugrohrdrucksensor 13, der einen Saugrohrdruck in dem Ansaugtrakt 1 erfaßt, ein erster Temperatursensor 14, der eine Ansauglufttemperatur erfaßt, ein Drehzahlsensor 24, der einen Drehzahl N der Kurbelwelle 23 erfaßt, ein zweiter Temperatursensor 25, der eine Kühlmitteltemperatur TCO erfaßt, ein Brennraumdrucksensor 26, der den Druck P_BR in dem Innenraum des Zylinders 20, also in dem Brennraum, erfaßt, und die Sauerstoffsonde 41, die den Restsauerstoffgehalt des Abgases in dem Abgastrakt 4 erfaßt und die diesem den Meßwert des Luftverhältnisses λ zuordnet. Das Luftverhältnis λ ist das Verhältnis aus der dem Zylinder 20 zugeführten Luftmasse zu dem theoretischen Luftbedarf für stöchiometrische Verhältnisse bei der eingespritzten Kraftstoffmenge. Das Luftverhältnis ist somit eine das Luft-/Kraftstoff-Verhältnis charakterisierende Größe.
Ferner ist vorzugsweise ein Drehmomentsensor 28 vorgesehen, der das Drehmoment, das in den einzelnen Zylindern 20, Z2 - Z4 erzeugt wird an der Kurbelwelle 23 erfaßt. Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren oder zusätzliche Sensoren vorhanden sein.
Die Stellgeräte umfassen jeweils einen Stellantrieb und ein Stellglied. Der Stellantrieb ist ein elektromotorischer Antrieb, eine elektromagnetischer Antrieb oder ein weiterer dem Fachmann bekannter Antrieb. Die Stellglieder sind als Drosselklappe 10, als Einspritzventil 15, als Zündkerze 34 oder als eine Einrichtung zum Verstellen des Ventilhubs der Ein- oder Auslaßventile 30, 31 oder als elektromechanische Aktuatoren zum Steuern des Ventilhubs der Ein- und Auslaßventile 30, 31 ausgebildet. Auf die Stellgeräte wird im folgenden mit dem jeweils zugeordneten Stellglied bezug genommen.
Falls zum Einstellen der Luftmasse in den Zylindern 20, Z2 - Z4 ein oder mehrere Einrichtungen zum Verstellen des Ventilhubes der Ein- oder Auslaßventile 30, 31 oder elektromechanischen Aktuatoren vorgesehen sind, so kann gegebenenfalls auf die Drosselklappe 10 verzichtet werden. Die Steuereinrichtung 6 ist vorzugsweise als elektronische Motorsteuerung ausgebildet. Sie kann jedoch auch mehrere Steuergeräte umfassen, die elektrisch leitend miteinander verbunden sind, so z. B. über ein Bussystem.
In Figur 2 ist ein Ablaufdiagramm eines Verfahrens zum Steuern der Brennkraftmaschine dargestellt, das eine Gleichstellung der Zylinder 20, Z2 bis Z4 bewirkt. Das Programm ist in der Steuereinrichtung 6 gespeichert und wird dort abgearbeitet. Das Programm kann entweder in vorgegebenen Zeitabständen während des Betriebs der Brennkraftmaschine oder in vorgegebenen Betriebszuständen der Brennkraftmaschine abgearbeitet werden. Ein derartiger Betriebszustand kann beispielsweise ein stationärer Teillastbetrieb oder ein Leerlauf sein oder dadurch charakterisiert sein, daß die Kühlmitteltemperatur TCO einen vorgegebenen Schwellenwert überschreitet.
In einem Schritt S1 wird das Programm gestartet. In einem Schritt S2 wird das Luftverhältnis λ zylinderindividuell bestimmt, was durch das mit i indizierte λ dargestellt ist. Dabei wird mindestens einmal für jeden Zylinder 20, Z2 bis Z4 das diesen zuordenbare Luftverhältnis λi berechnet, das dann ein Maß ist für das jeweilige Luft-/Kraftstoff-Verhältnis in dem jeweiligen Zylinder 20, Z2 bis Z4. Erfindungsgemäß erfolgt die zylinderindividuelle Bestimmung des Luftverhältnises λi für jeden Zylinder gemittelt über mehrere Arbeitsspiele.
In einem Schritt S3 wird ein erster Korrekturwert K1i für jeden der Zylinder 20, Z2 bis Z4 abhängig von dem dem jeweiligen Zylinder zugeordneten Luftverhältnis λi und einen Sollwert λsp des Luftverhältnis ermittelt. Der Sollwert λsp kann beispielsweise gleich eins sein, um ein stöchiometrische Luft-/Kraftstoff-Gemisch in den Zylindern 20, Z2 bis Z4 zu gewährleisten. Der erste Korrekturwert K1i wird verwendet in dem in Figur 3 dargestellten Programm zur allgemeinen Steuerung der Brennkraftmaschine und wird weiter unten noch näher beschrieben.
In einem Schritt S4 kann das Programm für eine vorgegebene Zeitdauer in einen Wartezustand verharren oder alternativ direkt in den Schritt S5 gehen.
In dem Schritt S5 wird für jeden Zylinder 20, Z2 bis Z4 das Drehmoment TQi bestimmt, das jeweils durch ihn erzeugt wird. Dazu wird entweder das Meßsignal des Drehmomentsenors 28 oder das Meßsignal des Brennraumdrucksensors 26 ausgewertet oder beispielsweise das Meßsignal des Drehzahlgebers 24. Dabei werden erfindungsgemäß Mittelwerte der auf die jeweiligen Zylinder bezo-genen Drehmomente TQi über mehrere Arbeitsspiele der Brennkraftmaschine ermittelt.
In einem Schritt S6 wird ein zweiter Korrekturwert K2i einzeln für jeden Zylinder 20, Z2 bis Z4 abhängig von dem jeweils einem Zylinder Z2 bis Z4, 20 zugeordneten Drehmoment TQi und einem durch Mittelung aller Drehmomente TQi berechneten Mittelwert TQ_MV der Drehmomente berechnet. Der zweite Korrekturwert K2i wird verwendet in dem in Figur 3 beschriebenen allgemeinen Programm zum Steuern der Brennkraftmaschine. Das Programm wird anschließend in einem Schritt S7 beendet.
In einem Schritt S10 (Figur 3) wird ein Hauptprogramm zum Steuern der Brennkraftmaschine gestartet. In einem Schritt S11 wird ein Sollwert TQI_SP des von der Brennkraftmaschine zu erzeugenden Drehmoments abhängig von der Drehzahl N, dem Fahrpedalwert PV und weiteren Betriebsgrößen der Brennkraftmaschine, wie der Kühlmitteltemperatur TCO, und weiteren Drehmomentbeiträgen berechnet, wie zum Beispiel von einer elektronischen Getriebesteuerung oder einer Antriebsschlupfregelung.
In einem Schritt S12 wird eine Kraftstoffeinspritzzeitdauer TKSTi für das oder die Einspritzventile 15 zylinderindividuell berechnet. Dazu wird für jeden Zylinder 20, Z2 bis Z4 die Kraftstoffeinspritzzeitdauer TKSTi abhängig von dem Sollwert des Drehmoments, dem jeweils zugeordneten ersten Korrekturwert K1i und gegebenenfalls weiteren Größen berechnet. Durch die Abhängigkeit der Kraftstoffeinspritzzeitdauer TKSTi von dem jeweils dem Zylinder 20, Z2 bis Z4 zugeordneten Korrekturwert K1i ist gewährleistet, daß das Luft-/Kraftstoff-Verhältnis in allen Zylindern dem vorgegebenen Sollwert des Luft-/Kraftstoff-Verhältnisses in engen Grenzen angenähert ist. Dadurch können durch Fertigungstoleranzen hervorgerufene unterschiedliche Durchflußmengen des Kraftstoffes in den Einspritzventilen 15 kompensiert werden.
In einem Schritt S13 wird für jeden einzelnen Zylinder 20, Z2 bis Z4 eine Ventilhubzeitdauer TVHi abhängig von dem Sollwert TQI_SP des Drehmoments, dem dem jeweiligen Zylinder 20, Z2 bis Z4 zugeordneten zweiten Korrekturwert K2i und gegebenenfalls weiteren Größen berechnet. Abhängig von der dem jeweiligen Zylinder zugeordneten Ventilhubzeitdauer TVHi werden dann je nach Ausführungsform der Brennkraftmaschine die Drosselklappe 10 oder elektromechanische Aktuatoren oder die Einrichtung oder die Einrichtungen zum Verstellen der Ventilhubzeiten angesteuert.
Alternativ kann in dem Schritt S13 auch ein maximaler Ventilhub oder ein Ventilhubverlauf als Steuergröße zum Ansteuern der Einrichtungen zum Verstellen des Ventilhubverlaufs ermittelt werden.
Durch die Abhängigkeit der Ventilhubzeitdauer TVHi von dem dem jeweiligen Zylinder zugeordneten zweiten Korrekturwert K2i ist gewährleistet, daß die in den jeweiligen Zylindern erzeugten Drehmomente gleich sind.
Durch die Schritte S12 und S13 ist somit vorteilhafterweise gewährleistet, daß sowohl das Luft-/Kraftstoff-Verhältnis in jedem Zylinder 20, Z2 bis Z4 der Brennkraftmaschine dem vorgegebenen Sollwert entspricht als auch das in den jeweiligen Zylindern erzeugte Drehmoment gleich ist. Dadurch ist einerseits ein effizienter und schonender Betrieb des Katalysators 14 mit einer entsprechenden Emmissionsreduktion gewährleistet und andererseits ein hoher Fahrkomfort eines Fahrzeugs gewährleistet, in dem die Brennkraftmaschine angeordnet ist. In einem Schritt S14 wird das Programm beendet. Das Programm gemäß Figur 3 wird vorzugsweise in vorgegebenen Zeitabständen oder abhängig von der Drehzahl N aufgerufen.
Figur 4 zeigt ein weiteres Verfahren zum Gleichstellen der Zylinder. Die Schritte S1 bis S4 sind identisch zu den entsprechenden Schritten in Figur 2. In einem auf den Schritt S4 folgenden Schritt S17 wird einzelnen für jeden Zylinder 20, Z2 bis Z4 die dem jeweiligen Zylinder zugeordnete Drehzahl Ni bestimmt. Dabei wird beispielsweise jeweils die Drehzahl während des Expansionstaktes des jeweiligen Zylinders oder in einem darauf folgenden Takt oder Segment bestimmt. Ein Segment ist bestimmt durch den zeitlichen Abstand der oberen Totpunkte zweier Zylinder die in der Zündfolge aufeinander folgen.
In einem Schritt S18 wird für jeden Zylinder 20, Z2 bis Z4 einzelnen ein Laufunruhewert LUi abhängig von der für den jeweiligen Zylinder 17 bestimmten Drehzahl Ni bestimmt. Als besonders vorteilhaft hat sich hierbei eine Abhängigkeit von der dritten Potenz der jeweiligen Drehzahl Ni erwiesen. Die Laufunruhe ist dabei ein Maß für Unterschiede zwischen den in den Zylindern erzeugten Drehmomenten. Alternativ können die Laufunruhewerte LUi auch abhängig von einer dem jeweiligen Zylinder zugeordneten Änderung der Drehzahl Ni ermittelt werden.
In einem Schritt S19 wird der zweite Korrekturwert K2i einzelen für jeden Zylinder abhängig von dem jeweiligen Laufunruhewert LUi ermittelt. Dies erfolgt im Sinne einer Angleichung der von den einzelnen Zylindern erzeugten Drehmomente. Bei einem vorhandenen Drehmomentsensor 28 kann für jeden Zylinder einzeln auch eine Abweichung des individuellen Drehmoments von dem über alle Zylinder gemittelte Drehmoment berechnet werden und dann der zweite Korrekturwert K2i abhängig von dieser Abweichung berechnet werden.
Ein entsprechendes Vorgehen ist auch bei Vorhandensein eines Brennraumdrucksensors 26 vorteilhaft. In einem Schritt S20 wird das Programm dann beendet.
Besonders vorteilhaft ist, wenn das Stellglied zum Einstellen der den Zylinder 20, Z2 bis Z4 zuzuführenden Luftmasse die Einlaßventile 30 sind. Dadurch ist gewährleistet, daß die jeweilige Luftmasse in den Zylindern mit sehr hoher zeitlicher Auflösung und einer äußerst geringen Totzeit eingestellt werden kann.

Claims (7)

  1. Verfahren zum Steuern einer Brennkraftmaschine mit mehreren Zylindern (20,Z2,Z3,Z4), denen mindestens ein Kraftstoffeinspritzventil (15) und mindestens ein Stellglied zum Einstellen der den Zylindern zuzuführenden Luftmasse zugeordnet sind, wobei mindestens ein Sensor zum Erfassen einer das Luft-/Kraftstoff-Verhältnis in den einzelnen Zylindern (20,Z2,Z3,Z4) charakterisierenden Größe und mindestens ein Sensor zum Erfassen einer das Drehmoment, das in den einzelnen Zylindern (20,Z2,Z3,Z4) erzeugt wird, charakterisierenden Größe vorgesehen sind, mit folgenden aufeinander folgenden Schritten:
    die das Luft-/Kraftstoff-Verhältnis charakterisierende Größe wird zylinderindividuell bestimmt und zwar gemittelt über mehrere Arbeitsspiele,
    die Ansteuerung des mindestens einen Kraftstoffeinspritzventils (15) wird zylinderindividuell korrigiert abhängig von der zylinderindividuell erfassten Größe, die das Luft-/Kraftstoff-Verhältnis charakterisiert, und einem Sollwert der Größe, die das Luft-/Kraftstoff-Verhältnis charakterisiert,
    die das Drehmoment charakterisierende Größe wird für jeden Zylinder bestimmt und zwar gemittelt über mehrere Arbeitsspiele,
    die Ansteuerung des mindestens einen Stellgliedes zum Einstellen der Luftmasse wird zylinderindividuell korrigiert abhängig von dem erfassten Wert der das Drehmoment charakterisierenden Größe und im Sinne einer Angleichung der von den einzelnen Zylindern (20,Z2,Z3,Z4) erzeugten Drehmomente.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die das Drehmoment charakterisierende Größe das Drehmoment ist.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die das Drehmoment charakterisierende Größe der Brennraumdruck (P_BR) ist.
  4. Verfahren zum Steuern einer Brennkraftmaschine mit mehreren Zylindern, denen mindestens ein Kraftstoffeinspritzventil (15) und mindestens ein Stellglied zum Einstellen der den Zylindern (20, Z2,Z3,Z4) zuzuführenden Luftmasse zugeordnet sind, wobei mindestens ein Sensor zum Erfassen einer das Luft-/Kraftstoff-Verhältnis in den einzelnen Zylindern charakterisierenden Größe und mindestens ein Sensor zum Erfassen einer Größe, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten, vorgesehen sind, mit folgenden aufeinander folgenden Schritten:
    die das Luft-/Kraftstoff-Verhältnis charakterisierende Größe wird zylinderindividuell bestimmt und zwar gemittelt über mehrere Arbeitsspiele,
    die Ansteuerung des mindestens einen Kraftstoffeinspritzventils (15) wird zylinderindividuell korrigiert abhängig von der zylinderindividuell erfassten Größe, die das Luft-/Kraftstoff-Verhältnis charakterisiert, und einem Sollwert der Größe, die das Luft-/Kraftstoff-Verhältnis charakterisiert,
    die Größe, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten, wird für jeden Zylinder bestimmt und zwar gemittelt über mehrere Arbeitsspiele,
    die Ansteuerung des mindestens einen Stellgliedes zum Einstellen der Luftmasse wird zylinderindividuell korrigiert abhängig von der Größe, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten, und zwar im Sinne einer Angleichung der von den einzelnen Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomente.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Größe, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten von der Drehzahl (N) der Kurbelwelle (23) abgeleitet wird.
  6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Größe, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten von einem Messsignal eines Brennraumdrucksensors (26) abgeleitet wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Stellglied zum Einstellen der den Zylindern (20, Z2,Z3,Z4) zuzuführenden Luftmasse ein Gaswechselventil ist.
EP00945597A 1999-09-30 2000-06-07 Verfahren zum steuern einer brennkraftmaschine Expired - Lifetime EP1216352B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19947037 1999-09-30
DE19947037A DE19947037C1 (de) 1999-09-30 1999-09-30 Verfahren zum Steuern einer Brennkraftmaschine
PCT/DE2000/001846 WO2001023733A1 (de) 1999-09-30 2000-06-07 Verfahren zum steuern einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1216352A1 EP1216352A1 (de) 2002-06-26
EP1216352B1 true EP1216352B1 (de) 2005-08-17

Family

ID=7923956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00945597A Expired - Lifetime EP1216352B1 (de) 1999-09-30 2000-06-07 Verfahren zum steuern einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US6619262B2 (de)
EP (1) EP1216352B1 (de)
DE (2) DE19947037C1 (de)
WO (1) WO2001023733A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011690C2 (de) * 2000-03-10 2002-02-07 Siemens Ag Verfahren zur Zylindergleichstellung
JP3913986B2 (ja) * 2001-01-09 2007-05-09 三菱電機株式会社 内燃機関の空燃比制御装置
DE10106921A1 (de) * 2001-02-15 2002-08-22 Bayerische Motoren Werke Ag Verfahren zum Synchronisieren der Füllung von Zylindern einer Brennkraftmaschine, insbesondere eines Hubkolben-Verbrennungsmotors
DE10115902C1 (de) * 2001-03-30 2002-07-04 Siemens Ag Lambda-Zylindergleichstellungsverfahren
JP3980424B2 (ja) * 2002-07-03 2007-09-26 本田技研工業株式会社 内燃機関の空燃比制御装置
US6871617B1 (en) 2004-01-09 2005-03-29 Ford Global Technologies, Llc Method of correcting valve timing in engine having electromechanical valve actuation
US7031821B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US6938598B1 (en) 2004-03-19 2005-09-06 Ford Global Technologies, Llc Starting an engine with electromechanical valves
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7107947B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7021289B2 (en) * 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7383820B2 (en) * 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7055483B2 (en) * 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7032545B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7028650B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7017539B2 (en) * 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
DE102004030759B4 (de) * 2004-06-25 2015-12-17 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
DE102005009101B3 (de) * 2005-02-28 2006-03-09 Siemens Ag Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses
WO2007036386A1 (de) * 2005-09-29 2007-04-05 Siemens Aktiengesellschaft Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102006012656A1 (de) * 2006-03-20 2007-09-27 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007009435A1 (de) 2007-02-23 2008-08-28 Khs Ag Verfahren zum Füllen von Flaschen oder dergleichen Behälter mit einem flüssigen Füllgut unter Gegendruck sowie Füllmaschine zum Durchführen dieses Verfahrens
DE102007044937B4 (de) * 2007-09-20 2010-03-25 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007049615B4 (de) * 2007-10-17 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Elektronische Steuereinrichtung zur Steuerung der Brennkraftmaschine in einem Kraftfahrzeug
US20120227690A1 (en) * 2011-03-09 2012-09-13 Giovanni Ferro Electronic Engine Control Unit And Method Of Operation
DE102013227023A1 (de) * 2013-06-04 2014-12-04 Robert Bosch Gmbh Verfahren zur Zylindergleichstellung einer lambdageregelten Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102015218835B3 (de) * 2015-09-30 2016-11-24 Continental Automotive Gmbh Verfahren und Vorrichtung zum Einspritzen eines gasförmigen Kraftstoffs

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217342A (ja) * 1985-07-17 1987-01-26 Toyota Motor Corp 燃料噴射制御方式
JP2592075B2 (ja) * 1987-10-19 1997-03-19 日産自動車株式会社 可変圧縮比型内燃機関の制御装置
DE3839611A1 (de) * 1988-11-24 1990-05-31 Pierburg Gmbh Verfahren zur regelung der abgaszusammensetzung
US4936277A (en) * 1988-12-19 1990-06-26 Motorola, Inc. System for monitoring and/or controlling multiple cylinder engine performance
JPH02181009A (ja) * 1988-12-28 1990-07-13 Isuzu Motors Ltd 電磁駆動バルブ制御装置
US5107815A (en) * 1990-06-22 1992-04-28 Massachusetts Institute Of Technology Variable air/fuel engine control system with closed-loop control around maximum efficiency and combination of otto-diesel throttling
US5067460A (en) * 1990-06-22 1991-11-26 Massachusetts Institute Of Technology Variable air/fuel ratio engine control system with closed-loop control around maximum efficiency and combination of Otto-diesel throttling
DE4244550C2 (de) * 1992-12-30 1998-05-28 Meta Motoren Energietech Vorrichtung zur Verdrehung von Nockenwellen von Brennkraftmaschinen
US5515828A (en) * 1994-12-14 1996-05-14 Ford Motor Company Method and apparatus for air-fuel ratio and torque control for an internal combustion engine
DE29712502U1 (de) * 1997-07-15 1997-09-18 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit Gehäuse
JP3910692B2 (ja) * 1997-08-25 2007-04-25 株式会社日立製作所 エンジンの制御装置

Also Published As

Publication number Publication date
US20020121268A1 (en) 2002-09-05
DE50010987D1 (de) 2005-09-22
WO2001023733A1 (de) 2001-04-05
EP1216352A1 (de) 2002-06-26
US6619262B2 (en) 2003-09-16
DE19947037C1 (de) 2000-10-05

Similar Documents

Publication Publication Date Title
EP1216352B1 (de) Verfahren zum steuern einer brennkraftmaschine
DE102010054599B4 (de) AGR-Steuerung in HCCI-Motoren
DE10066178B4 (de) Verfahren und Vorrichtung zur Steuerung der Zylinderbefüllung eines Verbrennungsmotors
DE10051416B4 (de) Verfahren zur Drehzahlsteuerung
DE102012209382B4 (de) Verfahren zur Steuerung der Verbrennungsphasenlage bei einerHCCI-Verbrennung
DE10066187B4 (de) Motorsteuerverfahren und Fertigungsgegenstand
DE112009000607B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors mittels einer Steuerstrategie für das Überführen zwischen Verbrennungsmodi
WO1999067525A1 (de) Gleichstellung der zylinderindividuellen drehmomentenbeiträge beim mehrzylindrigen verbrennungsmotor
DE19707706C2 (de) Startsteuersystem und -verfahren für Motor mit direkter Kraftstoffeinspritzung
DE19748018A1 (de) Kraftstoff-Direkteinspritzsteuergerät für einen Verbrennungsmotor
DE10146504B4 (de) Zündzeitpunkt-Steuervorrichtung und Zündzeitpunkt-Steuerverfahren für Verbrennungsmotoren
DE19859018A1 (de) Verfahren und Vorrichtung zur Zylindergleichstellung bei Brennkraftmaschinen
DE102006023473B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10051418B4 (de) Steuerverfahren für ein Fahrzeug mit einem Motor
EP1649153B1 (de) Verfahren und vorrichtung zur steuerung des übergangs zwischen dem normalbetrieb und dem betrieb mit schubabschaltung eines mit kraftstoff-direkteinspritzung betriebenenen ottomotors
EP1021649B1 (de) Verfahren und einrichtung zum überwachen einer brennkraftmaschine
DE10259846B3 (de) Verfahren zur Zylindergleichstellung
DE19711146A1 (de) Einlaßvorrichtung eines Mehrzylinder-Verbrennungsmotors
DE102004022593B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE19812485B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE4334864C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1697624A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
DE10252571B4 (de) Ausgangsleistungssteuer/regelsystem für eine Brennkraftmaschine
DE102006030192A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050818

REF Corresponds to:

Ref document number: 50010987

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 9

Ref country code: SE

Payment date: 20080612

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080613

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090607

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090608