EP1205572A1 - Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband - Google Patents

Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband Download PDF

Info

Publication number
EP1205572A1
EP1205572A1 EP01125594A EP01125594A EP1205572A1 EP 1205572 A1 EP1205572 A1 EP 1205572A1 EP 01125594 A EP01125594 A EP 01125594A EP 01125594 A EP01125594 A EP 01125594A EP 1205572 A1 EP1205572 A1 EP 1205572A1
Authority
EP
European Patent Office
Prior art keywords
metal
guide channel
metal strand
inductor
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01125594A
Other languages
English (en)
French (fr)
Other versions
EP1205572B1 (de
Inventor
Rolf Brisberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1205572A1 publication Critical patent/EP1205572A1/de
Application granted granted Critical
Publication of EP1205572B1 publication Critical patent/EP1205572B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • C23C2/00362Details related to seals, e.g. magnetic means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate

Definitions

  • the invention relates to a method and a device for hot dip coating of metal strands, in particular of steel strip, in which the metal strand vertically through one that receives the molten coating metal Melting vessel and passed through an upstream guide channel is caused by an electromagnetic field in the coating metal induction currents be induced to interact with the electromagnetic Field an electromotive force to retain the coating metal cause.
  • the hot-dip coating of strips made of soft, unalloyed steels is known as vertical hot dip galvanizing and is used in various publications described.
  • a metal strip runs through with molten metal filled with zinc and / or aluminum alloys from bottom to top, with the metal strip first undergoing a temperature treatment has experienced and the entry of the metal strip into the melt with the exclusion of air he follows.
  • Such a method is e.g. known from EP 0 673 444 B1.
  • the well-known solution consists of a hiking field in the upper area, in Near the melting vessel, the guide channel, a constant direct or alternating current field is directed in the opposite direction, which causes a swirl in the coating metal dampens in this area.
  • Another method provides (WO 96/03533) by means of the guide channel arranged field generators to generate an oscillating field.
  • the induced Forces however, only have the electromagnetic lock of the To close the guide channel and do no other tasks.
  • a controllable magnetic field is used in the area of the feed-through channel for band stabilization (DE 195 35 854 A1).
  • the use of electromagnetic forces induces eddy currents in the melt, the vertical, resulting forces in the melt produce.
  • the magnetic fields generate forces perpendicular to the metal strand surface that just cancel each other out for the symmetrical case, which, however, with decreasing distance from the metal strand surface to Rising inductor surface.
  • the symmetrical position of the fields to the surfaces of the metal strand is in practice an exceptional case that can rarely be achieved.
  • the metal strand is the Leaves the center position in the inductor, the attractive forces towards the inductor, to which the starting movement was initially approached, larger and additionally reinforcing the attractive forces become smaller towards the inductor, from which the starting movement first went away.
  • the position of the metal strand in the guide channel for the magnetohydrodynamic Closure is unstable, only the mechanical longitudinal pull remains, which rests on the metal strand during the process, but which is not sufficient, to keep the metal strand in a stable central position.
  • This positional instability affects the central position of the metal strand on the one hand and others, however, also the shape of the metal strand parallel to the direction of the strand in Guide channel.
  • a slight flatness disorder located in a steel strip becomes also reinforced, i.e. a cross bow in the band is enlarged.
  • First try have shown that in the magneto-hydrodynamic closure of the guide channel Forces act which, in combination with the coating temperature, become plastic Change the shape of the tape.
  • S-shaped tape shape errors parallel to the tape running direction also found. The observed waveforms of the deformation are greater than or equal to the 2nd Order.
  • the invention has for its object the metal strand, which is under a operational tension of the pulley arrangement is located in Guide channel deformed into an approximately central, straight, stretched position in the guide channel bring to.
  • the object is achieved according to the invention in that the contactless Guiding the metal strand in the guide channel or in the induction channel a balance of forces between the electromagnetic field in the metal strand and in the guide channel by rotating at least the inductor about its longitudinal axis is set. This prevents and prevents an S-shape of the metal strand the metal strand does not touch the channel walls of the guide channel either.
  • metal strand is under an elevated specific tractive force is maintained. This procedure is possible because the Metal strand mechanically via a pair of rollers before entering the guide channel is managed and stabilized.
  • a device for hot-dip coating of metal strands, in particular of steel strip in which the metal strand passes vertically through the molten coating metal receiving melting vessel and by an upstream Guide channel is movable through, in which by an electromagnetic field Induction currents can be induced in the coating metal, which interact with the electromagnetic field an electromagnetic force to hold back of the coating metal, solves the task set at the outset by that at least the inductor for the metal strand by means of a controllable Twist drive to the continuous metal strand in the cross section of the guide channel It can be aligned that the metal strand is non-contact and approximately in the middle runs within the cross section of the guide channel. This is a touch the inner channel wall of the guide channel avoided and the metal strand can be largely smooth and centered.
  • the magnetic force effect stands within the guide channel at a certain angle of rotation of the guide channel in balance with the forces caused by the roller arrangement be exerted together with the specific tensile force in the metal strand.
  • the regulated setting can be designed such that the outside of the inductor an adjusting cylinder with lever distance to a vertical axis of rotation of the
  • Guide channel is articulated. This can also be used for the guide channel can be adjusted to the position of the metal strand cross-section to ensure the desired contact-free, largely central belt run.
  • the inductor together with the Melting vessel is rotatable about the vertical axis of rotation. You can Form the guide channel and the melting vessel.
  • a further development provides that a control loop with measuring devices for the determination the metal strand cross-sectional layer is formed in the guide channel. This allows receive the necessary measured values for the actuating signals of the rotary actuator become.
  • Another embodiment is that the induction force within the Guide channel depending on the angle of rotation of the metal strand in one horizontal level is measurable. This creates an additional type of measurement.
  • the device is also designed such that the induction force within of the inductor as a function of the angle of rotation of the metal strand in equilibrium is measurable and adjustable with the forces, which by an arrangement of Deflection rollers arise within a preheating furnace housing by means of which Metal strand can be transported under a pulling force. This can reduce accuracy the measurement can be increased.
  • the device can also advantageously be accommodated such that the Furnace housing accommodating deflection roller arrangement on an upper cover surface the melting vessel with the guide channel for one from bottom to top moving metal strand and that on the furnace housing next to the Melting vessel and the guide channel of the rotary drive is arranged, the by means of a handlebar with the melting vessel and / or with the guide channel housing connected is.
  • the method for hot dip coating of metal strands 1, in particular of steel strip 1a presupposes that the metal strand 1 is vertical (from below upwards) by a receiving the molten coating metal 2 Melting vessel 3 and passed through an upstream guide channel 5 becomes.
  • an electromagnetic field in the Coating metal generates 2 induction currents that interact with the electromagnetic field of the inductor 4 an electromotive force for restraint of the coating metal 2 against downward leakage.
  • the metal strand 1 now becomes contactless with the inner guide channel wall guided in the center of the guide channel 5 by a balance of forces between the electromagnetic field of the induction channel in the metal strand 1 and in the guide channel 5 by rotating the guide channel 5 about its longitudinal axis 4a takes place (first alternative).
  • the metal strand 1 can also be kept under an increased specific tensile force.
  • hot-dip coating of metal strands 1 takes place, in particular of steel strip 1a, which is melted vertically from the bottom up through that Coating metal 2 receiving melting vessel 3 and through the upstream guide channel 5 is pulled instead.
  • the metal strand 1 is in preheated an oven 7 and via a roller arrangement 8 with a deflecting roller 8a into the guide channel 5 or the inductor 4.
  • the coating is found in the melting vessel 3 instead of.
  • the coating metal 2 can e.g. made of a zinc or aluminum alloy consist.
  • the inductor 4 is by means of an adjustable adjusting cylinder 9 with its cross section 4b in such a way that the metal strand 1 non-contact and largely centered within the cross section 4b of the guide channel 5 runs (see FIG. 2A).
  • the adjusting cylinder 9 On the inductor 4 is the adjusting cylinder 9 with a lever distance 10 (e.g. via a piston rod) articulated to the vertical longitudinal axis 4a of the inductor 4.
  • the guide channel 5 can also together with the melting vessel 3 as a unit be rotatable.
  • the control circuit (not shown in detail) has measuring devices for determining the Metal strand cross-sectional position in the guide channel 5.
  • the induction force in the inductor 4 depending on the angle of rotation of the metal strand 1 in one horizontal plane can be measured.
  • the induction force is within the Inductor 4 as a function of the angle of rotation of the metal strand 1 in equilibrium measurable and adjustable with the forces.
  • the furnace housing 7a receiving the roller arrangement 8 is on an upper one Cover surface 11 with the involvement of a compensator 12 with the guide channel 5 or the inductor 4.
  • the metal strand 1 is through the guide channel 5 moved from bottom to top.
  • On the furnace housing 7a is next to the melting vessel 3 and the induction channel of the rotary drive 6, the an adjustable hydraulic adjusting cylinder 9 can exist.
  • FIG. 3A second alternative
  • the cross section 4b is without the belt run Effect of induction force shown.
  • Fig. 3B the tape run takes place under the Effect of the induction force instead, so that the disadvantageous S shape of the steel strip results.
  • the rotary drive 6 is not switched on.
  • FIG. 3C the tape run with induction switched on and switched-on rotary drive 6 is shown, so that there is a complete central position of the cross section 4b in the guide channel 5 results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Bei einem Verfahren und einer Einrichtung zum Schmelztauchbeschichten von Metallsträngen (1), insbesondere von Stahlband (1a), bei dem der Metallstrang (1) vertikal durch ein das geschmolzene Beschichtungsmetall (2) aufnehmendes Schmelzgefäß (3) und durch einen vorgeschalteten Führungskanal (5), eines Induktors (4) hindurchgeführt wird, indem Wechselwirkungen eines elektromagnetischen Feldes ausgenutzt werden, kann eine weitgehend mittige Führung des Metallstrangs (1) im Führungskanal (5) erzielt werden , indem ein Kräftegleichgewicht zwischen dem elektromagnetischen Feld im Metallstrang (1) und im Führungskanal (5) durch geregeltes Drehen des Induktors (4) oder des Führungskanals (5) um seine Drehlängsachse (4a) stattfindet. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband, bei dem der Metallstrang vertikal durch ein das geschmolzene Beschichtungsmetall aufnehmendes Schmelzgefäß und durch einen vorgeschalteten Führungskanal hindurchgeführt wird, in dem durch ein elektromagnetisches Feld im Beschichtungsmetall Induktionsströme induziert werden, die in Wechselwirkung mit dem elektromagnetischen Feld eine elektromotorische Kraft zum Zurückhalten des Beschichtungsmetalls bewirken.
Die Schmelztauchveredelung von Bändern aus weichen, unlegierten Stählen ist als vertikale Feuerverzinkung bekannt und wird in verschiedenen Veröffentlichungen beschrieben. Bei diesem Verfahren durchläuft ein Metallband ein mit schmelzflüssigem Metall aus Zink- und / oder Al-Legierungen gefülltes Arbeitsgefäß von unten nach oben, wobei das Metallband vorher eine Temperaturbehandlung erfahren hat und der Einlauf des Metallbandes in die Schmelze unter Luftabschluss erfolgt.
Ein derartiges Verfahren ist z.B. aus der EP 0 673 444 B1 bekannt. Dort ist allerdings die Aufgabe gelöst, ein Verfahren zu schaffen, um die Beruhigung der Schmelze im Führungskanal und auch im Behälter zu erzielen, weil die magnetischen Kräfte ungleichmäßig verteilt sind und Wirbel entstehen. Die bekannte Lösung besteht hierzu darin, dass einem Wanderfeld im oberen Bereich, in Schmelzgefäßnähe, des Führungskanals, ein konstantes Gleich- oder Wechselstromfeld entgegengesetzt gerichtet wird, welches eine Durchwirbelung im Beschichtungsmetall in diesem Bereich dämpft.
Ein anderes Verfahren sieht vor (WO 96 / 03533), mittels um den Führungskanal angeordneten Feldgeneratoren, ein oszillierendes Feld zu erzeugen. Die induzierten Kräfte vermögen jedoch lediglich den elektromagnetischen Verschluss des Führungskanals zu verschließen und erfüllen sonst keine weiteren Aufgaben.
Ein steuerbares Magnetfeld dient im Bereich des Durchführkanals zur Bandstabilisierung ( DE 195 35 854 A1).
Die vorstehend beschriebenen Verfahrensweisen dienen überwiegend zur hydrodynamischen Dichtung des Beschichtungsmetalls aus dem Behälter nach unten, also den grundsätzlich erforderlichen physikalischen Größen, die das Verfahren als solches erst möglich machen.
Der Einsatz von elektromagnetischen Kräften bewirkt die Induktion von Wirbelströmen in der Schmelze, die senkrechte, resultierende Kräfte in der Schmelze erzeugen. Die magnetischen Felder erzeugen Kräfte, die senkrecht zur Metallstrang-Oberfläche verlaufen, die sich für den symmetrischen Fall gerade aufheben, die jedoch mit abnehmendem Abstand von der Metallstrang-Oberfläche zur Induktor-Oberfläche ansteigen. Die symmetrische Lage der Felder zu den Oberflächen des Metallstrangs ist jedoch in der Praxis gerade ein Ausnahmefall, der selten erreicht werden kann. Für den normalen Fall, dass der Metallstrang die Mittenlage im Induktor verlässt, werden die anziehenden Kräfte hin zum Induktor, auf den die Startbewegung zunächst zuging, größer und zusätzlich verstärkend werden die anziehenden Kräfte zum Induktor hin kleiner, von dem die Startbewegung zunächst wegging.
Sofern daher die Lage des Metallstrangs im Führungskanal für den magnetohydrodynamischen Verschluss labil ist, bleibt nur noch der mechanische Längszug, der während des Prozesses auf dem Metallstrang ruht, der jedoch nicht ausreicht, den Metallstrang in einer stabilen Mittenlage zu halten.
Diese Lageinstabilität betrifft zum einen die Mittellage des Metallstrangs und zum anderen jedoch auch die Form des Metallstrangs parallel zur Stranglaufrichtung im Führungskanal. Eine in einem Stahlband befindliche leichte Planheitsstörung wird ebenfalls verstärkt, d.h. ein Cross-Bow im Band wird vergrößert. Erste Versuche haben gezeigt, dass im magneto-hydrodynamischen Verschluss des Führungskanals Kräfte wirken, die in Kombination mit der Beschichtungstemperatur zu plastischen Veränderungen der Bandform führen. Neben den Cross-Bow-Fehlem wurden außerdem S-förmige Bandformfehler parallel zur Bandlaufrichtung festgestellt. Die beobachteten Kurvenformen der Deformation sind größer oder gleich der 2. Ordnung.
Der Erfindung liegt die Aufgabe zugrunde, den Metallstrang, der sich unter einer betriebsüblichen Zugspannung der Umlenkrollen-Anordnung befindet und sich im Führungskanal verformt, in eine etwa mittige glatt gestreckte Lage im Führungskanal zu bringen.
Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass zum berührungslosen Führen des Metallstrangs im Führungskanal bzw. im Induktionskanal ein Kräftegleichgewicht zwischen dem elektromagnetischen Feld im Metallstrang und im Führungskanal durch Drehen zumindest des Induktors um seine Längsachse eingestellt wird. Dadurch wird eine S-Form des Metallstrangs verhindert und der Metallstrang berührt auch nicht die Kanalwandungen des Führungskanals.
Dadurch wird ein stabiler Bandlauf erzielt. Ein solches System macht nicht den Versuch, eine Stabilisierung des Stranglaufs zu erreichen, sondern der Metallstrang wird über den inneren Querschnitt des Induktors eingestellt.
Unterstützend hierbei kann wirken, dass die das Verformen des Metallstrangs bewirkenden Induktionskräfte und / oder die auf den Führungskanal wirkenden Induktionskräfte gemessen und die Messwerte jeweils in einem Regelkreis zu einem Stellsignal für einen Verdrehantrieb des Induktors verarbeitet werden.
Weitere Merkmale bestehen darin, dass der Metallstrang unter einer erhöhten spezifischen Zugkraft gehalten wird. Diese Verfahrensweise ist möglich, da der Metallstrang vor dem Einlauf in den Führungskanal mechanisch über ein Rollenpaar geführt und stabilisiert wird.
Eine Einrichtung zur Schmelztauchbeschichtung von Metallsträngen, insbesondere von Stahlband, in der der Metallstrang vertikal durch ein das geschmolzene Beschichtungsmetall aufnehmendes Schmelzgefäß und durch einen vorgeschalteten Führungskanal hindurchbewegbar ist, in dem durch ein elektromagnetisches Feld im Beschichtungsmetall Induktionsströme induzierbar sind, die in Wechselwirkung mit dem elektromagnetischen Feld eine elektromagnetische Kraft zum Zurückhalten des Beschichtungsmetalls ausüben, löst die eingangs gestellte Aufgabe dadurch, dass zumindest der Induktor für den Metallstrang mittels eines regelbaren Verdreh-Antriebs zum durchlaufenden Metallstrang derart im Querschnitt des Führungskanals ausrichtbar ist, dass der Metallstrang berührungsfrei und etwa mittig innerhalb des Querschnitts des Führungskanals verläuft. Dadurch wird eine Berührung der Kanalinnenwandung des Führungskanals vermieden und der Metallstrang kann weitgehend glatt und mittig geführt werden. Die magnetische Kraftwirkung innerhalb des Führungskanals steht bei einem bestimmten Verdrehwinkel des Führungskanals im Gleichgewicht mit den Kräften, die durch die Rollenanordnung zusammen mit der spezifischen Zugkraft im Metallstrang ausgeübt werden.
Dadurch wird der Bandlauf stabil und der Metallstrang kann die erwähnte S-Form nicht mehr annehmen.
Die geregelte Einstellung kann dabei derart gestaltet sein, dass außen am Induktor ein Verstellzylinder mit Hebelabstand zu einer lotrechten Drehlängsachse des
Führungskanals angelenkt ist. Damit kann zumindest auch der Führungskanal unmittelbar auf die Lage des Metallstrang-Querschnitts eingestellt werden, um den angestrebten berührungsfreien, weitestgehend mittigen Bandlauf zu gewährleisten.
Nach weiteren Merkmalen ist vorgesehen, dass der Induktor zusammen mit dem Schmelzgefäß um die lotrechte Drehlängsachse verdrehbar ist. Dabei können Führungskanal und Schmelzgefäß eine Einheit bilden.
Eine Weiterbildung sieht vor, dass ein Regelkreis mit Messgeräten zur Ermittlung der Metallstrang-Querschnittslage im Führungskanal gebildet ist. Dadurch können die notwendigen Messwerte für die Stellsignale des Verdreh-Antriebs erhalten werden.
Eine andere Ausgestaltung besteht darin, dass die Induktionskraft innerhalb des Führungskanals in Abhängigkeit des Verdrehwinkels des Metallstrangs in einer horizontalen Ebene messbar ist. Dadurch wird eine zusätzliche Messungsart geschaffen.
Die Einrichtung ist ferner dahingehend gestaltet, dass die Induktionskraft innerhalb des Induktors in Abhängigkeit des Verdrehwinkels des Metallstrangs im Gleichgewicht mit den Kräften messbar und einstellbar ist, die durch eine Anordnung von Umlenkrollen innerhalb eines Vorwärm-Ofengehäuses entstehen, mittels der der Metallstrang unter einer Zugkraft transportierbar ist. Dadurch kann die Genauigkeit der Messung noch gesteigert werden.
Die Einrichtung kann ferner vorteilhaft derart untergebracht werden, dass das die Umlenkrollen-Anordnung aufnehmende Ofengehäuse an einer oberen Deckfläche das Schmelzgefäß mit dem Führungskanal für einen von unten nach oben hindurch bewegten Metallstrang trägt und dass auf dem Ofengehäuse neben dem Schmelzgefäß und dem Führungskanal der Verdreh-Antrieb angeordnet ist, der mittels einer Lenkerstange mit dem Schmelzgefäß und / oder mit dem Führungskanalgehäuse verbunden ist.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt und wird nachfolgend näher erläutert.
Es zeigen:
Fig. 1
eine Seitenansicht des Ofens mit Ofengehäuse, Schmelzgefäß und Führungskanal bzw. Induktionskanal,
Fig. 2
dieselbe Seiten-Ansicht wie Fig. 1 mit dem Verdrehantrieb,
Fig. 2A
eine Draufsicht auf dass Schmelzgefäß und den Führungskanal,
Fig. 3A
eine Draufsicht auf den Querschnitt des Induktors mit dem Führungskanal ohne die Wirkung der Induktionskraft,
Fig. 3B
den Querschnitt des Induktors mit dem Führungskanal mit wirkender Induktionskraft, aber ohne Einschalten des Verdreh-Antriebs und
Fig. 3C
den Querschnitt des Führungskanals bei wirkender Induktionskraft und eingeschaltetem Verdreh-Antrieb für den Führungskanal.
Das Verfahren zum Schmelztauchbeschichten von Metallsträngen 1, insbesondere von Stahlband 1a, setzt voraus, dass der Metallstrang 1 vertikal (von unten nach oben) durch ein das geschmolzene Beschichtungsmetall 2 aufnehmendes Schmelzgefäß 3 und durch einen vorgeschalteten Führungskanal 5 hindurch geführt wird. In dem Führungskanal 5 werden durch ein elektromagnetisches Feld im Beschichtungsmetall 2 Induktionsströme erzeugt, die in Wechselwirkung mit dem elektromagnetischen Feld des Induktors 4 eine elektromotorische Kraft zum Zurückhalten des Beschichtungsmetalls 2 gegen Auslaufen nach unten bewirken.
Der Metallstrang 1 wird nunmehr dadurch berührungslos zur inneren Führungskanal-Wand im Führungskanal 5 mittig geführt, indem ein Kräftegleichgewicht zwischen dem elektromagnetischen Feld des Induktionskanals im Metallstrang 1 und im Führungskanal 5 durch Drehen des Führungskanals 5 um seine Drehlängsachse 4a stattfindet (erste Alternative).
Dazu werden die das Verformen des Metallstrangs 1 bewirkenden Induktionskräfte gemessen und die Messwerte jeweils in einen Regelkreis zu einem Stellsignal für einen Verdrehantrieb 6 des Induktors 4 verarbeitet. Dabei kann der Metallstrang 1 auch unter einer erhöhten spezifischen Zugkraft gehalten werden.
Gemäß Fig. 1 findet das Schmelztauchbeschichten von Metallsträngen 1, insbesondere von Stahlband 1a, das vertikal von unten nach oben durch das das geschmolzene Beschichtungsmetall 2 aufnehmende Schmelzgefäß 3 und durch den vorgeschalteten Führungskanal 5 gezogen wird, statt. Der Metallstrang 1 wird in einem Ofen 7 vorgewärmt und über eine Rollen-Anordnung 8 mit einer Umlenkrolle 8a in den Führungskanal 5 bzw. den Induktor 4 geführt. Der Führungskanal 5 hat verfahrensbedingt z.B. eine Öffnungsweite von ca. 20 mm und eine Höhe ( = Länge) von z.B. 500 mm. In dem Schmelzgefäß 3 findet die Beschichtung statt. Das Beschichtungsmetall 2 kann z.B. aus einer Zink- oder Aluminium-Legierung bestehen. Der Induktor 4 ist mittels eines regelbaren Verstellzylinders 9 mit seinem Querschnitt 4b derart in der Lage ausrichtbar, dass der Metallstrang 1 berührungsfrei und weitgehend mittig innerhalb des Querschnitts 4b des Führungskanals 5 verläuft (vgl. Fig. 2A).
Am Induktor 4 ist der Verstellzylinder 9 mit Hebelabstand 10 ( z.B. über eine Kolbenstange) zu der lotrechten Drehlängsachse 4a des Induktors 4 angelenkt.
Der Führungskanal 5 kann auch zusammen mit dem Schmelzgefäß 3 als Einheit drehbar sein.
Der (näher nicht dargestellte) Regelkreis weist Messgeräte zur Ermittlung der Metallstrang-Querschnittslage im Führungskanal 5 auf. Dabei kann die InduktionsKraft im Induktor 4 in Abhängigkeit des Verdrehwinkels des Metallstrangs 1 in einer horizontalen Ebene gemessen werden. Die Induktionskraft ist innerhalb des Induktors 4 in Abhängigkeit des Verdrehwinkels des Metallstrangs 1 im Gleichgewicht mit den Kräften messbar und einstellbar. Diese Messwerte werden durch eine Anordnung 8 von Umlenkrollen 8a innerhalb eines Ofengefäßes 7a mitbestimmt, weil der Metallstrang 1 unter einer erhöhten Zugkraft transportiert wird.
Das die Rollenanordnung 8 aufnehmende Ofengehäuse 7a ist an einer oberen Deckfläche 11 unter Einschaltung eines Kompensators 12 mit dem Führungskanal 5 bzw. dem Induktor 4 versehen. Der Metallstrang 1 wird durch den Führungskanal 5 von unten nach oben bewegt. Auf dem Ofengehäuse 7a befindet sich neben dem Schmelzgefäß 3 und dem Induktionskanal der Verdreh-Antrieb 6, der aus einem regelbaren hydraulischen Verstellzylinder 9 bestehen kann.
Gemäß Fig. 3A ( zweite Alternative) ist im Querschnitt 4b der Bandlauf ohne die Wirkung der Induktionskraft dargestellt. In Fig. 3B findet der Bandlauf unter der Wirkung der Induktionskraft statt, so dass sich die nachteilige S-Form des Stahlbandes ergibt. In Fig. 3B ist der Verdreh-Antrieb 6 nicht eingeschaltet. Die bestmögliche Lösung zeigt daher Fig. 3C, in der der Bandlauf bei eingeschalteter Induktion und eingeschaltetem Verdreh-Antrieb 6 gezeigt ist, so dass sich dort eine vollständige mittige Lage des Querschnitts 4b im Führungskanal 5 ergibt.
Bezugszeichenliste
1
Metallstrang
1 a
Stahlband
2
geschmolzenes Beschichtungsmetall
3
Schmelzgefäß
4
Induktor
4a
Drehlängsachse
4b
Querschnitt
5
Führungskanal
6
Verdrehantrieb
7
Ofen
7a
Ofengehäuse
8
Rollen-Anordnung
8a
Umlenkrollen
9
Verstellzylinder
10
Hebelabstand
11
obere Deckfläche
12
Kompensator

Claims (10)

  1. Verfahren zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband, bei dem der Metallstrang vertikal durch ein das geschmolzene Beschichtungsmetall aufnehmendes Schmelzgefäß und durch einen vorgeschalteten Führungskanal hindurchgeführt wird, in dem durch ein elektromagnetisches Feld im Beschichtungsmetall Induktionsströme induziert werden, die in Wechselwirkung mit dem elektromagnetischen Feld eine elektromotorische Kraft zum Zurückhalten des Beschichtungsmetalls bewirken,
    dadurch gekennzeichnet, dass zum berührungslosen Führen des Metallstrangs im Führungskanal bzw. im Induktionskanal ein Kräftegleichgewicht zwischen dem elektromagnetischen Feld im Metallstrang und im Führungskanal durch Drehen zumindest des Induktors um seine Längsachse eingestellt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die das Verformen des Metallstrangs bewirkenden Induktionskräfte und / oder die auf den Führungskanal wirkenden Induktionskräfte gemessen und die Messwerte jeweils in einem Regelkreis zu einem Stellsignal für einen Verdrehantrieb des Induktors verarbeitet werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass der Metallstrang unter einer erhöhten spezifischen Zugkraft gehalten wird.
  4. Einrichtung zur Schmelztauchbeschichtung von Metallsträngen, insbesondere von Stahlband, in der der Metallstrang vertikal durch ein das geschmolzene Beschichtungsmetall aufnehmendes Schmelzgefäß und durch einen vorgeschalteten Führungskanal hindurchbewegbar ist, in dem durch ein elektromagnetisches Feld im Beschichtungsmetall Induktionsströme induzierbar sind, die in Wechselwirkung mit dem elektromagnetischen Feld eine elektromagnetische Kraft zum Zurückhalten des Beschichtungsmetalls ausüben,
    dadurch gekennzeichnet, dass zumindest der Induktor (4) für den Metallstrang (1) mittels eines regelbaren Verdreh-Antriebs (6) zum durchlaufenden Metallstrang (1) derart im Querschnitt (4b) des Führungskanals (5) ausrichtbar ist , dass der Metallstrang (1) berührungsfrei und etwa mittig innerhalb des Querschnitts (4c) des Führungskanals (5) verläuft.
  5. Einrichtung nach Anspruch 4,
    dadurch gekennzeichnet, dass außen am Induktor (4) ein Verstellzylinder (9) mit Hebelabstand (10) zu einer lotrechten Drehlängsachse (4b) des Führungskanals (4) angelenkt ist.
  6. Einrichtung nach Anspruch 4,
    dadurch gekennzeichnet, dass der Induktor (4) zusammen mit dem Schmelzgefäß (3) um die lotrechte Drehlängsachse (4b) verdrehbar ist.
  7. Einrichtung nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, dass ein Regelkreis mit Messgeräten zur Ermittlung der Metallstrang-Querschnittslage im Führungskanal (5) gebildet ist.
  8. Einrichtung nach einem der Ansprüche 4 bis 7,
    dadurch gekennzeichnet, dass die Induktionskraft innerhalb des Führungskanals (5) in Abhängigkeit des Verdrehwinkels des Metallstrangs (1) in einer horizontalen Ebene messbar ist.
  9. Einrichtung nach einem der Ansprüche 4 bis 8,
    dadurch gekennzeichnet, dass die Induktionskraft innerhalb des Induktors (4) in Abhängigkeit des Verdrehwinkels des Metallstrangs (1) im Gleichgewicht mit den Kräften messbar und einstellbar ist, die durch eine Anordnung (8) von Umlenkrollen (8a) innerhalb eines Vorwärm-Ofengehäuses (7a) entstehen, mittels der der Metallstrang (1) unter einer Zugkraft transportierbar ist.
  10. Einrichtung nach einem der Ansprüche 4 bis 9,
    dadurch gekennzeichnet, dass das die Umlenkrollen-Anordnung (8) aufnehmende Ofengehäuse (7a) an einer oberen Deckfläche (11) das Schmelzgefäß (3) mit dem Führungskanal (5 ) für einen von unten nach oben hindurch bewegten Metallstrang (1) trägt und dass auf dem Ofengehäuse (7a) neben dem Schmelzgefäß (3) und dem Führungskanal (5) der Verdreh-Antrieb (6) angeordnet ist, der mittels einer Lenkerstange mit dem Schmelzgefäß (3) und / oder mit dem Induktor (4) verbunden ist.
EP01125594A 2000-11-11 2001-10-26 Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband Expired - Lifetime EP1205572B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10055979A DE10055979B4 (de) 2000-11-11 2000-11-11 Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen,insbesondere von Stahlband
DE10055979 2000-11-11

Publications (2)

Publication Number Publication Date
EP1205572A1 true EP1205572A1 (de) 2002-05-15
EP1205572B1 EP1205572B1 (de) 2010-03-03

Family

ID=7662975

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01125594A Expired - Lifetime EP1205572B1 (de) 2000-11-11 2001-10-26 Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband

Country Status (3)

Country Link
EP (1) EP1205572B1 (de)
AT (1) ATE459732T1 (de)
DE (2) DE10055979B4 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277755A (ja) * 1989-01-31 1990-11-14 Kawasaki Steel Corp 連続溶融金属めっきの通板位置制御方法とストリップ通過位置制御装置
JPH08120432A (ja) * 1994-10-17 1996-05-14 Kobe Steel Ltd 鋼板反り矯正装置
WO1997011206A1 (de) * 1995-09-18 1997-03-27 Mannesmann Ag Verfahren zur bandstabilisierung in einer anlage zum beschichten von bandförmigem gut
JPH1046311A (ja) * 1996-07-26 1998-02-17 Nisshin Steel Co Ltd 電磁シール機構を備えた溶融めっき装置
JPH1046310A (ja) * 1996-07-26 1998-02-17 Nisshin Steel Co Ltd シンクロールを使用しない溶融めっき方法及びめっき装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344939C1 (de) * 1993-12-23 1995-02-09 Mannesmann Ag Verfahren zum prozeßgerechten Regeln einer Anlage zum Beschichten von bandförmigem Gut

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277755A (ja) * 1989-01-31 1990-11-14 Kawasaki Steel Corp 連続溶融金属めっきの通板位置制御方法とストリップ通過位置制御装置
JPH08120432A (ja) * 1994-10-17 1996-05-14 Kobe Steel Ltd 鋼板反り矯正装置
WO1997011206A1 (de) * 1995-09-18 1997-03-27 Mannesmann Ag Verfahren zur bandstabilisierung in einer anlage zum beschichten von bandförmigem gut
JPH1046311A (ja) * 1996-07-26 1998-02-17 Nisshin Steel Co Ltd 電磁シール機構を備えた溶融めっき装置
JPH1046310A (ja) * 1996-07-26 1998-02-17 Nisshin Steel Co Ltd シンクロールを使用しない溶融めっき方法及びめっき装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 043 (C - 0801) 31 January 1991 (1991-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09 30 September 1996 (1996-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 06 30 April 1998 (1998-04-30) *

Also Published As

Publication number Publication date
DE50115370D1 (de) 2010-04-15
EP1205572B1 (de) 2010-03-03
DE10055979A1 (de) 2002-05-23
ATE459732T1 (de) 2010-03-15
DE10055979B4 (de) 2009-08-20

Similar Documents

Publication Publication Date Title
DE2712003C2 (de) Verfahren zur Herstellung eines nur einseitig beschichteten Eisenmetall-Bandes und Vorrichtung zur Durchführung dieses Verfahrens
RU2192499C2 (ru) Способ стабилизации ленточного материала в установке для нанесения покрытия
DE102005014878A1 (de) Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes
WO2007054063A2 (de) Verfahren und vorrichtung zur kontinuierlichen ausbildung eines bainitgefüges in einem kohlenstoffstahl, insbesondere in einem bandstahl
WO2001071051A1 (de) Verfahren und einrichtung zum schmelztauchbeschichten von metallsträngen, insbesondere von stahlband
EP1565590B1 (de) Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallstranges
EP1205572A1 (de) Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband
DE1421723A1 (de) Verfahren und Vorrichtung zur Herstellung eines feuerpolierten Glasbandes
EP0721813A1 (de) Vorrichtung zum Führen von warmgewalztem Band durch einen Induktor
DE102006054383A1 (de) Verfahren und Vorrichtung zum Ziehen oder Bremsen eines metallischen Guts
DE2656524C3 (de) Verfahren zum einseitigen Beschichten eines Metallbandes mit schmelzflüssigem Metall
EP1483424A1 (de) Vorrichtung zur schmelztauchbeschichtung von metallstr ngen
EP0621344B1 (de) Flexible adaptive Abschreckung
DE10201175B4 (de) Verfahren und Vorrichtung zum Beschichten eines Bandes aus Stahl, insbesondere aus Kohlenstoffstahl, mit ankristallisierbaren Anteilen aus Stahlschmelze
DE102006054385A1 (de) Vorrichtung zum Ziehen oder Bremsen eines metallischen Guts
DE10302745B4 (de) Verfahren und Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern
EP0216121B1 (de) Verfahren und Einrichtung zum Bilden von Kreuzspulen
DE10014868A1 (de) Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband
EP1390551B1 (de) Verfahren und vorrichtung zum thermischen behandeln von metallsträngen, insbesondere von stahlband
DE2806470C2 (de) Vorrichtung zur kontinuierlichen Feuerverzinkung von Stahldrähten
DE10215057B4 (de) Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen und Verfahren hierzu
DE10312939A1 (de) Verfahren und Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern
EP1781834B1 (de) Verfahren zur führung eines bandes und verwendung für ein solches verfahren
EP1597405A1 (de) Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern
DE1796303A1 (de) Vorrichtung zur Steuerung der UEberzugsdicke eines Metallueberzuges beim UEberziehen eines Metallbandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS SIEMAG AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115370

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100614

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100604

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

26N No opposition filed

Effective date: 20101206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

BERE Be: lapsed

Owner name: SMS SIEMAG AG

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110413

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 459732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115370

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303