EP1203623A1 - Verfahren zum Strangpressen von Rohrprofilen - Google Patents
Verfahren zum Strangpressen von Rohrprofilen Download PDFInfo
- Publication number
- EP1203623A1 EP1203623A1 EP00810711A EP00810711A EP1203623A1 EP 1203623 A1 EP1203623 A1 EP 1203623A1 EP 00810711 A EP00810711 A EP 00810711A EP 00810711 A EP00810711 A EP 00810711A EP 1203623 A1 EP1203623 A1 EP 1203623A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mandrel
- longitudinal axis
- die opening
- die
- mandrel arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/155—Making tubes with non circular section
Definitions
- the present invention relates to an extrusion device for the production of eccentric tube profiles, in particular tube profiles with a circular outer and inner circumference, from pressed bodies, in particular from bolts, comprising a recipient with a recipient chamber receiving the pressed body with a longitudinal axis M R of the recipient chamber, a press die guided in the recipient chamber with a press disk, a mandrel body forming the tube profile inner wall, and a die with a die opening forming the tube profile outer wall with a die opening longitudinal axis M M , and a method for producing seamless eccentric tube profiles and their use.
- Pipe profiles manufactured by extrusion are characterized by an external and Inner wall or an outer and inner circumference of round cross section. Outside- and the inner circumference also generally have a cross-sectional match geometric shape.
- a mandrel body with a mandrel arm and a mandrel tip is made a punch body designed as a hollow punch is driven into the recipient chamber, wherein the mandrel body completely the press body inserted into the recipient chamber penetrates.
- the mandrel tip is up to or in the adjoining the recipient chamber Die break-through advanced.
- the mandrel body has no anchor points in the die so that the compact material is seamless over the entire mandrel circumference can flow into the die opening. Because the mandrel body is conditional in this process due to the high flow pressures, are not always held exactly in a central position can, the pipe profiles mentioned are often not exactly centric, as intended, but rather slightly eccentric.
- Eccentric means that the geometric centers of the outer and inner circumference in cross section not congruent but at a distance from each other and the Pipe profile wall has correspondingly different thicknesses across the cross section.
- the eccentricity of seamless extruded, centrally designed tube profiles is very low and is between 0 - 10% of the average wall thickness of the tubular profile.
- the eccentricity E also called external centering, corresponds by definition to the direct distance d between the two geometric centers of the outer and inner circumference of the tubular profile in cross section.
- the size S medium also corresponds to the wall thickness of a central tubular profile with the same outer and inner circumferential dimensions as the eccentric tubular profile.
- the invention is therefore based on the object of an extrusion device and a Extrusion process for the production of seamless eccentric tube profiles with in your Longitudinal direction of constant eccentricity to propose.
- the object is achieved in that the mandrel body in the press position is a mandrel arm with a mandrel arm longitudinal axis M D that penetrates from the press disk and the press body and extends to or into the die opening, so that the press body material is seamless around the mandrel arm through the die opening can flow, and the mandrel arm is arranged eccentrically with respect to the recipient chamber and with respect to the die opening and the die opening with eccentric cross section with respect to the recipient chamber, and the mandrel arm longitudinal axis M D and recipient longitudinal axis M R are at a distance from one another and essentially parallel to the die opening longitudinal axis M K , such that the Die opening longitudinal axis M K cross-sectionally between two each leading through the mandrel arm longitudinal axis M D and the recipient chamber longitudinal axis M R and perpendicular to the connecting line p between the mandrel arm longitudinal axis M D and the recie the longitudinal axis M R of the patient chamber is straight
- the longitudinal axis of the recipient chamber M R , the longitudinal axis of the mandrel arm M D , the longitudinal axis of the die M M and the longitudinal axis of the die opening M K are so-called central longitudinal axes, which cross-section lead through the geometric center of the associated device elements.
- the longitudinal axis of the mandrel arm M D , the longitudinal axis of the recipient chamber M R and the longitudinal axis of the die opening M K are preferably parallel to one another.
- the eccentric arrangement of the mandrel arm with respect to the recipient chamber and the die opening and the arrangement of the die opening with respect to the recipient chamber are selected such that the recipient chamber longitudinal axis M R , the mandrel arm longitudinal axis M D and the die opening longitudinal axis M K lie in a common plane and parallel to one another and the die opening longitudinal axis M K lies cross-sectionally between the recipient chamber longitudinal axis M R and the mandrel arm longitudinal axis M D.
- the die opening longitudinal axis M K lies cross-sectionally on the connecting line p between the recipient chamber longitudinal axis M R and the mandrel arm longitudinal axis M D.
- the relative eccentricity E Rr of the hollow cylindrical, pierced pressed body corresponds to the relative eccentricity E Rm of the tubular profile or the compact.
- the die axis M M itself is also preferably congruent with the longitudinal axis M R of the recipient chamber. That is, the die opening is arranged eccentrically with respect to the die outer contour.
- the die i.e. the matrix breakthrough is opposite the recipient, i.e. the recipient chamber, preferably arranged rigidly and immovably during the extrusion process.
- the pressing body is preferably a circular cylindrical bolt.
- the recipient chamber is preferably also configured as a circular cylinder.
- the device according to the invention is particularly suitable for the production of tubular profiles with a circular outer and inner circumference, the shaping wall of the mandrel arm, and the shaping wall of the die opening of circular cross section are.
- the extrusion device according to the invention is used in particular for the extrusion of Compacts from metal materials, in particular from aluminum or aluminum alloys, like wrought aluminum alloys.
- the mandrel arm which forms the inner tube profile wall during extrusion, is in the Extrusion device according to the invention is not part of the die and thus not in the Anchored die, but arranged in the punch body designed as a hollow punch and, before the actual pressing process, becomes the one that abuts the pressing body
- the pressing disk of the punch body is moved into the recipient chamber, the mandrel arm the press body inserted into the recipient chamber completely in the pressing direction penetrates.
- the mandrel arm can be a mandrel arm that moves or is fixed in the pressing direction during the pressing process.
- the extrusion process can also be an indirect and preferably a direct extrusion process.
- the mandrel arm in turn expediently contains a mandrel tip which engages on or in the die and which is of somewhat smaller diameter than the rear part of the mandrel arm.
- the diameter d t of the mandrel tip is less than 10%, in particular less than 5%, smaller than the diameter D T of the rear part of the mandrel arm.
- the mandrel arm is moved with its mandrel tip up to or into the die opening.
- the stamp body is then advanced and extruded the compact material is pressed through the die.
- the compact material is thereby the mandrel arm is guided and flows seamlessly in a ring-shaped manner in the pressing direction along the mandrel arm through the matrix breakthrough.
- the mandrel tip arranged in the die area gives this tube profile to be produced the final shape of the tube profile inner wall, while the Inner wall of the die cutout gives the tubular profile the final shape of the tubular profile outer wall gives.
- the pellet formed in the die appears as a seamless, eccentric Pipe profile from the die.
- the container chamber longitudinal axis M R, the mandrel arm and the die opening M D M K lie in a common plane and parallel to each other, the die opening cross-section M K lies between the container chamber longitudinal axis M R of the mandrel arm and M D.
- the explanations refer to the production of profile tubes with a circular outer and inner circumference using circular cylindrical shaped bodies in recipient chambers of the same shape.
- the flow rates in the recipient chamber as well the flow rates in the die opening and those on the mandrel body applied pressure or flow forces must be constant over the corresponding cross-section, to be able to press seamless, centric or eccentric tube profiles.
- these process parameters can be changed by changing the flow cross-section widths can be controlled in the recipient chamber.
- the stamp and also the compact material in the recipient chamber moves during extrusion at a speed v 1 in the pressing direction.
- a flow of compact material of A * v 1 .
- the flow rate B * v is 1 .
- the compact must move in the die opening at a cross-sectionally uniform speed v 2 in order to avoid lateral bending when it emerges from the die.
- the flow of the pellet material in the flow cross-section with the smallest radial distance a, which lies in the alignment of the flow cross-section A, between the mandrel arm and the die opening wall is thus a * v 2 .
- the flow in the flow cross-section with the greatest radial distance b, which lies in the alignment of the flow cross-section B, between the mandrel arm and the die opening wall is b * v 2 .
- the flow rate A * v 1 of the compact material at the smallest flow cross section width in the recipient corresponds to the flow rate a * v 2 of the compact material at the smallest flow cross section width in the die opening and the flow rate B * v 1 of the compact material at the largest flow cross section width in the recipient corresponds to the flow rate b * v 2 of the compact material at the largest flow cross section width in the Marize breakthrough.
- the ratio A / B from the smallest radial distance A to the largest radial distance B between Spine arm surface and recipient chamber wall thus correspond to the ratio a / b from the smallest radial distance a to the largest radial distance b between the mandrel arm surface and die breakout wall.
- Equation (6) expresses, among other things, the condition that the relative eccentricity E Rr of the hollow cylindrical, pierced pressed body corresponds to the relative eccentricity E Rm of the tubular profile or the compact.
- the “wall thicknesses” according to equations (1) and (2) for determining the relative eccentricity E Rm correspond here to the radial distances between the mandrel arm surface and the recipient chamber wall or the die opening wall.
- the relative eccentricity E Rr of the mandrel body with respect to the recipient chamber consequently deviates from the above considerations preferably less than 10%, advantageously less than 5% and in particular less than 2% from the relative eccentricity E Rm of the mandrel arm with respect to the die.
- the device according to the invention is also suitable for the production of tubular profiles with, for example, elliptical, oval or a differently designed, in particular round, or polygonal cross section.
- the device can also be designed for the production of tubular profiles with different outer and inner circumferences in cross-sectional shape.
- a B a b is also crucial here for a successful process, ie for a good quality of the tube profiles produced.
- An extrusion process for the production of seamless is also within the scope of the invention eccentric tube profiles, from pressed bodies, in particular from bolts, using an extrusion device according to claim 1.
- the extrusion process according to the invention is characterized in that the pressed body is pressed against the forehead of the die by means of a press stamp and the mandrel arm is removed from the Pressing disk driven into the pressing body and with the mandrel tip in one to break through the die eccentric position up to or into the die opening, wherein the mandrel arm penetrates the compact in an eccentric position, and the compact is pressed through the die by means of a stamp, so that the compact material seamlessly over the entire cross-section with a uniform flow rate the mandrel tip flows into the die opening.
- the mandrel arm is preferably advanced in an eccentric position with a relative eccentricity E Rr to the recipient chamber and in an eccentric position with a relative eccentricity E Rm to the die, the relative eccentricity E Rr essentially, and preferably exactly, corresponds to the relative eccentricity E Rm .
- the longitudinal axis of the die opening M K , the longitudinal axis of the mandrel arm M D and the longitudinal axis of the recipient chamber M R preferably lie in one plane in cross section.
- the method is particularly suitable for the extrusion of metal materials, in particular of aluminum or aluminum alloys, such as wrought aluminum alloys.
- Seamless eccentric pipe profiles produced with the device according to the invention can For example, used as support profiles or further processed into those which directional, especially one-dimensional, subjected to bending loads.
- the area The maximum wall thickness is in the zone of the greatest due to bending stress exerted stretching forces.
- Such eccentric designed for said bending load Pipes are of significantly lower weight with the same load capacity as centric tubes.
- eccentric tube profiles are particularly suitable for the production of curved tube profiles, for example suitable for the production of elbows.
- the thickening of the wall does not result in a critical one when the tube profiles are bent Thinning of the pipe wall on the outside of the pipe profile.
- the tube wall should be made thinner since the tube wall is not stretched.
- centric tube profiles are used in the above-mentioned applications, then the wall thickness must be based on the most frequently used, i.e. stretched wall sections be designed. This means that in other wall sections, which is compressed the wall thickness is again oversized.
- the eccentric design of the tube profiles guarantees a continuous cross-section Transition from wall thickening to wall thinning.
- tube bending also a cross-sectionally continuous transition from stretches to upsets, whereby in neutral area, where there is neither stretching nor compression, the pipe thickness of the corresponds to the average tube thickness of the eccentric tube profile.
- Seamless eccentric tube profiles are particularly suitable for the production of U-shaped rear axle supports of passenger cars. It is particularly suitable for forming the tube profiles mentioned the hydroforming process.
- the seamless eccentric tube profiles produced with the device according to the invention can e.g. formed by means of hydroforming or other cold forming processes or be bent.
- Eccentrically designed pipe profiles are generally suitable for internal high pressure forming processes in which the wall areas differ to be greatly stretched. With eccentrically designed tube profiles, the expansion areas can targeted material can be made available while in low stretch areas the tube profile wall is made thinner.
- the eccentric pipe profiles mentioned can, for example, have an outside diameter from 10 to 500 cm, in particular from 10 to 100 cm, and wall thicknesses from 1 to 50 cm, in particular from 1 to 10 cm.
- the central tubular profile 15 shown in Fig. 1a has an outer circumference 20 and an inner circumference 21 each of circular cross-section, which are arranged centrally, so that the central longitudinal axes M 1 , M 2 of the two circumferential geometries overlap and the tubular profile 15 over its cross section has constant mean wall thickness S medium .
- an eccentric tube profile 12 is shown with an outer circumference 20 and an inner circumference 21 of circular cross section, which are arranged eccentrically so that the central longitudinal axes M 1 , M 2 of the two circumferential geometries are at a distance from one another and the tubular profile 12 is one above it Has variable wall thickness with a maximum wall thickness S max and a minimum wall thickness S min .
- the eccentricity E corresponds to the distance between the two central longitudinal axes M 1 , M 2 of the outer and inner circumferential geometry. Since the outer circumference 20 and the inner circumference 21 correspond in their dimensions to the central tubular profile 15 from FIG. 1 a, the average wall thickness S medium of the eccentric tubular profile 12 corresponds to the wall thickness of the central tubular profile 15.
- the design of a press tool 1 according to the invention of an extrusion device according to FIG. 2 includes a recipient 3 containing a recipient chamber 4 with a diameter D R.
- a circular-cylindrical press body 2 is inserted into the recipient chamber 4 for pressing.
- a press ram 5 designed as a hollow ram is guided in the recipient chamber 4 with a press disk 6 arranged at the end in the pressing direction and lying against the press body 2.
- a die 8 with a die opening 9 is arranged in the pressing direction, which is connected to the recipient chamber 4 through a die opening.
- a mandrel body 7 with a mandrel arm 16 and a mandrel tip 14 is mounted in the press die 5 and, in the present FIG. 2, is advanced from the press disk 6 into the recipient chamber 4, the mandrel arm 16 completely penetrating the press body 2.
- the mandrel arm 16 engages with the mandrel tip 14 in the die opening 9.
- the mandrel arm 16 has a diameter D T and the mandrel tip 14 has a diameter d t which is slightly smaller than the diameter D T.
- the container chamber 4 has a container chamber longitudinal axis M R of the mandrel arm 16, a mandrel arm M D, the die 8 is a MatrizenlHarsachse M M and the die opening 9 a die opening K M (see also Fig. 3).
- the mandrel arm 16 is arranged eccentrically with respect to the recipient chamber 4 and has thus a minimum wall distance A and a maximum compared to the recipient chamber 4 Wall distance B on.
- the mandrel arm 16 is also opposite the die opening 9 also arranged eccentrically.
- the mandrel arm 16 or the mandrel tip 14 thus has compared to the die opening 9 a minimum wall distance a and a maximum Wall distance b on.
- the die opening M K is in cross-section between two each by the mandrel arm M D and the container chamber longitudinal axis M R leading and p perpendicular to the connecting line located between mandrel arm M D and container chamber longitudinal axis M R lines g 1 and g 2 (see Fig. 3).
- the eccentric arrangement of the mandrel arm 16 with respect to the recipient chamber 4 and the die opening 9 is selected such that the recipient chamber longitudinal axis M R , the mandrel arm longitudinal axis M D and the die breakthrough longitudinal axis M K lie in a common plane and parallel to one another and the die longitudinal matter M K cross-section between the recipient chamber longitudinal axis M R and the mandrel arm longitudinal axis M D , ie lies on the connecting line p.
- the recipient chamber 4 is charged with a circular-cylindrical pressing body 2, which is preferably of slightly smaller diameter than the recipient chamber 4.
- the pressing die 5 is moved with its pressing disk 6 to the front of the pressing body 2 and the mandrel arm 16 is driven out of the pressing disk 6 into the pressing body 2 until the mandrel tip 14 engages in the die opening 9.
- the press ram 5 is also advanced so that the material of the press body 2 flows seamlessly around the mandrel arm 16 through the die opening 9. Due to the eccentric arrangement of the mandrel arm 7 with respect to the recipient chamber 4 and the die opening 9, the compact material flows essentially in the pressing direction towards the die opening 9.
- the amount of pressed body material passed through the die opening 9 corresponds to the amount of displaced pressed body material on the same longitudinal section, the distance traveled q 2 of the shaped tubular profile 12 being constant over the entire cross section.
- the seamless extruded eccentric tube profile 12 has an outer diameter D t and an inner diameter d t , which corresponds to the diameter d t of the mandrel tip 14.
- the amount of displacement E 1 of the die opening longitudinal axis M K against the mandrel arm longitudinal axis M D corresponds to the eccentricity E tube of the tube profile 12.
- the relative eccentricity E R, Pk of the pressed body 2 relative to the mandrel arm 16 should correspond to the relative eccentricity E R, tube of the tubular body 12.
- the displacement of the longitudinal axis M D of the mandrel against the recipient axis M R is therefore E 2 - E 1 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Of Metal (AREA)
Abstract
Description
- Fig. 1a:
- einen Querschnitt eines kreisförmigen zentrischen Rohrprofils;
- Fig. 1b:
- einen Querschnitt eines kreisförmigen exzentrischen Rohrprofils;
- Fig. 2:
- einen schematischen Längsschnitt durch das Presswerkzeug einer erfindungsgemässen Strangpressvorrichtung zur Herstellung kreisförmiger, exzentrischer Rohrprofile;
- Fig. 3:
- einen schematischen Querschnitt eines Presswerkzeuges gemäss Fig. 2 entlang der Linie V - V.
Claims (12)
- Strangpressvorrichtung zur Herstellung exzentrischer Rohrprofile (12), insbesondere Rohrprofile mit kreisförmigem Aussen- und Innenumfang, aus Presskörpern (2), insbesondere aus Bolzen, enthaltend einen Rezipienten (3) mit einer den Presskörper aufnehmenden Rezipientenkammer (4) mit einer Rezipientenkammerlängsachse MR, einen in der Rezipientenkammer geführten Pressstempel (5) mit Pressscheibe (6), einen die Rohrprofilinnenwand ausbildenden Dornkörper (7), und eine Matrize (8) mit einem die Rohrprofilaussenwand formenden Matrizendurchbruch (9) mit einer Matrizendurchbruchlängsachse MM,
dadurch gekennzeichnet, dass
der Dornkörper (7) in Pressstellung ein aus der Pressscheibe (6) und den Presskörper (2) durchstossend bis an oder in den Matrizendurchbruch (9) reichenden, eine Dornspitze (14) enthaltender Dornarm (16) mit einer Dornarmlängsachse MD ist, so dass das Presskörpermaterial nahtlos um den Dornarm (16) durch den Matrizendurchbruch (9) fliessen kann, und der Dornarm (16) querschnittlich gegenüber der Rezipientenkammer (4) und gegenüber dem Matrizendurchbruch (9) und der Matrizendurchbruch (9) querschnittlich gegenüber der Rezipientenkammer (4) exzentrisch angeordnet ist, und die Dornarmlängsachse MD und Rezipientenkammerlängsachse MR in Distanz zueinander und im Wesentlichen parallel zur Matrizendurchbruchlängsachse MK liegen, derart dass die Matrizendurchbruchlängsachse MK querschnittlich zwischen zweier je durch die Dornarmlängsachse MD und die Rezipientenkammerlängsachse MR führenden und senkrecht zur Verbindungsgeraden p zwischen Dornarmlängsachse MD und der Rezipientenkammerlängsachse MR stehenden Geraden g1 und g2 liegt. - Strangpressvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Rezipientenkammerlängsachse MR, die Dornarmlängsachse MD und die Matrizendurchbruchlängsachse MK in einer gemeinsamen Ebene und parallel zueinander liegen und die Matrizendurchbruchlängsachse MK querschnittlich zwischen der Rezipientenkammerlängsachse MR und der Dornarmlängsachse MD liegt.
- Strangpressvorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die relative Exzentrizität ER des Dornarms (16) bezüglich Rezipientenkammer (4) weniger als 10%, vorzugsweise weniger als 5%, insbesondere weniger als 2% von der relativen Exzentrizität ERm des Dornarms (16), insbesondere der Dornspitze (14), bezüglich dem Matrizendurchbruch (9) abweicht, wobei die Wanddicken zur Ermittlung der relativen Exzentrizitäten den Distanzen zwischen der Aussenfläche des Dornarms (16) und Rezipientenkammerwand und zwischen der Aussenfläche des Dornarms (16), insbesondere der Dornspitze (14), und Matrizendurchbruchwand entsprechen.
- Strangpressvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verhältnis A/B vom kleinsten radialen Abstand A zum grössten radialen Abstand B zwischen der Aussenfläche des Dornarms (16) und Rezipientenkammerwand im Wesentlichen und vorzugsweise exakt dem Verhältnis a/b vom kleinsten radialen Abstand a zum grössten radialen Abstand b zwischen der Aussenfläche des Dornarms (16), insbesondere der Dornspitze (14), und Matrizendurchbruchwand entspricht.
- Strangpressvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Herstellung von Rohrprofilen (12) mit kreisförmigem Aussen- und Innenumfang die formgebende Wandung des Dornarms (16) und die formgebende Wandung des Matrizendurchbruchs (9) von kreisförmigem Querschnitt sind.
- Strangpressvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Dornarm (16) einen Durchmesser DT aufweist und eine Dornspitze (14) mit einem Durchmesser dt enthält, wobei der Durchmesser dt weniger als 10%, insbesondere weniger als 5%, kleiner ist als der Durchmesser DT und der Dornarm (16) in Pressstellung mit der Dornspitze (14) in den Matrizendurchbruch (9) eingreifend angeordnet ist.
- Strangpressverfahren zur Herstellung von exzentrischen Rohrprofilen (12) aus Presskörpern, insbesondere aus Bolzen, unter Verwendung einer Strangpressvorrichtung nach Anspruch 1
dadurch gekennzeichnet, dass
der Presskörper (2) mittels Pressstempel (5) an die Matrizenstirn gestossen wird und der Dornarm (16) aus der Pressscheibe (6) in den Presskörper (2) vorgetrieben und mit der Dornspitze (14) in einer zum Matrizendurchbruch (9) exzentrischen Lage bis an oder in den Matrizendurchbruch (9) vorgefahren wird, wobei der Dornarm (16) den Presskörper (2) in exzentrischer Lage durchdringt und der Presskörper (2) mittels Pressstempel (5) durch die Matrize gepresst wird, derart dass das Presskörpermaterial über den gesamten Querschnitt mit gleichmässiger Durchflussgeschwindigkeit nahtlos um die Dornspitze (14) in den Matrizendurchbruch (9) fliesst. - Strangpressverfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Dornarm (16) in exzentrischer Lage mit einer relativen Exzentrizität ERr zur Rezipientenkammer (4) und in exzentrischen Lage mit einer relativen Exzentrizität ERm zum Matrizendurchbruch (9) vorgefahren wird und die relative Exzentrizität ERr im Wesentlichen, und vorzugsweise genau, der relativen Exzentrizität ERm entspricht, wobei die Matrizendurchbruchlängsachse MK, die Dornarmlängsachse MD und die Rezipientenkammerlängsachse MR querschnittlich in einer Ebene liegen.
- Verwendung der nach dem Verfahren gemäss Anspruch 7 hergestellten nahtlosen, exzentrischen Rohrprofilen zur Herstellung von gebogenen Hohlprofilen.
- Verwendung der nach dem Verfahren gemäss Anspruch 7 hergestellten nahtlosen, exzentrischen Rohrprofilen zur Herstellung von Hinterachsträgern.
- Verwendung der nach dem Verfahren gemäss Anspruch 7 hergestellten nahtlosen, exzentrischen Rohrprofilen zur Herstellung von strukturierten Hohlprofilen mittels eines Innenhochdruckumform-Verfahrens.
- Verwendung der nach dem Verfahren gemäss Anspruch 7 hergestellten nahtlosen, exzentrischen Rohrprofilen zur Herstellung von Trägerprofilen zur Aufnahme gerichteter Biegelasten.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00810711A EP1203623B1 (de) | 2000-08-09 | 2000-08-09 | Verfahren zum Strangpressen von Rohrprofilen |
DE50009928T DE50009928D1 (de) | 2000-08-09 | 2000-08-09 | Verfahren zum Strangpressen von Rohrprofilen |
CA002354241A CA2354241A1 (en) | 2000-08-09 | 2001-07-27 | Eccentric pipe sections |
US09/925,924 US6581431B2 (en) | 2000-08-09 | 2001-08-09 | Eccentric pipe sections |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00810711A EP1203623B1 (de) | 2000-08-09 | 2000-08-09 | Verfahren zum Strangpressen von Rohrprofilen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1203623A1 true EP1203623A1 (de) | 2002-05-08 |
EP1203623B1 EP1203623B1 (de) | 2005-03-30 |
Family
ID=8174852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00810711A Expired - Lifetime EP1203623B1 (de) | 2000-08-09 | 2000-08-09 | Verfahren zum Strangpressen von Rohrprofilen |
Country Status (4)
Country | Link |
---|---|
US (1) | US6581431B2 (de) |
EP (1) | EP1203623B1 (de) |
CA (1) | CA2354241A1 (de) |
DE (1) | DE50009928D1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2441130C (en) * | 2001-03-09 | 2009-01-13 | Sumitomo Metal Industries, Ltd. | Steel pipe for embedding-expanding, and method of embedding-expanding oil well steel pipe |
US20050092053A1 (en) * | 2003-10-31 | 2005-05-05 | Guoxiang Zhou | Grille and method and apparatuses for manufacturing it |
US10376809B2 (en) * | 2012-12-20 | 2019-08-13 | Gea Process Engineering A/S | Insert for an atomizer wheel and atomizer wheel comprising a number of such inserts |
WO2015113541A1 (de) | 2014-01-30 | 2015-08-06 | Technische Universität Bergakademie Freiberg | Körper mit einseitiger fester einspannung für bis in den überkritischen drehzahlbereich drehende teile eines systems und verfahren zur herstellung der körper |
CN111659752B (zh) * | 2020-06-12 | 2024-06-28 | 江苏新恒基特种装备股份有限公司 | 一种等壁厚弯管的成形方法及偏心管 |
CN113600732B (zh) * | 2021-06-16 | 2023-04-07 | 初冠南 | 一种将管坯局部周长缩短的模具及其使用方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1916645A (en) * | 1932-10-24 | 1933-07-04 | Taylor James Hall | Method of and means for making curved pipe fittings |
GB2169231A (en) * | 1984-12-04 | 1986-07-09 | Otis Eng Co | Apparatus and methods for extruding tubes with off-centre bores |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137745A (en) * | 1976-03-05 | 1979-02-06 | Muratov Rustem I | Device for extruding hollow articles |
SU627883A1 (ru) * | 1977-01-10 | 1978-10-15 | Государственный Научно-Исследовательский И Проектный Институт Сплавов И Обработки Цветных Металлов | Прессовый инструмент дл экструдировани полых осесимметричных профилей |
JPS62263823A (ja) * | 1986-05-12 | 1987-11-16 | Showa Alum Corp | 扁心半中空押出材の製造方法 |
JPH05154539A (ja) * | 1991-12-03 | 1993-06-22 | Nippon Steel Corp | 熱間押出による偏芯管の製造方法および熱間押出用マンドレル |
NL9200138A (nl) * | 1992-01-24 | 1993-08-16 | Reynolds Aluminium Bv | Extrusiewerkwijze en extrusieinrichting. |
JP2001191110A (ja) * | 1999-12-28 | 2001-07-17 | Showa Alum Corp | 可変断面押出材の製造方法 |
-
2000
- 2000-08-09 DE DE50009928T patent/DE50009928D1/de not_active Expired - Lifetime
- 2000-08-09 EP EP00810711A patent/EP1203623B1/de not_active Expired - Lifetime
-
2001
- 2001-07-27 CA CA002354241A patent/CA2354241A1/en not_active Abandoned
- 2001-08-09 US US09/925,924 patent/US6581431B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1916645A (en) * | 1932-10-24 | 1933-07-04 | Taylor James Hall | Method of and means for making curved pipe fittings |
GB2169231A (en) * | 1984-12-04 | 1986-07-09 | Otis Eng Co | Apparatus and methods for extruding tubes with off-centre bores |
Also Published As
Publication number | Publication date |
---|---|
CA2354241A1 (en) | 2002-02-09 |
EP1203623B1 (de) | 2005-03-30 |
US6581431B2 (en) | 2003-06-24 |
US20020038564A1 (en) | 2002-04-04 |
DE50009928D1 (de) | 2005-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3601385C2 (de) | ||
EP2127777B1 (de) | Vorrichtung und Verfahren zum Herstellen oder Bearbeiten von Werkstücken aus einer Vorform, insbesondere zum Anformen von Innenprofilen oder Innenverzahnungen | |
DE19716292A1 (de) | Strangpreßvorrichtung | |
EP0347369A2 (de) | Verfahren und Vorrichtung zum hydraulischen Aufweiten von Hohlprofilen | |
DE2240148B2 (de) | Dorn für eine hydrostatische Strangpresse zum Herstellen von Rohren mit profiliertem Innenquerschnitt | |
WO2007042002A2 (de) | Verfahren zur herstellung feinkörniger, polykristalliner werkstoffe oder werkstücke sowie matrize dazu | |
DE69711030T2 (de) | Verfahren und vorrichtung zum fliesspressen von produkten mit variablem querschnitt | |
EP1208926B1 (de) | Vorrichtung zur Innenhochdruck-Umformung von Hohlkörpern | |
EP1203623A1 (de) | Verfahren zum Strangpressen von Rohrprofilen | |
EP2877298A1 (de) | Direktes oder indirektes metallrohrstrangpressverfahren, dorn zum pressen von metallrohren, metallrohrstrangpresse sowie stranggepresstes metallrohr | |
EP0114570A2 (de) | Vorrichtung zum Strangpressen eines Hohlprofils | |
DE10248356A1 (de) | Verfahren und Vorrichtung zur Herstellung einer gewichtsoptimierten Luftreifenfelge | |
EP0987068B1 (de) | Verfahren zum Strangpressen eines Hohlprofils od.dgl. Körpers aus einem Barren sowie Vorrichtung dafür | |
DE102019002187B4 (de) | Verfahren und Vorrichtung zum Herstellen eines Bauteils mit Gewinde | |
DE19903684A1 (de) | Werkzeug zum Querfließpressen | |
DE1504323A1 (de) | Hohlprofilierte Gegenstaende aus Kunststoff und Verfahren zu deren Herstellung | |
DE19751408A1 (de) | Verfahren und Vorrichtung zur Herstellung eines Integralgehäuses für Hydrolenkung | |
DE69322945T2 (de) | Verfahren und Vorrichtung zum Fixieren eines mit zumindest einer zylindrischen Bohrung versehenen metallischen Stückes um ein metallisches Rohr | |
EP0129010B1 (de) | Verfahren und Vorrichtung zum Strangpressen von Hohlprofilen | |
EP0633075B1 (de) | Verfahren und Vorrichtung zur innendruckgestützten Umformung von metallischen Hohlprofilen | |
EP0791132B1 (de) | Verfahren und vorrichtung zur herstellung eines wabenkörpers, insbesondere katalysator-trägerkörpers, mit gehäuse | |
EP4155001B1 (de) | Vorrichtungen und verfahren zum umformen eines rohrartigen hohlkörpers | |
AT384966B (de) | Verfahren zur herstellung eines hohlkoerpers mit schrauben- bzw. wendelartiger innen- und aussenkontur und vorrichtung zur durchfuehrung des verfahrens | |
EP4545196A1 (de) | Vorrichtung zur herstellung kleinvolumiger tubenverpackungsrohlinge | |
DE19842293C2 (de) | Verfahren zum Strangpressen eines Hohlprofils o. dgl. Körpers aus einem Barren sowie Vorrichtung dafür |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20021108 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20030902 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050330 |
|
REF | Corresponds to: |
Ref document number: 50009928 Country of ref document: DE Date of ref document: 20050504 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20060102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090817 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090825 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090827 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090826 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100809 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50009928 Country of ref document: DE Effective date: 20110301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100809 |