EP1200488A1 - Verfahren zur (co)polymerisation von olefinen - Google Patents

Verfahren zur (co)polymerisation von olefinen

Info

Publication number
EP1200488A1
EP1200488A1 EP00945905A EP00945905A EP1200488A1 EP 1200488 A1 EP1200488 A1 EP 1200488A1 EP 00945905 A EP00945905 A EP 00945905A EP 00945905 A EP00945905 A EP 00945905A EP 1200488 A1 EP1200488 A1 EP 1200488A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
aryl
atoms
cig
alkylaryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00945905A
Other languages
English (en)
French (fr)
Inventor
Joachim Queisser
Michael GEPRÄGS
Gerrit Luinstra
Norbert Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1200488A1 publication Critical patent/EP1200488A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7001Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/7003Bidentate ligand
    • C08F4/7004Neutral ligand
    • C08F4/7006NN
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7001Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/7003Bidentate ligand
    • C08F4/7019Monoanionic ligand
    • C08F4/7021NN
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7001Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/7003Bidentate ligand
    • C08F4/7032Dianionic ligand
    • C08F4/7034NN
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene

Definitions

  • the present invention relates to a process for the (co) polymerization of olefins with the aid of transition metal compounds. Furthermore, the invention relates to these transition metal compounds and a catalyst system containing the same. The invention also relates to the use of these transition metal compounds as catalysts for the (co) polymerization of non-polar olefins and, if appropriate, of ⁇ -olefins which have a functional group.
  • the invention was therefore based on the object of making available a process for the preparation of (co) polymers from olefinic monomers which is distinguished by high activities, requires little or no addition of cocatalyst and can also be used on an industrial scale without problems.
  • the invention was further based on the object of finding a transition metal compound which is insensitive and easy to handle and, in particular under the polymerization conditions, does not show any loss in the catalytic activity even with longer reaction times.
  • a process for the production of (co) polymers from non-polar olefinic monomers (I) and a process for the production of (co) polymers from non-polar olefinic monomers (I) and ⁇ -olefins (II) have at least one functional Have found group in which the starting monomer or monomers in the presence of a transition metal compound of the general formula
  • R 1 , R 3 are hydrogen, C 1 -C 1 to C 10 alkyl, C 3 to C 1 cycloalkyl, Cg to C 6 aryl, alkylaryl having 1 to 10 C atoms in the alkyl and 6 to 14 C atoms in the aryl part , Si (R 6 ) 3 , N (R 6 ) (R 7 ), OR 6 , SR 6 or R 1 and R 3 together with C a , C b and optionally C form a five, six or seven-wire aliphatic or aromatic, substituted or unsubstituted carbo- or heterocycle,
  • R 5 is hydrogen, C 1 -C 10 -alkyl, Cg- to Cig-aryl or alkylaryl with 1 to 10 C-atoms in the alkyl and 6 to 14 C-
  • M is a metal from Group VIIIB of the Periodic Table of the Elements
  • T, Q neutral or monoanionic monodentate ligands or T and Q together form a C 2 or C 3 alkylene unit with a methyl ketone, linear C 1 -C 4 -alkyl ester or nitrite end group,
  • transition metal compound (III) and a catalyst system containing the essential constituents of the transition metal compound (III) and a cocatalyst were a strong neutral Lewis acid, an ionic compound with a Lewis acid cation or an ionic compound with a Bronsted acid found as a cation.
  • the use of the transition metal compound (III) and the catalyst system comprising the transition metal compound (III) and a cocatalyst has been found as essential constituents in the production of olefin (co) polymers.
  • Compounds of the general formula (Ia) are suitable as non-polar olefinic monomers (I)
  • R 8 to R 10 are, independently of one another, hydrogen, C 1 -C 10 -alkyl, including linear and branched alkyl radicals, preferably C 1 -C 6 -alkyl such as methyl,
  • Ethyl, n-, i-propyl, n-, i- or t-butyl, Cg to Cig aryl, including one, two or more times with Ci to Cg alkyl groups such as methyl, ethyl or i-propyl substituted aryl groups such as tolyl are understood to be preferably 0 Cg aryl such as phenyl or naphthyl and C ⁇ , in particular phenyl, alkylaryl having from 1 to 10, preferably 1 to 6 carbon atoms in the alkyl and 6 to 14, preferably 6 to 10 C -Atoms in the aryl part, for example benzyl, or Si (R 1: L ) 3 with
  • R 11 Ci to Cio-alkyl, C 6 - to Cig-aryl or alkylaryl with 1 to 10 C atoms in the alkyl and 6 to 16 C atoms in the aryl part, these radicals preferred those given under R 8 to R 10 or can assume special meaning.
  • Suitable cyclic olefins (I) are, for example, cyclobutene, cyclopentene, cyclohexene or norbornene and substituted norbornenes. Preferred among these are cyclopentene and norbornene.
  • Suitable non-polar olefinic monomers can have one, two or more terminal or internal double bonds.
  • Olefinically unsaturated compounds with a terminal double bond such as ethene, propene, 1-butene, 1-pentene, 1-hexene or 1-octene, are preferably used.
  • perfluorinated olefins such as tetrafluoroethylene are also suitable nonpolar starting monomers (I).
  • any mixtures of starting monomers (I) can also be used in the process according to the invention.
  • ⁇ -olefins (II) which have at least one functional group in the molecule are used as further starting monomers.
  • Suitable functional groups are, for example, the carboxylic acid, carboxylic acid ester, carboxylic acid amide, carboxylic acid anhydride, hydroxy, epoxy, siloxy, ether, keto, aldehyde, amino, nitrile, oxazoline, sulfonic acid, sulfonic acid ester. or halogen functionalities.
  • Preferred functional groups are based, inter alia, on the carboxylic acid unit, on carboxylic ester, carboxylic acid amide or anhydride residues and on the ether or keto group.
  • R 12 is hydrogen, CN, CF 3 , C 1 ⁇ to Cio-alkyl, Cg to Cig-aryl or alkylaryl with 1 to 10 carbon atoms in the alkyl and 6 to 14 carbon atoms in the aryl part, pyrrolidonyl or carbazolyl,
  • R 13 CN, C (0) R 14 , C (0) OR 14 , C (0) N (R 14 ) (R 15 ), CH 2 Si (OR 16 ) 3 , C (O) -OC (O) R 14 , O-Ci to -O-C ⁇ 0 alkyl, O-Cg to - O-cig-aryl with
  • R 14 is hydrogen, Ci- to Cio-alkyl, C 2 - to C ⁇ 0 alkenyl, Cg to Cig aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl and 6 to 14 carbon atoms in the aryl part , an C - to Cio-alkyl group containing an epoxy group, a Cg to Cig-aryl group substituted by an epoxy group or Si (R 16 ) 3 and
  • R 16 Ci to Cio alkyl, Cg to Cig aryl or alkylaryl with 1 to 10 C atoms in the alkyl and 6 to 14 C atoms in the aryl part.
  • Functionalized olefinically unsaturated comonomers (II) have a terminal carbon / carbon double bond.
  • (meth) acrylic acid and the ester and amide derivatives of (meth) acrylic acid, preferably acrylic acid, and acrylonitrile or methacrylonitrile or mixtures thereof are particularly suitable.
  • C ⁇ to C ⁇ o ⁇ in particular the C ⁇ ⁇ to Cs alkyl esters of acrylic and methacrylic acid, ie for example the methyl, ethyl, n-, i-propyl, n-, i-, t- Butyl, hexyl, dicyclopentadienyl or 2-ethylhexyl (meth) crylate, where the alkyl radicals can be linear or branched.
  • (Meth) acrylates with a Epoxy group in the ester unit for example glycidyl (meth) acrylates, and with an alkenyl group such as ethylidene or propylidene as the ester unit.
  • Acrylates are particularly preferred. Examples of particularly suitable examples are methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, dicyclopentadienyl acrylate, glycidyl acrylate, 2-ethylhexyl acrylate and acrylic acid. Methyl acrylate and glycidyl acrylate are particularly preferred. Methacrylic or acrylonitrile can also be used. Any mixtures of comonomers (II) can of course also be used. The aforementioned monomers are known per se and are commercially available.
  • the starting concentration of the functionalized monomers (II) described can be varied over a wide range and, for example, easily assume values in the range from 3 to 6 mol / 1.
  • C 1 to C 1 alkyl radicals include, for example, the methyl, ethyl, n- or i-propyl, n-, i- or t-butyl group and the pentyl, hexyl or heptyl group in straight-chain and branched form.
  • C 1 ⁇ to C 1 ⁇ alkyl radicals, apart from monomer (I), also include those which are substituted by functional groups based on the elements of groups IVA, VA, VIA or VIIA of the periodic table, for example partially or perhalogenated alkyl radicals such as trichloromethyl , Trifluoromethyl, 2, 2, 2-trifluoroethyl, pentafluoroethyl or pentachloroethyl and alkyl radicals bearing one or more epoxy groups, for example propenoxy.
  • the C 1 -C 10 -alkyl radicals are preferred among the C 1 -C 1 -alkyl radicals.
  • Suitable C 3 - to Cio-cycloalkyl radicals include carbocycles and heterocycles, for example substituted and unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloctyl, pyrrolyl, pyrrolidonyl or piperidinyl.
  • Examples of the substituted cycloeopathic radicals are 1-methylcyclohexyl, 4-t-butylcyclohexyl and 2,3-dimethylcyclopropyl.
  • Suitable Cg to Cig aryl groups generally include substituted and unsubstituted aryl groups.
  • the C 1 -C 8 -aryl groups such as phenyl and naphthyl are preferred. Phenyl is particularly preferred.
  • Unsubstituted as well as substituted C 6 to cig aryl groups indicates the indication of the carbon atoms (eg Cg-, C ⁇ o ⁇ or Cig-) on the number of carbon atoms that form the aromatic system. Carbon atoms from possible alkyl and / or aryl substituents are not yet covered by this information.
  • Cg to Ci 6 ⁇ aryl is thus intended to include, for example, substituted Cg to Ci ⁇ aryl residues such as substituted anthracenyl.
  • Cg to Cig aryl fall, apart from monomer (I), including those radicals with functional groups based on the elements from Groups IVA, VA, VIA and VIIA of the Periodic Table of the Elements singly, multiply or persubsti ⁇ tuiert are.
  • Suitable functional groups are C ⁇ ⁇ to Cio-alkyl, preferably C ⁇ ⁇ to Cg-alkyl, Cg- to Cig-aryl, preferably Cg- to Cio-aryl, triorganosilyl such as trimethyl, triethyl, tri-phenyl or t-butyl diphenylsuyl and amino, for example NH 2 , dimethylamino, di-i-propylamino, di-n-butylamino, diphenylamino or dibenzylamino, Ci to Cio alkoxy, preferably Ci to Cg alkoxy, for example methoxy, ethoxy, n- or i-propoxy, n-, i- or t-butoxy, or halogen such as fluoride, chloride or bromide.
  • Suitable alkylaryl radicals include those having 1 to 10, preferably 1 to 6, carbon atoms in the alkyl and 6 to 14, preferably 6 to 10, carbon atoms in the aryl part, in particular the benzyl group.
  • the radicals R 2 and R 4 represent C 4 to Cig heteroaryl or Cg to C g aryl groups, each in their two ortho positions to the imine nitrogen atoms N a and N b , ie ortho-constant to the covalent Wear bond between the aryl group and the imine nitrogen electron-withdrawing groups such as halogeno, nitro, cyano, sulfonato or trihalomethyl.
  • the ortho positions in R 2 and R 4 can be substituted with identical as well as with different electron-withdrawing radicals.
  • SO 3 R 6 , S0 3 Si (R 6 ) 3 and S0 3 + (HN (R 5 ) 3 ) are particularly suitable.
  • S0 3 Me, S ⁇ 3 SiMe 3 and SO 3 " are particularly suitable among these. (HNEt 3 ) + .
  • trihalomethyl radicals trifluor, trichlor and tribromomethyl, in particular trifluoromethyl, are particularly suitable.
  • ortho substituents are halogen radicals such as the fluorine, chlorine, bromine or iodine radical. Chlorine or bromine radicals are preferably used as ortho substituents. Furthermore, the respective ortho positions are preferably occupied by identical residues.
  • the heteroaryl or aryl radicals R 2 and R 3 can have one or more further substituents in addition to the ortho radicals.
  • substituents are functional groups based on the elements from groups IVA, VA, VIA and VIIA of the Periodic Table of the Elements.
  • Suitable are, for example, linear or branched C 1 to C 10 alkyl, preferably C 1 to C 6 alkyl, such as methyl, ethyl, n- or i-propyl, n-, i- or t-butyl, partially or perhalogenated C 1 -C 10 -Alkyl, preferably -C ⁇ to Cg-alkyl, such as trifluoro or tri - chloromethyl or 2, 2, 2-trifluoroethyl, triorganosilyl, such as trimethyl, triethyl, tri-t-butyl, triphenyl or t- Butyl-di-phenylsüyl, the nitro, cyano or sulfonato group, amino, for example NH 2 , dirnethylamino, di-i-propylamino, di-n-butylamino, diphenylamino or dibenzylamino, C ⁇ ⁇ to Cio-
  • ortho-substituted aryl radicals are phenyl, naphthyl and anthracenyl groups, phenyl and naphthyl groups are particularly preferred and the phenyl group is particularly preferred.
  • These ortho-substituted aryl radicals can also be substituted in the positions which are not ortho-permanent with functional groups based on the elements from groups IVA, VA, VIA and VIIA of the periodic table of the elements, as described above.
  • An ortho-substituted phenyl radical R 2 , R 4 is preferably an additional substitution in the para position, for example with a methyl, t-butyl, chlorine or bromine radical.
  • Preferred aryl radicals R 2 , R 4 are 2,6-dibromo, 2,6-dichloro, 2,6-dibromo-4-methyl- or 2,6-dichloro-4-methylphenyl.
  • C 4 - to Cig heteroaryl radicals R 2 and R 4 in the context of the present invention are also to be understood as meaning substituted and unsubstituted heteroaryl radicals, for example C 4 - to C 3 -heteroaryl, preferably C 4 - bis
  • heteroaryl such as the pyrrolidyl group (linked to the imine nitrogen via a ring carbon atom) or the pyrrolid group (via linked the pyrrole nitrogen with the imine nitrogen) or the imidazolyl (CN linked), imidazolid (NN linked), benz - imidazolyl, benzimidazolid, pyrazolyl, pyrazolid, pyridinyl, pyrimidinyl, quinolyl or isoquinolyl group.
  • Preferred among the heteroaryl radicals is the ortho-substituted pyrrolidyl and, in particular, the pyrrod group.
  • This pyrrod group particularly preferably has halogen substituents such as fluorine, chlorine, bromine or iodine in the ortho position to the point of attachment to the imine nitrogen atoms N a or N b .
  • Preferred heteroaryl radicals R 2 , R 4 are 2, 5-dichloropyrrolid and 2, 5-dibrompyrrolid.
  • the radicals R 1 and R 3 in (III) are hydrogen, C 1 -C 1 -alkyl, C 3 -C 1 -cycloalkyl, C 1 -C 10 -aryl, alkylaryl having 1 to 10 carbon atoms in the alkyl and 6 to 14 carbon atoms in the aryl part, a silyl (Si (R 6 ) 3 ), an amino (N (R 6 ) (R 7 ), an ether
  • radicals R 1 and R 3 together with C a , C b and optionally C can form a five-, six- or seven-wire aliphatic or aromatic, substituted or unsubstituted carbo- or heterocycle.
  • radicals R 1 and R 3 are hydrogen, methyl, ethyl, i-propyl, t-butyl, methoxy, ethoxy, i-propoxy, t-butoxy, trifluoromethyl, phenyl, naphthyl, tolyl, 2-i-propylphenyl , 2-t-butylphenyl, 2, 6-di-i-propylphenyl, 2-trifluoromethylphenyl, 4-methoxyphenyl, pyridyl or benzyl and in particular hydrogen, methyl, ethyl, i-propyl or t-butyl are preferred.
  • Ligand compounds with these residues can be found in K. Vrieze and G.
  • cyclic systems preferably from R 1 , R 3 , C a and C b , aromatic systems, in particular phenanthrene and camphor systems, are preferred (see also J. Matei, T. Lixandru, Bul. Inst. PoÜteh. Isai, 1967, 13 , 245).
  • the radical R 5 preferably represents hydrogen or methyl, in particular hydrogen.
  • Suitable metals M in (III) are all elements of group VIIIB of the periodic table, ie iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum. Nickel, rhodium, palladium or platinum are preferably used, nickel and palladium and in particular palladium being particularly preferred. In the metal compounds (III), iron and cobalt are generally two or three times positively charged, palladium, platinum and nickel are twice positively charged and rhodium is three times positively charged. In one embodiment, T and Q represent neutral and / or mono-anionic monodentate ligands.
  • Lewis bases are suitable as neutral ligands, for example acetonitrile, benzonitrile, diethyl ether, tetrahydrofuran, amines, ketones, phosphanes, ethyl acetate, dimethyl sulfoxide and dirnethyl formamide or hexamethylphosphoric triamide.
  • Ethene is also suitable as a Lewis basic neutral ligand.
  • Monoanionic ligands are, for example, carbanions based on substituted or unsubstituted alkyl, aryl or acyl radicals or halide ions.
  • T in (III) preferably denotes monoanionic radicals such as chloride, bromide or iodide, methyl, phenyl, benzyl or a C 1 -C 1 -alkyl which has no hydrogen atoms in the ⁇ position to the metal center M and has a C 1 -C 4 - Alkylester- or a Nitrüendelle has.
  • Chloride and bromide as halide residues and methyl as alkyl residue are particularly preferred as ligand T.
  • Q preferably represents ligand residues such as acetonitrile, benzonitrile, ethene, triphenylphosphine as monodentate phosphorus compound, pyridine as monodentate aromatic nitrogen compound, acetate, propionate or butyrate, in particular acetate as a suitable carboxylate, a linear alkyl ether, for example a linear di-C - to Cg- Alkyl ethers such as diethyl ether or di-i-propyl ether, preferably diethyl ether, a cyclic alkyl ether such as tetrahydrofuran or dioxane, preferably tetrahydrofuran, a linear C 1 -C 4 -alkyl ester, for example ethyl acetate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphoric acid triamide or an halogenide
  • Ni nickel complexes
  • the radicals T and Q together can represent a C - or C 3 -alkylene unit with a methyl ketone, a linear Ci to C 4 -alkyl ester or a nitrite end group.
  • T and Q preferably together represent a - (CH 2 CH 2 CH 2 C (0) OCH 3 unit and in this way form a six-membered cycle together with M. While the terminal methylene unit forms a metal / carbon bond with M. , the carbonyl group interacts coordinatively with M.
  • T represents an alkyl radical, in particular methyl
  • Q represents a neutral one Lewis base ligands, especially diethyl ether, acetonitrile or ethene.
  • a non-coordinating or poorly coordinating anion A is understood to mean those anions whose charge density at the anionic center is reduced due to electronegative residues and / or whose residues sterically shield the anionic center.
  • Suitable anions A include antimonates, sulfates, sulfonates, borates, phosphates or perchlorates such as B [CgH 3 (CF 3 ) 2 ] 4 "(tetrakis (3, 5-bis- (trifluoromethyldphenyDborate), B [C 6 F 5 ] ⁇ or BF 4 - and SbFg " , A1F 4 _ , AsFg " , PFg “or trifluoroacetate (CF 3 SO 3 -).
  • B [CgH 3 (CF 3 )] 4 "" , SbFg " and PFg " are preferred.
  • Particularly preferred borates, in particular B [CgH 3 (CF 3 ) 2 ] 4 " are used.
  • Suitable non-coordinating or poorly coordinating anions and their preparation are described, for example, in SH Strauss, Chem. Rev. 1993, 93, 927-942, and in W Beck and K. Sünkel, Chem. Rev. 1988, 88, 1405-1421.
  • Preferred transition metal compounds (III) are, for example, bis-2,3- (2,6-dibromophenylimine) butane-palladium (methyl) chloride, bis-2,3- (2,6-dichlorophenylimine) butane-palladium (methyl) chloride, bis -2, 3- (2,6-dibromo-4-methylphenylimine) butane-palladium (methyl) chloride, bis-2,3, (2,6-dichloro-4-methylphenylimine) butane-podium (methyl) chloride .
  • preferred transition metal compounds (III) can also use tetrahis (3, 5-bis (trifluoromethylDphenyDborate (B [C 6 H 3 (CF 3 ) 2 ] 4 " ) or hexafluorophosphate (PFg ® ) become.
  • the transition metal compounds (III) can be used in the process according to the invention as a single compound or in the form of a mixture of several different transition metal compounds (III) as a catalyst.
  • the transition metal compounds (III) have a bidentate bisimine chelate ligand (in formula (III) the structural element which is obtained with the components M, T, Q and A omitted).
  • bidentate ligands can e.g. can be obtained from glyoxal or diacetyl by reaction with primary amines such as 2, 6-dibromomanine, 2, 6-dichloroanine, 2, 6-dibromo-4-methylphenylamine or 2, 6-dichloro-4-methylphenylamine (see also C. van Koten and K. Vriee, Adv. Organomet. Chem. 1982, Vol. 21, 152-234, Academic Press, New York).
  • these complexes are treated in the presence of acetonitrile, benzonitrile, dimethyl sulfoxide, dimethylformamide, hexamethylphosphoric triamide or a linear or cyclic ether such as diethyl ether with an alkali metal or silver salt (M 1 ) ⁇ - with A in the meaning of a non- or poorly coordinating anions and M 1, for example in the meaning of a sodium, potassium, lithium, cesium or silver cation, for example sodium (tetra (3, 5-bis (trifluoromethyl) phenyl) borate) or silver hexafluoroantimonate.
  • M 1 alkali metal or silver salt
  • M 1 alkali metal or silver salt
  • M 1 alkali metal or silver salt
  • M 1 alkali metal or silver salt
  • the starting compound in which Q represents a halide can be obtained by treating a corresponding cyclooctadiene complex with a bidentate bisimine chelate ligand in a non-coordinating solvent such as dichloromethane.
  • a non-coordinating solvent such as dichloromethane.
  • Such production processes are known to the person skilled in the art and are described, for example, by Johnson et al. , J. Am. Chem. Soc. 1995, 117, 6414 and JH Groen et al. , Organometallics, 1997, 17, 68.
  • For the preparation of the cyclooctadiene complexes see, for example, H. Tom Dieck et al. , Z. Naturforschung, 1981, 36b, 823 and D.
  • the (TMEDA) complexes are, for example, according to a specification by de Graaf et al. , Rec. Trav. Chim. Pay-Bas, 1988, 107, 299 accessible from the corresponding dichloride complexes.
  • transition metal complexes (III) can be obtained from Lewis base adducts of the metal salts such as palladium (II) bis (acetonitrile) chloride by treatment with a bidentate bisiminchelate ligand (see also GK Anderson, M. Lin, Inorg. Synth. 1990, 28, 61 and RR Thomas, A. Sen, Inorg. Synth. 1990, 28, 63).
  • the resulting halogen metal diimine complexes can be converted into the corresponding monoalkyl derivatives using alkylating reagents such as tin tetramethyl (SnMe 4 ) (see also EP-A 0 380 162).
  • the starting point for the preparation of the transition metal complexes (III) are suitable metal salts such as cobalt (II) chloride, cobalt (II) bromide, iron (III) chloride and in particular
  • a cocatalyst can be used in addition to the transition metal compound (III).
  • Suitable cocatalysts include strong neutral Lewis acids, ionic compounds with Lewis acid cations and ionic compounds with Bronsted acids as cations.
  • M 2 is an element of III.
  • Main group of the periodic table means, in particular B, Al or Ga, preferably B means and
  • X 1 , X 2 , X 3 independently of one another for hydrogen, linear or branched C ⁇ ⁇ to Cio-alkyl, preferably C ⁇ ⁇ bis
  • C ⁇ -alkyl such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl or n-hexyl, one or more Substituted C - to Cio-alkyl, preferably Ci- to Cs-alkyl, for example with halogen atoms such as fluorine, chlorine, bromine or iodine, Cg to Cig-aryl, preferably Cg to Cio-aryl, for example phenyl, which is also a - Or can be substituted several times, for example with halogen atoms such as fluorine, chlorine, bromine or iodine, for example pentafluorophenyl, alkylaryl with 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms in the alkyl radical and 6 to 14 carbon atoms, preferably 6 are up to 10 carbon atoms in the aryl radical, for example
  • radicals X 1 , X 2 , X 3 are those which have halogen substituents. Pentafluorophenyl should preferably be mentioned. Particularly preferred are compounds of the general formula (IVa) in which X 1 , X 2 and X 3 are identical, preferably tris (pentafluorophenyl) borane.
  • alumoxane compounds are further preferred among the cocatalysts.
  • those compounds which have an Al — C bond are suitable as alumoxane compounds.
  • Open-chain and / or cyclic alumoxane compounds of the general formula (IVb) or (IVc) are particularly suitable as cocatalysts.
  • R 17 independently of one another denotes a C 1 -C 4 -alkyl group, preferably a methyl or ethyl group, and k represents an integer from 5 to 30, preferably 10 to 25.
  • oligomeric alumoxane compounds are usually prepared by reacting a solution of trialkylaluminum with water and are described, inter alia, in EP-A 0 284 708 and US Pat. No. 4,794,096.
  • the oligomeric alumoxane compounds obtained are mixtures of both linear and cyclic chain molecules of different lengths, so that m is to be regarded as the mean.
  • the alumoxane compounds can also be present in a mixture with other metal alkyls, preferably with aluminum alkyls, such as triisobutyl aluminum or triethyl aluminum.
  • Methylalumoxane (MAO) is preferably used, in particular in the form of a solution in toluene.
  • the production of methylalumoxane can be found e.g. described in detail in EP-A 284 708.
  • Aryloxyalumoxanes as described in US Pat. No. 5,391,793, amidoaluminoxanes, as described in US Pat. No. 5,371,260, aminoaluminoxane hydrochlorides, as described in EP-A 0 633 264, and siloxyaluminoxanes, as in EP-A 0 621 279, can also be used as cocatalysts described, or alumoxane mixtures are used.
  • alumoxanes described are used either as such or in the form of a solution or suspension, for example in aliphatic or aromatic hydrocarbons, such as toluene or xylene, or mixtures thereof.
  • Q is an element of main group I or II of the Periodic Table of the Elements, such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium or barium, in particular lithium or sodium, or a silver, carbonium, oxonium, Ammonium, sulfonium or 1,1 '-dimethylferrocenyl cation,
  • Main group of the periodic table of the elements means, in particular boron, aluminum or galium, preferably boron,
  • Ci to CiQ alkyl independently of one another for hydrogen, linear or branched Ci to CiQ alkyl, preferably Ci to Cs-alkyl, such as methyl " , ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl or n-hexyl, mono- or polysubstituted C ⁇ ⁇ to Cio-alkyl, preferably C ⁇ ⁇ bis Cs-alkyl, for example with halogen atoms such as fluorine, chlorine, bromine or iodine, Cg to Cig aryl, preferably Cg to
  • Cio-aryl for example phenyl, which can also be substituted one or more times, for example with halogen atoms such as fluorine, chlorine, bromine or iodine, for example pentafluorophenyl, alkylaryl with 1 to 10 C atoms, preferably 1 to 6 C atoms in the alkyl radical and 6 to 14 carbon atoms, preferably 6 to 10 carbon atoms in the aryl radical, for example benzyl, fluorine, chlorine, bromine, iodine, C 1 -C 10 -alkoxy, preferably C 1 -C 8 -alkoxy, such as methoxy, ethoxy or i-propoxy, or Cg to C g aryloxy, preferably Cg to Cio aryloxy, for example phenoxy, and
  • the anion (TX 4 X 5 X 6 X 7 ) - in a compound of the general formula (IVd) - is preferably a non-coordinating counterion.
  • Boron compounds such as those in WO 91/09882, to which reference is expressly made here, should be emphasized will be called.
  • Particularly suitable cations G are based on the sodium or triphenylmethyl cation and on tetraalkylammonium cations, such as tetramethyl, tetraethyl or tetra-n-butylammonium, or tetraalkylphosphonium cations such as tetramethyl, tetraethyl or tetra-n-butylphosphonium.
  • Preferred compounds (IVd) are, for example, sodium tetrakis (pentafluorophenyl) borate or sodium tetrakis [bis (trifluoromethyl) phenyl] borate
  • Ionic compounds with Bronsted acids as cations and preferably also non-coordinating counterions are mentioned in WO 91/09882, to which reference is expressly made here.
  • Preferred as a cation is e.g. N, N-Dimethylaniünium.
  • Aromatic monohydroxy compounds shielded with sterically demanding groups preferably phenols, come as radical inhibitors. who have at least one sterically demanding group vicmal to the OH group.
  • Suitable phenolic compounds can be found in the classes of compounds of alkylphenols, hydroxyphenol propionates, ammophenols, bisphenols or alkylidene bisphenols.
  • Another group of suitable phenols is derived from substituted benzoecarboxylic acids, in particular from substituted benzoepropionic acids.
  • Examples of the compound class of sterically hindered phenols are bis (2, 6-tert-butyl) -4-methylphenol (BHT), 4-methoxymethyl-2, 6-di-tert-butylphenol, 2, 6-D-tert- butyl-4-hydroxymethylphenol, 1,3, 5-tr ⁇ methyl-2, 4, 6-tr ⁇ s- (3, 5-d ⁇ -tert-butyl-4-hydroxybenzyl) -benzene, 4,4 '-methylene-bis- ( 2, 6-di-tert-butylphenol), 3, 5-di-tert-butyl-4-hydroxybenzoic acid 2, 4-di-tert-butylphenyl ester, 2, 2-B ⁇ - (4-hydroxyphenyl) propane (bisphenol A ), 4, 4 '-dihydroxybiphenyl (DOD), 2, 2' -methylene-bis (4-methyl-6-tert-butylphenol), 1, 6-hexanediol-b ⁇ s-3- (3, 5-d ⁇ -tert
  • B ⁇ s (2,6- (C ⁇ - to Cio-alkyl) -4- (Ci- to C ⁇ o-alkyl) phenols in particular bis (2, 6-tert-butyl) -4-methylphenol and Bis (2,6-methyl) -4-methylphenol is preferred, and bis (2,6-tert-butyl) -4-methylphenol is particularly preferred.
  • tetraalkylpiperidm-N-oxyl radicals can be used as radical inhibitors instead of the sterically hindered phenols or also as an additive to these.
  • Suitable are e.g. 2,2,6, 6-tetramethyl-l-p ⁇ per ⁇ dmyloxy (TEMPO), 4-oxo-2,2, 6, 6-tetramethyl-l-p ⁇ pe ⁇ dmyloxy (4-0xo-TEMP0), 4-hydroxy-2, 2, 6, 6-tetramethyl-1-p ⁇ pe ⁇ dmyloxy, 2,2,5, 5-tetra-methyl-1-pyrrole-dmyloxy, 3-carboxy-2, 2,5, 5-tetramethyl-pyrrole-dmyloxy or di-tert-butylnitroxide.
  • TEMPO 2,2,6, 6-tetramethyl-l-p ⁇ per ⁇ dmyloxy
  • 4-oxo-2,2, 6, 6-tetramethyl-l-p ⁇ pe ⁇ dmyloxy 4-hydroxy-2, 2, 6, 6-tetramethyl-1-p ⁇ pe ⁇
  • amounts of an aromatic monohydroxy compound shielded with sterically demanding groups or an N-oxyl radical compound shielded with sterically demanding groups of less than 200, less than 100 or even less than 20 ppm are sufficient, based on the starting amount of functionalized olefinically unsaturated monomers in order to ensure that the process according to the invention runs smoothly. This is also possible with amounts of less than 10, 5 and even 2 ppm.
  • concentrations of radical inhibitor are also permissible which exceed the concentration of the transition metal compound in the reaction mixture by double, triple or even four times.
  • the preparation of the (co) polymers according to the process according to the invention can be carried out in an aliphatic or aromatic aprotic solvent, e.g. in heptane, i-butane, toluene or benzene, as well as in a polar aprotic solvent.
  • Suitable polar aprotic solvents are e.g. Halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride or chlorobenzene, linear or cyclic ethers such as diethyl ether or tetrahydrofuran, furthermore acetone, dimethyl sulfoxide, dimethylformamide, hexamethylphosphoric acid triamide or acetonitrile.
  • any, preferably homogeneous, mixtures of the abovementioned solvents can also be used.
  • Dichloromethane, chloroform, toluene, chlorobenzene and acetonitrile and mixtures thereof are particularly preferred.
  • the amount of solvent is usually determined so that the starting compounds are in dissolved form at the start of the reaction.
  • the transition metal-catalyzed polymerization process can also be carried out in bulk or in the gas phase.
  • the transition metal compounds (III) can also be used in supported form in the polymerization in the gas phase.
  • Inorganic and organic materials can be used as carrier materials. Suitable inorganic carrier materials are, for example, silica gel, aluminum, magnesium, titanium, zirconium, boron, calcium or zinc oxides, aluminosilicates, polysiloxanes, talc, layered silicates, zeolites or metal halides such as MgCl 2 .
  • Organic carrier materials are based, for example, on prepolymers of olefin (co) polymers, as are obtained, for example, using the processes according to the invention.
  • Suitable transfer methods are known to the person skilled in the art and can be found among others for supported ones Ziegler-Natta catalysts in Makromol. Chem. Phys. 1994, 195, 3347, Macromol. Rapid Commun. 1994, 15, 139-143 and Angew. Chem. Int. Ed. Engl. 1995, 34, 1143-1170) and for supported metal ocene catalysts in EP-A-0 308 177 and in US 4,897,455, US 4,912,075 and US 5,240,894.
  • the copolymerization is usually carried out at temperatures in the range from -40 to 160 ° C., preferably in the range from -20 to 100 ° C. and particularly preferably from 0 to 80 ° C. Depending on the reaction conditions chosen, the reaction times are generally between 1 and 2 hours and several days. Gaseous reaction components such as ethene are pressed onto the reaction mixture.
  • the copolymerization generally takes place at a pressure in the range from 0.1 to 200 bar, preferably from 0.5 to 100 bar and particularly preferably from 1 to 80 bar.
  • the concentration of transition metal compound (III) is generally set to values in the range from 10 ⁇ 6 to 0.1, preferably in the range from 10 ⁇ 5 to 10 ⁇ 2 and particularly preferably in the range from 5 x 10 ⁇ 5 to 5 x 10 ⁇ 2 mol / 1 set.
  • the initial concentration of nonpolar olefin (I) is generally in the range from 10 ⁇ 3 to 10 mol / 1, preferably in the range from 10 ⁇ 2 to 5 mol / 1.
  • the starting concentration of a functional tional group-substituted ⁇ -olefin (II) is generally in the range of 10 -5 to 8 mol / 1, preferably of 10 "3 to 7 and particularly preferably from 10 to 6.8 mol _1 /1.
  • the molar ratio of functionalized to non-polar monomer in the starting mixture is usually in the range from 10 -3 : 1 to 1000: 1, preferably in the range from 10 "1 : 1 to 100: 1, particularly preferably from 0.1: 1 to 20 : 1.
  • the molar initial ratio of radical inhibitors to functionalized monomer (II) is generally in the range from 10 ⁇ 8 : 1 to 10 "1 : 1, preferably from 10 ⁇ 7 : 1 to 10 ⁇ 2 : 1 and particularly preferably from 5 x 10 ⁇ 7 : 1 to 10 ⁇ 4 : 1.
  • the polymerization can be terminated by adding a deactivation reagent such as triphenylphosphine or by adding a low molecular weight alcohol such as methanol or ethanol.
  • a deactivation reagent such as triphenylphosphine
  • a low molecular weight alcohol such as methanol or ethanol.
  • the (co) polymers obtained by the process according to the invention have molecular weight distributions M w / M n in the range from 1.1 to 2.5, preferably from 1.1 to 1.8, and glass transition temperature values of regularly ⁇ -40 ° C., preferably ⁇ -50 ° C and regularly ⁇ -20 ° C in the case of the nickel transition metal compounds (III).
  • M Pd in (III)
  • (co) polymers, for example polyethylene are obtained with a very high degree of linearity.
  • homopolymers and copolymers of monomers (I) and copolymers of monomers (I) and (II) can be obtained.
  • the process can be carried out either continuously or batchwise.
  • the transition metal compounds (III) are notable for their high activity, and also have no loss of activity even in the case of prolonged polymerization, and thus ensure high productivity.
  • the 13 C-NMR spectra were recorded on a device from Bruker (ARX 300) with CDC1 3 or CDC1 4 as solvent.
  • the 1 H-NMR spectra were recorded on a device from Bruker (ARX 300) with CDCI 3 or CDC1 4 as solvent.
  • the DSC spectra were recorded on a device from Perkin-Elmer (Series 7) at a heating rate of 20 K / min.
  • Glycidyl acrylate was purchased from Polysciences Inc. and distilled before addition to the reaction mixture.
  • Catalyst F was prepared analogously to catalyst E), with the difference that the bidentate chelate ligand
  • the polymer formed separated out in the form of a highly viscous oil or in the form of a fine powder and could be obtained by decanting or filtering.
  • the polymer obtained was washed several times with ethanol. The last solvent residues were removed in a high vacuum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Verfahren zur Herstellung von (Co)polymeren, bei dem man unpolare olefinische Monomere und gegebenenfalls alpha -Olefine, die über eine funktionelle Gruppe verfügen, in Gegenwart einer oder mehrerer Übergangsmetallverbindungen der allgemeinen Formel (III), in der die Substituenten und Indizes die folgende Bedeutung haben: R<1>, R<3> Wasserstoff, C1- bis C10-Alkyl, C3- bis C10-Cycloalkyl, C6- bis C16-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, Si(R<6>)3, N(R<6>)(R<7>), OR<6>, SR<6> oder R<1> und R<3> bilden gemeinsam mit C<a>, C<b> und gegebenenfalls C' einen fünf-, sechs- oder siebengliedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus, R<2>, R<4> C4- bis C16-Heteroaryl oder C6- bis C16-Aryl mit Halogeno-, Nitro-, Cyano-, Sulfonato- oder Trihalogenmethylsubstituenten in den beiden ortho-Positionen zu N<a> und N<b>, R<5> Wasserstoff, C1- bis C10-Alkyl, C6- bis C16-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, R<6>, R<7> C1- bis C10-Alkyl, C6- bis C16-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, m 0 oder 1, M ein Metall der Gruppe VIIIB des Periodensystems der Elemente, T, Q neutral oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C2- oder C3-Alkyleneinheit mit einer Methylketon-, linearen C1- bis C4-Alkylester- oder Nitrilendgruppe, A ein nicht oder schlecht koordinierendes Anion und x, p 0, 1, 2 oder 3; q, n 1, 2 oder 3 sowie gegebenenfalls in Gegenwart eines Cokatalysators umsetzt.

Description

Verfahren zur (Co) olymerisation von Olefinen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur (Co) olymerisation von Olefinen mit Hilfe von Übergangsmetallverbindungen. Des weiteren betrifft die Erfindung diese Übergangs - metallverbindungen sowie ein Katalysatorsystem enthaltend die- selben. Außerdem betrifft die Erfindung die Verwendung dieser Übergangsmetallverbindungen als Katalysatoren für die (Co) Polymerisation von unpolaren Olefinen und gegebenenfalls von α-Olefinen, die über eine funktioneile Gruppe verfügen.
Verfahren zur Olefinpolymerisation sind dem Fachmann bekannt. Besonderes Interesse haben bislang vor allem Übergangsmetall - komplexe auf der Basis von Metallen der Gruppe IVB des Periodensystems der Elemente, insbesondere in Form von Metallocen- und Halbsandwich-Komplexen gefunden (s.a. H.H. Brintzinger, D. Fi- scher, R. Mülhaupt, B. Rieger, R.M. aymouth, Angew. Chem. Int. Ed. Engl. 1995, 34, 1143-1170) . Diese Komplexverbindungen sind in der Regel sehr empfindlich gegenüber Sauerstoff und Feuchtigkeit und sind demzufolge häufig nur aufwendig herzustellen und zu handhaben. Für eine wirksame Reaktionsführung ist diesen Metall - ocenkomplexen auf der Basis der frühen Übergangsmetalle stets ein Cokatalysator in nicht geringer Menge zuzusetzen, was aufwendige Aufreinigungsschritte erforderlich machen und zu Produktverunreinigungen führen kann.
Brookhart et al . , J. Am. Chem. Soc. 1995, 117, 6414-6415, konnten zeigen, daß auch Nickel- und Palladiumkomplexe für die Polymerisation von Ethen und Propen in Frage kommen, wenn als Chelat- ligand eine Bisiminverbindung mit sperrigen Arylsubstituenten am Iminstickstoff , insbesondere 2, 6-Diisopropylphenyl, verwendet wird. Die sterisch anspruchsvollen Reste sollen das Metallzentrum abschirmen und auf diese Weise Kettenübertragungs- und/oder Eli- minierungsreaktionen unterbinden, wodurch erst akzeptable Molekulargewichte erzielt würden. Des weiteren gelang es Brookhart et al., J. Am. Chem. Soc. 1996, 118, 267-268, Ethen und z.B. Methyl - acrylat mit Hilfe der beschriebenen Übergangsmetallkomplexe zu copolymerisieren. Diese Copolymere werden beispielsweise aufgrund ihrer elastomeren Eigenschaften als Zähmodifikatoren für technische Kunststoffe wie Polybutylenterephthalat oder Polyamid eingesetzt. Technisch werden diese Copolymere jedoch zumeist noch auf radikalischem Wege hergestellt, was zu Polymeren mit breiter Molekulargewichtsverteilung und zu einem inhomogenen Einbau des die funktionelle Gruppe tragenden Olefins führt. Zwar können mit Hilfe der bei Brookhart (s.o.) beschriebenen Bisiminkomplexe Copolymere mit relativ enger Molekulargewichtsverteilung erzielt werden. Es wäre jedoch wünschenswert, auf Katalysatorsysteme mit hoher bzw. höherer Aktivität zurückgreifen zu können, die zu- gleich unter den jeweiligen Polymeriationsbedingungen hinreichend stabil sind und über eine lange Lebensdauer verfügen, so daß sie sich auch für den Einsatz in der großtechnischen Fertigung eignen.
Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren für die Herstellung von (Co) polymeren aus olefinischen Monomeren verfügbar zu machen, das sich durch hohe Aktivitäten auszeichnet, keine oder nur geringe Zusätze an Cokatalysator erfordert und unproblematisch auch großtechnisch eingesetzt werden kann. Des wei- teren lag der Erfindung die Aufgabe zugrunde, eine Übergangs - metallverbindung zu finden, die unempfindlich sowie einfach zu handhaben ist und insbesondere unter den Polymerisationsbedingungen auch bei längeren Reaktionsdauern keine Einbußen bei der katalytischen Aktivität zeigt.
Demgemäß wurde ein Verfahren zur Herstellung von (Co) polymeren aus unpolaren olefinischen Monomeren (I) sowie ein Verfahren zur Herstellung von (Co) polymeren aus unpolaren olefinischen Monomeren (I) und α-Olefinen (II) , die über mindestens eine funktio- nelle Gruppe verfügen, gefunden, bei denen das bzw. die Ausgangs - monomere in Gegenwart einer Übergangsmetallverbindung der allgemeinen Formel
in der die Substituenten und Indizes die folgende Bedeutung haben:
R1, R3 Wasserstoff, Cι~ bis Cio-Alkyl, C3- bis Cio-Cycloalkyl , Cg- bis Cι6-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, Si(R6)3, N(R6) (R7) , OR6, SR6 oder R1 und R3 bilden gemeinsam mit Ca, Cb und gegebenenfalls C einen fünf-, sechs- oder siebengüedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus,
R2, R4 C4- bis Cχ6-Heteroaryl oder Cg- bis Cig-Aryl mit Halo- geno-, Nitro-, Cyano-, Sulfonato- oder Trihalogenmethyl - substituenten in den beiden ortho-Positionen zu Na und Nb,
R5 Wasserstoff, C ~ bis C10 -Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-
Atomen im Arylteil,
R6, R7 Ci- bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Aryl - teil,
m 0 oder 1, bevorzugt 0,
M ein Metall der Gruppe VIIIB des Periodensystems der Elemente,
T, Q neutrale oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C2- oder C3-Alkyleneinheit mit einer Methylketon-, linearen Cι~ bis C4-Alkylester- oder Nitrüendgruppe,
A ein nicht oder schlecht koordinierendes Anion und
x, p 0, 1, 2 oder 3
q, n 1, 2 oder 3
sowie gegebenenfalls in Gegenwart eines Cokatalysators koordina- tiv polymerisiert werden.
Des weiteren wurde die Übergangsmetallverbindung (III) sowie ein Katalysatorsystem enthaltend als wesentliche Bestandteile die Übergangsmetallverbindung (III) sowie als Cokatalysator eine starke neutrale Lewis-Säure, eine ionische Verbindung mit einem Lewis-sauren Kation oder eine ionische Verbindung mit einer Brön- sted-Säure als Kation gefunden. Außerdem wurde die Verwendung der Übergangsmetallverbindung (III) sowie des Katalysatorsystems enthaltend die Übergangsmetallverbindung (III) und einen Cokatalysator als wesentliche Bestandteile bei der Herstellung von Olefin (co) polymeren gefunden. Als unpolare olefinische Monomere (I) kommen Verbindungen der allgemeinen Formel (Ia)
(R8)HC=C(R9) (RIO) (Ia)
in Frage, in der die Substituenten die folgende Bedeutung haben:
R8 bis R10 unabhängig voneinander Wasserstoff, Cι~ bis Cio-Alkyl, worunter lineare wie auch verzweigte Alkylreste zu ver- stehen sind, bevorzugt Cι~ bis Cg-Alkyl wie Methyl,
Ethyl, n- , i-Propyl, n-, i- oder t-Butyl, Cg- bis Cig-Aryl, worunter auch mit Ci- bis Cg-Alkylgruppen wie Methyl, Ethyl oder i-Propyl ein-, zwei- oder mehrfach substituierte Arylreste wie Tolyl zu verstehen sind, bevorzugt Cg- bis Cι0-Aryl wie Phenyl oder Naphthyl , insbesondere Phenyl, Alkylaryl mit 1 bis 10, bevorzugt 1 bis 6 C-Atomen im Alkyl- und 6 bis 14, bevorzugt 6 bis 10 C-Atomen im Arylteil, z.B. Benzyl, oder Si(R1:L)3 mit
R11 Ci- bis Cio-Alkyl, C6- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 16 C-Atomen im Arylteil, wobei diese Reste die unter R8 bis R10 angegebene bevorzugte bzw. spezielle Bedeutung annehmen können.
Die Reste R8 und R9 bzw. R10 können des weiteren zusammen mit der C=C-Doppelbindung einen Carbocyclus bilden. Geeignete cyclische Olefine (I) sind z.B. Cyclobuten, Cyclopenten, Cyclohexen oder Norbornen sowie substituierte Norbornene. Bevorzugt sind unter diesen Cyclopenten und Norbornen.
Geeignete unpolare olefinische Monomere können über eine, zwei oder mehrere endständige oder interne Doppelbindungen verfügen. Vorzugsweise werden olefinisch ungesättigte Verbindungen mit einer endständigen Doppelbindung wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen oder 1-Octen eingesetzt. Besonders bevorzugt sind Ethen, Propen, 1-Buten und 1-Hexen, insbesondere Ethen. Darüber hinaus stellen auch perfluorierte Olefine wie Tetrafluor- ethylen geeignete unpolare Ausgangsmonomere (I) dar. Selbstverständlich können auch beliebige Gemische an Ausgangsmonomeren (I) in den erfindungsgemäßen Verfahren verwendet werden.
In einer Ausführungsfor des erfindungsgemäßen Verfahrens werden als weitere Ausgangsmonomere α-Olefine (II) , die über mindestens eine funktioneile Gruppe im Molekül verfügen, eingesetzt. Geeignete funktioneüe Gruppen stellen z.B. die Carbonsäure-, Carbonsäureester-, Carbonsäureamid-, Carbonsäureanhydrid-, Hydroxy-, Epoxy-, Siloxy-, Ether-, Keto-, Aldehyd-, Amino-, Nitril-, Oxazolin-, Sulfonsäure- , Sulfonsäureester- oder Haloge- nofunktionalitäten dar. Bevorzugte funktioneüe Gruppen gehen u.a. zurück auf die Carbonsäureeinheit, auf Carbonsäureester-, Carbonssäureamid- oder -anhydridreste sowie auf die Ether- oder Ketogruppe.
Bevorzugt werden als Ausgangsmonomere (II) funktionalisierte olefinisch ungesättigte Monomere der allgemeinen Formel
CH2=C(R12) (R13) (Ha)
eingesetzt, in der die Substituenten und Indizes die folgende allgemeine Bedeutung haben:
R12 Wasserstoff, CN, CF3, Cι~ bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl und 6 bis 14 C-Atomen im Arylteil, Pyrrolidonyl oder Carbazolyl,
R13 CN, C(0)R14, C(0)OR14, C (0) N (R14) (R15 ) , CH2Si (OR16) 3 , C(O) -O-C (O)R14, O-Ci- bis -O-Cι0-Alkyl, O-Cg- bis - O-Cig-Aryl mit
R14, R15 Wasserstoff, Ci- bis Cio-Alkyl, C2- bis Cι0-Alkenyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, eine Epoxy- gruppe enthaltende C - bis Cio-Alkylgruppe, eine mit einer Epoxygruppe substituierte Cg- bis Cig-Arylgruppe oder Si (R16)3 und
R16 Ci- bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Aryl - teil.
Funktionalisierte olefinisch ungesättigte Comonomere (II) verfügen über eine terminale Kohlenstoff/Kohlenstoff-Doppelbindung. Unter diesen Verbindungen sind (Meth) acrylsäure sowie die Ester- und Amidderivate der (Meth) acrylsäure, vorzugsweise der Acrylsäure, sowie Acrylnitril oder Methacrylnitril oder deren Mischungen besonders geeignet. Bevorzugt sind die Cι~ bis Cιo~, insbesondere die Cι~ bis Cs-Alkylester der Acryl- und Methacryl- säure, also z.B. die Methyl-, Ethyl-, n-, i-Propyl-, n-, i-, t- Butyl-, Hexyl-, Dicyclopentadienyl- oder 2-Ethyl- hexyl (meth) crylat, wobei die Alkylreste linear oder verzweigt sein können. Weiterhin bevorzugt sind (Meth) acrylate mit einer Epoxygruppe in der Estereinheit, beispielsweise Glycidyl (meth) acrylate, sowie mit einer Alkenylgruppe wie Ethyliden oder Propyliden als Estereinheit. Acrylate sind besonders bevorzugt. Exemplarisch seien als besonders geeignet Methyl - acrylat, Ethylacrylat, n-Butylacrylat, t-Butylacrylat, Dicyclo- pentadienylacrylat, Glycidylacrylat, 2-Ethylhexylacrylat sowie Acrylsäure genannt. Besonders bevorzugt sind Methylacrylat und Glycidylacrylat. Ebenso können Methacryl- oder Acrylnitril eingesetzt werden. Selbstverständlich können auch beliebige Mischungen an Comonomeren (II) eingesetzt werden. Die vorgenannten Monomere sind an sich bekannt und kommerziell erhältlich.
Die Ausgangskonzentration der beschriebenen funktionalisierten Monomere (II) kann über einen weiten Bereich variiert werden und beispielsweise ohne weiteres Werte im Bereich von 3 bis 6 mol/1 annehmen.
Soweit nicht an anderer Stelle ausdrücklich beschrieben, weisen die Reste C ~ bis Cio-Alkyl, C3- bis Cio-Cycloalkyl , Cg- bis Cig-Aryl und Alkylaryl im Sinne der vorliegenden Erfindung als Substituenten die folgende allgemeine und bevorzugte Bedeutung auf. Unter Cι~ bis Cιo~Alkylreste fallen zum Beispiel die Methyl-, Ethyl-, n- oder i-Propyl, n- , i- oder t-Butyl- sowie die Pentyl-, Hexyl- oder Heptylgruppe in geradkettiger und verzweigter Form. Unter Cι~ bis Cιo~Alkylreste fallen, abgesehen von Monomer (I) , auch solche, die mit funktionellen Gruppen auf der Basis der Elemente der Gruppen IVA, VA, VIA oder VIIA des Periodensystems substituiert sind, also beispielsweise partiell oder perhalogenierte Alkylreste wie Trichlormethyl , Trifluormethyl , 2 , 2 , 2-Trifluor- ethyl, Pentafluorethyl oder Pentachlorethyl sowie eine oder mehrere Epoxygruppen tragende Alkylreste, beispielsweise Propen- oxy. Im Sinne der vorliegenden Erfindung sind unter den Cι~ bis Cio-Alkylresten regelmäßig die Cι~ bis Cs-Alkylreste bevorzugt.
Unter geeignete C3- bis Cio-Cycloalkylreste fallen Carbo- wie auch Heterocyclen, also beispielsweise substituiertes und unsubsti- tuiertes Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclo- octyl, Pyrrolyl, Pyrrolidonyl oder Piperidinyl . Unter den substituierten cycloaüphatischen Resten seien exemplarisch 1-Methyl - cyclohexyl, 4-t-Butylcyclohexyl und 2 , 3-Dimethylcyclopropyl genannt .
Unter geeignete Cg- bis Cig-Arylgruppen fallen ganz allgemein substituierte und unsubstituierte Arylreste. Unter den unsubsti- tuierten Arylresten sind die Cg- bis Cι0-Arylgruppen wie Phenyl und Naphthyl bevorzugt. Phenyl ist besonders bevorzugt. Bei den unsubstituierten wie auch den substituierten C6- bis Cig-Aryl- gruppen weist die Angabe der Kohlenstoffatome (z.B. Cg-, Cιo~ oder Cig-) auf die Anzahl der Kohlenstoff tome hin, die das aromatische System bilden. Kohlenstoffatome aus möglichen Alkyl- und/oder Arylsubstituenten sind mit dieser Angabe noch nicht erfaßt. Die Angabe Cg- bis Ci6~Aryl soll somit beispielsweise auch substituierte Cg- bis Ciς-Arylreste wie substituiertes Anthracenyl umfassen. Unter Cg- bis Cig-Arylreste fallen, abgesehen von Monomer (I) , auch solche Reste, die mit funktioneilen Gruppen auf der Basis der Elemente aus den Gruppen IVA, VA, VIA und VIIA des Periodensystems der Elemente einfach, mehrfach oder persubsti¬ tuiert sind. Geeignete funktioneüe Gruppen sind Cχ~ bis Cio-Alkyl, bevorzugt Cι~ bis Cg-Alkyl, Cg- bis Cig-Aryl, bevorzugt Cg- bis Cio-Aryl, Triorganosilyl wie Trimethyl-, Triethyl-, Tri - phenyl- oder t-Butyl-diphenylsüyl sowie Amino, beispielsweise NH2, Dimethylamino, Di-i-propylamino, Di-n-butylamino, Diphenyl- amino oder Dibenzylamino, Ci- bis Cio-Alkoxy, bevorzugt Ci- bis Cg-Alkoxy, zum Beispiel Methoxy, Ethoxy, n- oder i-Propoxy, n-, i- oder t-Butoxy, oder Halogen wie Fluorid, Chlorid oder Bromid.
Unter geeignete Alkylarylreste fallen solche mit 1 bis 10, bevorzugt 1 bis 6 C-Atomen im Alkyl- und 6 bis 14, bevorzugt 6 bis 10 C-Atomen im Arylteil, insbesondere die Benzylgruppe.
Die beschriebenen Ausgangsmonomere werden nach dem erfindungs- gemäßen Verfahren ubergangsmetaükatalysiert in Gegenwart einer Komplexverbindung der allgemeinen Formel (III)
umgesetzt.
Die Reste R2 und R4 stellen C4- bis Cig-Heteroaryl- oder Cg- bis C g-Arylgruppen dar, die jeweils in ihren beiden ortho-Positionen zu den Iminsticksto fatomen Na und Nb, d.h. ortho-ständig zur kovalenten Bindung zwischen dem Arylrest und dem Iminstickstoff elektronenziehende Reste wie Halogeno, Nitro, Cyano, Sulfonato oder Trihalogenmethyl tragen. Die ortho-Positionen in R2 bzw. R4 können mit identischen wie auch mit voneinander verschiedenen elektronenziehenden Resten substituiert sein. Unter den Sulfona- tresten kommen insbesondere SO3R6, S03Si(R6)3 und S03 + (HN(R5) 3) " in Frage. Besonders geeignet unter diesen sind jeweils S03Me, Sθ3SiMe3 und SO3 " (HNEt3) + . Unter den Trihalogenmethylresten sind Trifluor, Trichlor und Tribrommethyl, insbesondere Trifluormethyl besonders geeignet. Besonders geeignete ortho-Substituenten sind Halogenreste wie der Fluor-, Chlor-, Brom- oder Iodrest. Bevorzugt werden Chlor- oder Bromreste als ortho-Substituenten eingesetzt. Des weiteren sind die jeweiligen ortho-Positionen bevorzugt mit identischen Resten besetzt.
Die Heteroaryl- bzw. Arylreste R2 und R3 können neben den ortho- Resten einen oder mehrere weitere Substituenten aufweisen. Als solche Substituenten kommen beispielsweise funktioneüe Gruppen auf der Basis der Elemente aus den Gruppen IVA, VA, VIA und VIIA des Periodensystems der Elemente in Frage. Geeignet sind beispielsweise geradlinig oder verzweigtes Cι~ bis Cio-Alkyl, bevorzugt C ~ bis Cg-Alkyl, wie Methyl, Ethyl, n- oder i-Propyl, n-, i- oder t-Butyl, partiell oder perhalogeniertes Cι~ bis Cio-Alkyl, bevorzugt Cι~ bis Cg-Alkyl, wie Trifluor- oder Tri - chlormethyl oder 2 , 2 , 2-Trifluorethyl , Triorganosilyl , wie Tri- methyl-, Triethyl-, Tri-t-butyl- , Triphenyl- oder t-Butyl-di- phenylsüyl, die Nitro-, Cyano- oder Sulfonatogruppe, Amino, beispielsweise NH2 , Dirnethylamino, Di-i-propylamino, Di-n-butyl- amino, Diphenylamino oder Dibenzylamino, Cι~ bis Cio-Alkoxy, bevorzugt Cι~ bis Cg-Alkoxy, wie Methoxy, Ethoxy, i-Propoxy oder t-Butoxy, oder Halogen, wie Fluorid, Chlorid, Bromid oder Iodid.
Bevorzugt unter den ortho-substituierten Arylresten sind Phenyl-, Naphthyl- und Anthracenylgruppen, besonders bevorzugt sind Phenyl- und Naphthylgruppen und insbesondere bevorzugt ist die Phenylgruppe. Diese ortho-substituierten Arylreste können jeweils auch in den Positionen, die nicht ortho-ständig sind, mit funktioneilen Gruppen auf der Basis der Elemente aus den Gruppen IVA, VA, VIA und VIIA des Periodensystems der Elemente, wie vorgehend beschrieben, substituiert sein. Bevorzugt ist bei einem ortho- substituierten Phenylrest R2 , R4 eine zusätzliche Substitution in para-Position, z.B. mit einem Methyl-, t-Butyl-, Chlor- oder Bromrest. Bevorzugte Arylreste R2, R4 sind 2,6-Dibrom-, 2 , 6-Dichlor-, 2 , 6-Dibrom-4-methyl- oder 2 , 6-Dichlor-4-methyl - phenyl.
Unter den ortho-substituierten C4- bis Cig-Heteroarylresten R2 und R4 im Sinne der vorliegenden Erfindung sind ebenfalls substituierte und unsubstituierte Heteroarylreste zu verstehen, beispielsweise C4- bis Cι3-Heteroaryl, bevorzugt C4- bis
Cg-Heteroaryl, wie der Pyrrolidyl- (über ein Ringkohlenstoffatom mit dem Iminstickstoff verknüpft) oder der Pyrrolidgruppe (über den Pyrrolstickstoff mit dem Iminstickstoff verknüpft) oder der Imidazolyl- (C-N-verknüpft) , Imidazolid- (N-N-verknüpft) , Benz - imidazolyl-, Benzimidazolid- , Pyrazolyl-, Pyrazolid-, Pyridinyl-, Pyrimidinyl-, Chinolyl- oder Isochinolylgruppe. Bevorzugt unter den Heteroarylresten ist die ortho-substituierte Pyrrolidyl- sowie insbesondere die PyrroÜdgruppe. Besonders bevorzugt weist diese PyrroÜdgruppe in den ortho-Position zur Verknüpfungsstelle mit den Iminstickstoffato en Na bzw. Nb Halogensubstituenten wie Fluor, Chlor, Brom oder Iod auf. Bevorzugte Heteroarylreste R2 , R4 sind 2 , 5-Dichlorpyrrolid und 2 , 5-Dibrompyrrolid.
Als Reste R1 und R3 in (III) kommen Wasserstoff, Cι~ bis Cio-Alkyl, C3- bis Cio-Cycloalkyl , Cg- bis Cig-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, einen Silyl- (Si(R6)3), einen Amino- (N(R6) (R7) , einen Ether-
(OR5) oder einen Thioetherrest (SR6) in Frage. Des weiteren können die Reste R1 und R3 zusammen mit Ca, Cb und gegebenenfalls C einen fünf-, sechs- oder siebengüedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus bilden. Unter den Resten R1 und R3 sind Wasserstoff, Methyl, Ethyl, i-Propyl, t-Butyl, Methoxy, Ethoxy, i-Propoxy, t- Butoxy, Trifluormethyl , Phenyl, Naphthyl, Tolyl, 2-i-Propylphe- nyl , 2-t-Butylphenyl, 2 , 6-Di-i-propylphenyl , 2-Trifluormethyl - phenyl, 4-Methoxyphenyl , Pyridyl oder Benzyl sowie insbesondere Wasserstoff, Methyl, Ethyl, i-Propyl oder t-Butyl bevorzugt. Li - gandverbindungen mit diesen Resten finden sich bei K. Vrieze und G. van Koten, Adv. Organomet. Chem., 1982, 21, 151- 239, beschrieben. Unter den cyclischen Systemen, vorzugsweise aus R1, R3 , Ca und Cb, sind aromatische Systeme, insbesondere Phenanthren- und CampherSysteme bevorzugt (s.a. J. Matei, T. Lixandru, Bul . Inst. PoÜteh. Isai, 1967, 13, 245). Des weiteren sind als heterocycli- sche Systeme R1, R3 1, 4-Dithiane, wie in WO 98/37110 beschrieben, bevorzugt.
Der Rest R5 stellt bevorzugt Wasserstoff oder Methyl, insbesondere Wasserstoff dar.
Als Metalle M in (III) kommen alle Elemente der Gruppe VIIIB des Periodensystems der Elemente, also Eisen, Cobalt, Nickel, Ruthenium, Rhodium, Palladium, Osmium, Iridium oder Platin in Betracht. Bevorzugt werden Nickel, Rhodium, Palladium oder Platin eingesetzt, wobei Nickel und Palladium sowie insbesondere Palladium besonders bevorzugt sind. Eisen und Cobalt liegen in den Metallverbindungen (III) im allgemeinen zwei- oder dreifach positiv geladen, Palladium, Platin und Nickel zweifach positiv geladen und Rhodium dreifach positiv geladen vor. T und Q stellen in einer Ausführungsform neutrale und/oder mono- anionische monodentate Liganden dar. Als neutrale Liganden kommen Lewis-Basen in Frage, beispielsweise Acetonitril, Benzonitril, Diethylether, Tetrahydrofuran, Amine, Ketone, Phosphane, Essig- säureethylester, Dimethylsulfoxid, Dirnethylformamid oder Hexa- methylphosphorsäuretriamid. Als Lewis-basischer Neutralligand ist ebenfalls Ethen geeignet. Monoanionische Liganden stellen zum Beispiel Carbanionen auf der Basis substituierter oder unsubsti- tuierter Alkyl-, Aryl- oder Acylreste oder Halogenidionen dar.
T in (III) bedeutet bevorzugt monoanionische Reste wie Chlorid, Bromid oder Jodid, Methyl, Phenyl, Benzyl oder ein Cι~ bis Cio-Alkyl, das in ß-Position zum Metallzentrum M keine Wasserstoffatome aufweist und über eine Ci- bis C4-Alkylester- oder eine Nitrüendgruppe verfügt. Besonders bevorzugt als Ligand T sind Chlorid und Bromid als Halogenidreste sowie Methyl als Alkylrest.
Q stellt bevorzugt Ligandreste wie Acetonitril, Benzonitril, Ethen, Triphenylphosphin als monodentate Phosphorverbindung, Pyridin als monodentate aromatische Stickstoffverbindung, Acetat, Propionat oder Butyrat, insbesondere Acetat als geeignetes Carb- oxylat, einen linearen Alkylether, z.B. einen linearen Di-C - bis Cg-Alkylether wie Diethylether oder Di-i-propylether, bevorzugt Diethylether, einen cyclischen Alkylether wie Tetrahydrofuran oder Dioxan, bevorzugt Tetrahydrofuran, einen linearen Cι~ bis C4-Alkylester, z.B. Essigsäureethylester, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretriamid oder ein Haloge- nid dar. Im Fall von Nickelkomplexen (III) (M = Ni) ist Q vorzugsweise ein Halogenid, z.B. ein Chlorid, Bromid oder Jodid, insbesondere ein Bromid, im Fall von Palladiumkomplexen (M = Pd) ist Q vorzugsweise Acetonitril, Diethylether oder Ethen.
Des weiteren können die Reste T und Q gemeinsam eine C - oder C3-Alkyleneinheit mit einer Methylketon-, einer linearen Ci- bis C4-Alkylester- oder einer Nitrüendgruppe darstellen. Bevorzugt stellen hierbei T und Q zusammen eine - (CH2CH2CH2C (0) OCH3-Einheit dar und bilden auf diese Weise gemeinsam mit M einen sechs - gliedrigen Cyclus . Während die endständige Methyleneinheit mit M eine Metall/Kohlenstoffbindung ausbildet, tritt die Carbonyl- gruppe koordinativ in Wechselwirkung mit M.
Unter den Nickelkomplexen (III) sind Nickeldihalogenid-, vorzugsweise Nickeldichlorid- oder Nickeldibromid-, oder Nickeldimethyl- komplexe (p = 0) und unter diesen insbesondere die Nickeldibro- midkomplexe bevorzugt. In bevorzugten Palladiumkomplexen stellt T einen Alkylrest, insbesondere Methyl, und Q einen neutralen Lewis-Baseliganden, insbesondere Diethylether, Acetonitril oder Ethen dar.
Unter einem nicht oder schlecht koordinierenden Anion A sind erfindungsgemäß solche Anionen zu verstehen, deren Ladungsdichte am anionischen Zentrum aufgrund elektronegativer Reste vermindert ist und/oder deren Reste das anionische Zentrum sterisch abschirmen. Geeignete Anionen A sind u.a. Antimonate, Sulfate, Sulfonate, Borate, Phosphate oder Perchlorate wie B [CgH3 (CF3) 2] 4" (Tetrakis (3 , 5-bis- (trifluormethyDphenyDborat) , B [C6F5] ~ oder BF4- sowie SbFg", A1F4 _, AsFg", PFg" oder Trifluoracetat (CF3SO3-) . Bevorzugt sind B [CgH3 (CF3) ] 4 "", SbFg" und PFg". Besonders bevorzugt wird auf Borate, insbesondere B [CgH3 (CF3) 2] 4 ", zurückgegriffen. Geeignete nicht oder schlecht koordinierende Anionen sowie deren Herstellung werden z.B. bei S.H. Strauss, Chem. Rev. 1993, 93, 927 - 942, sowie bei W. Beck und K. Sünkel, Chem. Rev. 1988, 88, 1405 - 1421, beschrieben.
Bevorzugte Übergangsmetallverbindungen (III) sind beispielsweise Bis-2 , 3- (2 , 6-dibromphenylimin) butan-palladium (methyl) chlorid, Bis-2 , 3- (2 , 6-dichlorphenylimin) butan-palladium (methyl ) chlorid, Bis-2 , 3- (2 , 6-dibrom-4-methylphenylimin) butan-palladium (methyl) chlorid, Bis-2 , 3- (2 , 6-dichlor-4-methylphenylimin) butan-paüa- dium (methyl) chlorid,
Bis-2 , 3- (2 , 6-dibromphenylimin) butan-palladiu (methyl) (acetonitril) -hexafluoro-antimonat,
Bis-2 , 3- (2 , 6-dichlorphenylimin) butan-palladium (methyl) (acetonitril) -hexafluoro-antimonat, Bis-2 , 3- (2 , 6-dibrom-4-methyl-phenylimin) butan-palla- dium(methyl) (acetonitril) -hexafluoro-antimonat , Bis-2 , 3- (2 , 6-dichlor-4-methyl-phenylimin)butan-paüa- dium(methyl) (acetonitril) -hexafluoro-antimonat , Bis-2 , 3- (2 , 6-dibromphenylimin) butan-palladium (methyl) (diethyl- ether) -hexafluoroantimonat,
Bis-2,3-(2, 6-dichlorphenylimin) butan-palladium(methyl) (diethylether) -hexafluoroantimonat,
Bis-2 , 3- (2 , 6-dibrom-4-methylphenylimin) butan-palladium (methyl) (diethylether) -hexafluoroantimonat, Bis-2 , 3- (2 , 6-dibromphenyÜmin) butan-paüadium-η1-0-methylcarboxy- propyl-hexafluoroantimonat,
Bis-2 , 3- (2 , β-dichlorphenyliminJbutan-palladium-ηi-O-methylcarboxy- propyl-hexafluoroantimonat, Bis-2, 3- (2 , 6-dibrom-4-methylphenylimin)butan-paüa- dium-η1-0-methylcarboxypropyl-hexafluoroantimonat und Bis-2 , 3- (2 , 6-dichlor-4-methylphenylimin)butan-paüa- dium-η1-0-methylcarboxypropyl-hexafluoroantimonat sowie die entsprechenden Nickeldihalogenidkomplexe, insbesondere Nickeldibromidkomplexe der hier genannten Diiminliganden. Anstelle von Hexafluoroantimonat als Gegenion A können in bevorzugten Übergangsmetallverbindungen (III) ebenfalls Tetra- kis- (3, 5-bis- (trifluormethyDphenyDborat (B [C6H3 (CF3) 2] 4 " ) oder Hexafluorophosphat (PFg® ) verwendet werden.
Die Übergangsmetallverbindungen (III) können in den erfindungs- gemäßen Verfahren als Einzelverbindung oder in Form einer Mischung aus mehreren unterschiedlichen Übergangsmetallverbindungen (III) als Katalysator eingesetzt werden. Die Übergangsmetallverbindungen (III) weisen als ein wesentliches Strukturelement einen zweizähnigen Bisiminchelatliganden auf (in Formel (III) dasjenige Strukturelement, das man unter Weglassung der Komponenten M, T, Q und A erhält) . Diese zweizähnigen Liganden können z.B. aus Glyoxal oder Diacetyl durch Umsetzung mit primären Aminen wie 2 , 6-Dibromanüin, 2 , 6-Dichloranüin, 2, 6-Dibrom-4-methylphenylamin oder 2, 6-Dichlor-4-methylphenylamin erhalten werden (s.a. C. van Koten und K. Vrieze, Adv. Organomet. Chem. 1982, Vol. 21, 152-234, Academic Press, New York).
Die ÜbergangsmetallVerbindungen, in denen p = 1, 2 oder 3 bedeutet, sind z.B. aus solchen Komplexen zugänglich, in denen Q für ein Halogenid, insbesondere ein Chlorid, und T für Methyl stehen. In der Regel behandelt man diese Komplexe in Gegenwart von Acetonitril, Benzonitril, Dimethylsulfoxid, Dimethylformamid, Hexa- methylphosphorsäuretriamid oder einem linearen oder cyclischen Ether wie Diethylether mit einem Alkali- oder Silbersalz (M1)^- mit A in der bezeichneten Bedeutung eines nicht- oder schlecht koordinierenden Anions und M1 z.B. in der Bedeutung eines Natrium-, Kalium-, Lithium-, Caesium- oder Silberkations, also z.B. Natrium- (tetra (3 , 5-bis- (trifluormethyl) phenyl) borat) oder Silberhexafluoroantimonat . Beispielhaft sei auf die bei Mecking et al . , J. Am. Chem. Soc. 1998, 120, 888 - 899 beschrie- bene Herstellung von Verbindungen gemäß Formel (III) verwiesen.
Die Ausgangsverbindung, in der Q ein Halogenid darstellt, kann durch Behandlung eines entsprechenden Cyclooctadienkomplexes mit einem zweizähnigen Bisiminchelatliganden in einem nicht-koordi- nierenden Lösungsmittel wie Dichlormethan erhalten werden. Derartige Herstellungsverfahren sind dem Fachmann bekannt und beispielsweise bei Johnson et al . , J. Am. Chem. Soc. 1995, 117, 6414 und J.H. Groen et al . , Organometallics, 1997, 17, 68 beschrieben. Für die Herstellung der Cyclooctadienkomplexe sei z.B. auf H. Tom Dieck et al . , Z. Naturforschung, 1981, 36b, 823 und D. Drew und J.R. Doyle, Inorganic Synthesis, 1990, 28, 348 sowie auf die deutsche Patentanmeldung 19730867.8 verwiesen. Die Über- gangsmetallkomplexe (III) können ebenfalls ausgehend von Verbindungen wie (TMEDA)MMe (TMEDA = N, N,N' , N' -Tetramethyl - ethylendiamin; Me = Methyl) erhalten werden. Die (TMEDA) -Komplexe sind zum Beispiel nach einer Vorschrift von de Graaf et al . , Rec . Trav. Chim. Pay-Bas, 1988, 107, 299 aus den entsprechenden Dichloridkomplexen zugänglich.
Des weiteren können die Übergangsmetallkomplexe (III) ausgehend von Lewis-Base-Adukten der Metallsalze wie Palladium (II) bis (acetonitril) chlorid durch Behandlung mit einem zweizähnigen Bisiminchelatliganden erhalten werden (s.a. G. K. Anderson, M. Lin, Inorg. Synth. 1990, 28, 61 sowie R. R. Thomas, A. Sen, Inorg. Synth. 1990, 28, 63). Die resultierenden Halogen- metalldiiminkomplexe können mittels alkylierender Reagenzien wie Zinntetramethyl (SnMe4) (s.a. EP-A 0 380 162) in die entsprechenden Monoalkylderivate überführt werden.
Ausgangspunkt für die Herstellung der Übergangsmetallkomplexe (III) sind geeignete Metallsalze wie Cobalt (II) chlorid, Cobalt (II) bromid, Eisen (III) chlorid sowie insbesondere
Nickel (II) chlorid, Rhodium (III) chlorid, Palladium (II) bromid, Palladium (II) chlorid oder Platin (II) chlorid. Besonders bevorzugt sind Nickel (II) bromid und Paüadium(II) chlorid. Diese Metallsalze sowie deren Herstellung sind im allgemeinen literaturbekannt und häufig kommerziell erhältlich.
In einer weiteren Ausführungsform kann neben der Übergangsmetall - Verbindung (III) ein Cokatalysator mitverwendet werden. Geeignete Cokatalysatoren umfassen starke neutrale Lewis-Säuren, ionische Verbindungen mit Lewis-sauren Kationen und ionische Verbindungen mit Brönsted-Säuren als Kationen.
Als starke neutrale Lewis-Säuren sind Verbindungen der allgemeinen Formel
M3X1XX3 IVa
bevorzugt, in der
M2 ein Element der III. Hauptgruppe des Periodensystems bedeutet, insbesondere B, AI oder Ga, vorzugsweise B bedeutet und
X1, X2, X3 unabhängig voneinander für Wasserstoff, lineares oder verzweigtes Cι~ bis Cio-Alkyl, bevorzugt Cι~ bis
Cβ-Alkyl, wie Methyl, Ethyl, n-Propyl, i-Propyl, n- Butyl, i-Butyl, t-Butyl oder n-Hexyl, ein- oder mehr- fach substituiertes C - bis Cio-Alkyl, bevorzugt Ci- bis Cs-Alkyl, z.B. mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, Cg- bis Cig-Aryl, vorzugsweise Cg- bis Cio-Aryl, z.B. Phenyl, das auch ein- oder mehrfach substituiert sein kann, beispielsweise mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, z.B. Pentafluorphenyl , Alkylaryl mit 1 bis 10 C-Atomen, bevorzugt 1 bis 6 C- Atomen im Alkylrest und 6 bis 14 C-Atomen, bevorzugt 6 bis 10 C-Atomen im Arylrest, z.B. Benzyl oder Fluor, Chlor, Brom oder Jod stehen.
Besonders bevorzugt unter den Resten X1, X2, X3 sind solche, die über Halogensubstituenten verfügen. Vorzugsweise ist Pentafluor- phenyl zu nennen. Besonders bevorzugt sind Verbindungen der allgemeinen Formel (IVa) , in denen X1, X2 und X3 identisch sind, vorzugsweise Tris (pentafluorphenyl) boran.
Als starke neutrale Lewis-Säure wird unter den Cokatalysatoren des weiteren bevorzugt auf Alumoxanverbindungen zurückgegriffen. Als Alumoxanverbindungen kommen grundsätzlich solche Verbindungen in Betracht, die über eine Al-C-Bindung verfügen. Besonders geeignet als Cokatalysatoren sind offenkettige und/oder cyclische Alumoxanverbindungen der allgemeinen Formel (IVb) oder (IVc)
Rl7
in denen
R17 unabhängig voneinander eine Ci- bis C4-Alkylgruppe bedeutet, bevorzugt eine Methyl- oder Ethylgruppe, und k für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25 steht. Die Herstellung dieser oligomefen Alumoxanverbindungen erfolgt üblicherweise durch Umsetzung einer Lösung von Trialkylaluminium mit Wasser und ist u.a. in der EP-A 0 284 708 und der US-A 4,794,096 beschrieben.
In der Regel liegen die dabei erhaltenen oligomeren Alumoxanverbindungen als Gemische unterschiedlich langer sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß m als Mittelwert anzusehen ist. Die Alumoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, bevorzugt mit Aluminiumalkylen, wie Triisobutylaluminium oder Triethylaluminium vorliegen. Bevorzugt wird Methylalumoxan (MAO) , insbesondere in Form einer Lösung in Toluol eingesetzt. Die Herstellung von Methylalumoxan findet sich z.B. in der EP-A 284 708 detailliert beschrieben.
Weiterhin können als Cokatalysatoren Aryloxyalumoxane, wie in der US-A 5,391,793 beschrieben, Amidoaluminoxane, wie in der US-A 5,371,260 beschrieben, Aminoaluminoxanhydrochloride, wie in der EP-A 0 633 264 beschrieben, Siloxyaluminoxane, wie in der EP-A 0 621 279 beschrieben, oder Alumoxan-Mischungen eingesetzt werden.
Die beschriebenen Alumoxane werden entweder als solche oder in Form einer Lösung oder Suspension, beispielsweise in aliphati- sehen oder aromatischen Kohlenwasserstoffen, wie Toluol oder Xylol, oder deren Gemischen eingesetzt.
Geeignete ionische Verbindungen mit Lewis-sauren Kationen fallen unter die allgemeine Formel
Gl+ (τ χ4 χ5 χ6 χ7) llld) ,
in der
Q ein Element der I. oder II. Hauptgruppe des Periodensystems der Elemente, wie Lithium, Natrium, Kalium, Rubidium, Cäsium, Magnesium, Calcium, Strontium oder Barium, insbesondere Lithium oder Natrium, oder ein Silber-, Carbonium-, Oxonium-, Ammonium-, Sulfonium- oder 1,1' -Dimethylferrocenylkation,
T ein Element der III. Hauptgruppe des Periodensystems der Elemente bedeutet, insbesondere Bor, Aluminium oder Galium, vorzugsweise Bor,
X4 bis X7 unabhängig voneinander für Wasserstoff, lineares oder verzweigtes Cι~ bis CiQ-Alkyl, bevorzugt Ci- bis Cs-Alkyl, wie Methyl", Ethyl, n-Propyl, i-Propyl, n- Butyl, i-Butyl, t-Butyl oder n-Hexyl , ein- oder mehrfach substituiertes Cι~ bis Cio-Alkyl, bevorzugt Cι~ bis Cs-Alkyl, z.B. mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, Cg- bis Cig-Aryl, vorzugsweise Cg- bis
Cio-Aryl, z.B. Phenyl, das auch ein- oder mehrfach substituiert sein kann, beispielsweise mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, z.B. Pentafluorphenyl , Alkylaryl mit 1 bis 10 C-Atomen, bevorzugt 1 bis 6 C-Atomen im Alkylrest und 6 bis 14 C-Atomen, bevorzugt 6 bis 10 C-Atomen im Arylrest, z.B. Benzyl , Fluor, Chlor, Brom, Jod, Cι~ bis Cio-Alkoxy, bevorzugt Cι~ bis C8-Alkoxy, wie Methoxy, Ethoxy oder i-Propoxy, oder Cg- bis C g-Aryloxy, bevorzugt Cg- bis Cio-Aryloxy, z.B. Phenoxy, stehen, und
1 1 oder 2 bedeutet.
Bevorzugt stellt das Anion (T X4 X5 X6 X7)- in einer Verbindung der allgemeinen Formel (IVd) ein nicht koordinierendes Gegenion dar. Hervorzuheben sind z.B. Borverbindungen, wie sie in der WO 91/09882, auf die hier ausdrücklich Bezug genommen wird, genannt werden. Besonders geeignete Kationen G gehen zurück auf das Natrium- oder Triphenylmethylkation sowie auf Tetraalkylammoni - u kationen, wie Tetramethyl-, Tetraethyl- oder Tetra-n-butylammo- nium, oder Tetraalkylphosphoniumkationen, wie Tetramethyl-, Tetraethyl- oder Tetra-n-butylphosphonium. Bevorzugte Verbindungen (IVd) sind beispielsweise Natrium-tetrakis (penta- fluorphenyl) borat oder Natrium-tetrakis [bis (trifluor- methyl) phenyl] borat .
Ionische Verbindungen mit Brönsted-Säuren als Kationen und vorzugsweise ebenfalls nicht koordinierende Gegenionen sind in der WO 91/09882, auf die hier ausdrücklich Bezug genommen wird, genannt. Bevorzugt als Kation ist z.B. N,N-Dimethylaniünium.
Selbstverständlich können auch Mischungen der vorgenannten Cokatalysatoren eingesetzt werden.
Besonders geeignet für Komplexverbindungen (III) mit M = Ni sind offenkettige oder cyclische Alumoxanverbindungen als Cokatalysatoren.
Es hat sich als vorteilhaft erwiesen, insbesondere wenn in Gegenwart der funktionalisierten Comonomere (II) polymerisiert wird, in geringen Mengen Radikalinhibitoren zuzusetzen. Als Radikalinhibitoren kommen mit sterisch anspruchsvollen Gruppen abgeschirmte aromatische Monohydroxyverbindungen, bevorzugt Phenole, die vicmal zur OH-Gruppe über mindestens e ne sterisch anspruchsvolle Gruppe verfugen, in Betracht. Diese Radikaünhibito- ren werden beispielsweise in der DE-A 27 02 661 (= US 4,360,617) beschrieben.
Geeignete phenolische Verbindungen sind den Verbindungsklassen der Alkylphenole, Hydroxyphenolpropionate, Ammophenole, Bis- phenole oder Alkylidenbisphenole zu entnehmen. Eine weitere Gruppe geeigneter Phenole leitet sich von substituierten Benzoe- carbonsauren ab, insbesondere von substituierten Benzoepropions- auren.
Exemplarisch für die Verbindungskiasse der sterisch gehinderten Phenole seien genannt Bis (2 , 6-tert-butyl) -4-methylphenol (BHT) , 4-Methoxymethyl-2 , 6-dι-tert-butylphenol , 2 , 6-D -tert-butyl-4- hydroxymethylphenol , 1,3, 5-Trιmethyl-2 , 4 , 6-trιs- (3 , 5-dι-tert- butyl-4-hydroxybenzyl) -benzol, 4,4' -Methylen-bis- (2, 6-dι-tert- butylphenol) , 3 , 5-Dι-tert-butyl-4-hydroxybenzoesaure-2 , 4-dι-tert- butylphenylester, 2 , 2-Bιε- (4-hydroxyphenyl) propan (Bisphenol A) , 4 , 4 ' -Dihydroxybiphenyl (DOD) , 2 , 2 ' -Methylen-bis (4-methyl-6-tert- butylphenol) , 1, 6-Hexandιol-bιs-3- (3 , 5-dι-tert-butyl-4-hydroxy- phenyDpropionat) , Octadecyl-3- (3 , 5-bis (tert-butyl) -4-hydroxy- phenyl) -propionat, 3 , 5-Dι-tert-butyl-4-hydroxybenzyldιmethyl - amm, 2,6, 6-Tπoxy-l-phosphabιcyclo- (2.2.2) oct-4-yl-methyl-3 , 5-dι- tert-butyl-4-hydroxyhydrozιmtsaureester und N, ' -Hexamethylen- bιs-3 , 5-d -tert-butyl-4-hydroxyhydrozιmtsaureamιd. Unter den genannten sterisch gehinderten Phenolen sind Bιs(2,6-(Cι- bis Cio-alkyl) -4- (Ci- bis Cιo-alkyl)phenole, insbesondere Bis (2 , 6-tert-butyl) -4-methylphenol und Bis (2 , 6-methyl) -4-methyl - phenol bevorzugt. Besonders bevorzugt ist Bis (2 , 6-tert-butyl) - 4-methylphenol .
Daneben können anstelle der sterisch gehinderten Phenole oder auch als Zusatz zu diesen als Radikaiinhibitoren Tetraalkyl- piperidm-N-oxylradikale eingesetzt werden. Geeignet sind z.B. 2,2,6, 6-Tetramethyl-l-pιperιdmyloxy (TEMPO) , 4-Oxo-2,2, 6, 6-tetramethyl-l-pιpeπdmyloxy (4-0xo-TEMP0) , 4-Hydroxy-2 ,2,6, 6-tetramethyl-l-pιpeπdmyloxy, 2,2,5, 5-Tetra- methyl-1-pyrrolιdmyloxy, 3-Carboxy-2 ,2,5, 5-tetramethyl-pyrrolι - dmyloxy oder Di-tert-butylnitroxid.
2 , 6-Dιphenyl-2 , 6-dιmethyl-l-pιperιdmyloxy sowie
2 , 5-Dιphenyl-2 , 5-dιmethyl-l-pyrrolιdmyloxy können ebenfalls eingesetzt werden. Mischungen verschiedener N-Oxyl-Radikale sind selbstverständlich auch möglich. Die beschriebenen Radikalinhibitoren können entweder als solche oder gelöst in einem geeigneten inerten Lösungsmittel, z.B. Toluol oder einem halogenierten Kohlenwasserstoff wie Dichlor- ethan oder Chloroform, zugegeben werden.
In der Regel reichen bereits Mengen an einer mit sterisch anspruchsvollen Gruppen abgeschirmten aromatischen Monohydroxyver- bindung oder einer mit sterisch anspruchsvollen Gruppen abgeschirmten N-Oxyl-Radikalverbindung kleiner 200, kleiner 100 oder sogar kleiner 20 ppm aus, bezogen auf die Ausgangsmenge an funk- tionalisierten olefinisch ungesättigten Monomeren, um einen einwandfreien Verlauf des erfindungsgemäßen Verfahrens zu gewährleisten. Dieses gelingt ebenfalls mit Mengen kleiner 10, 5 und sogar 2 ppm. Andererseits sind auch Konzentrationen an Radikal - inhibitor zulässig, die die Konzentration der Übergangsmetall - Verbindung im Reaktionsgemisch um das doppelte, dreifache oder auch vierfache übersteigen.
Die Herstellung der (Co)polymere gemäß dem erfindungsgemäßen Verfahren kann in einem aliphatischen oder aromatischen aprotischen Lösungsmittel, z.B. in Heptan, i-Butan, Toluol oder Benzol, ebenso wie in einem polaren aprotischen Lösungsmittel durchgeführt werden. Geeignete polare aprotische Lösungsmittel sind z.B. halogenierte Kohlenwasserstoffe wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff oder Chlorbenzol, lineare oder cyclische Ether wie Diethylether oder Tetrahydrofuran, des weiteren Aceton, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretri - amid oder Acetonitril. Selbstverständlich können auch beliebige, vorzugsweise homogene Mischungen der vorgenannten Lösungsmittel eingesetzt werden. Besonders bevorzugt sind Dichlormethan, Chloroform, Toluol, Chlorbenzol und Acetonitril sowie deren Mischungen.
Die Lösungsmittelmenge wird üblicherweise so bestimmt, daß die AusgangsVerbindungen zu Beginn der Reaktion in gelöster Form vor- liegen. Das übergangsmetallkatalysierte Polymerisationsverfahren kann auch in Masse oder in der Gasphase durchgeführt werden. Bei der Polymerisation in der Gasphase können die Übergangsmetali - Verbindungen (III) auch in geträgerter Form eingesetzt werden. Als Trägermaterialien kommen anorganische wie organische Materia- lien in Frage. Geeignete anorganische Trägermaterialien sind zum Beispiel Silicagel, Aluminium-, Magnesium-, Titan-, Zirkonium-, Bor-, Calcium- oder Zinkoxide, Alumosilikate, Polysiloxane, Talkum, Schichtsilikate, Zeolithe oder Metaühalogenide wie MgCl2. Organische Trägermaterialien gehen beispielsweise auf Präpolymere von Olefin (co) polymeren, wie sie z.B. mit den erfindungsgemäßen Verfahren erhalten werden, zurück. Geeignete Trägerungsverfahren sind dem Fachmann bekannt und finden sich u.a. für geträgerte Ziegler-Natta-Katalysatoren in Makromol. Chem. Phys . 1994, 195, 3347, Macromol. Rapid Commun. 1994, 15, 139-143 und Angew. Chem. Int. Ed. Engl. 1995, 34, 1143-1170) sowie für geträgerte Metall - ocenkatalysatoren in der EP-A-0 308 177 sowie in US 4,897,455, US 4,912,075 und US 5,240,894 beschrieben.
Üblicherweise wird die Copolymerisation bei Temperaturen im Bereich von -40 bis 160°C, bevorzugt im Bereich von -20 bis 100°C und besonders bevorzugt von 0 bis 80°C durchgeführt. Die Reak- tionszeiten liegen im allgemeinen in Abhängigkeit von den gewählten Reaktionsbedingungen zwischen 1 bis 2 Stunden und mehreren Tagen. Gasförmige Reaktionskomponenten wie Ethen werden auf das Reaktionsgemisch aufgepreßt.
Die Copolymerisation findet im allgemeinen bei einem Druck im Bereich von 0,1 bis 200 bar, bevorzugt von 0,5 bis 100 bar und besonders bevorzugt von 1 bis 80 bar statt.
Die Konzentration an Übergangsmetallverbindung (III) wird im allgemeinen auf Werte im Bereich von 10~6 bis 0,1, bevorzugt im Bereich von 10~5 bis 10~2 und besonders bevorzugt im Bereich von 5 x 10~5 bis 5 x 10~2 mol/1 eingestellt.
Die Ausgangskonzentration an unpolarem Olefin (I) liegt im allge- meinen im Bereich von 10~3 bis 10 mol/1, bevorzugt im Bereich von 10~2 bis 5 mol/1. Die Ausgangskonzentration an mit einer funktio- nellen Gruppe substituierten α-Olefin (II) liegt in der Regel im Bereich von 10~5 bis 8 mol/1, bevorzugt von 10"3 bis 7 und besonders bevorzugt von 10_1 bis 6,8 mol/1.
Das molare Verhältnis von funktionalisiertem zu unpolarem Monomer in der Auεgangsmischung liegt üblicherweise im Bereich von 10-3 : 1 bis 1000 : 1, bevorzugt im Bereich von 10"1 : 1 bis 100 : 1, besonders bevorzugt von 0,1 : 1 bis 20 : 1.
Das molare Ausgangsverhältnis von Radikalinhibitoren zu funktionalisiertem Monomer (II) bewegt sich im allgemeinen im Bereich von 10~8 : 1 bis 10"1 : 1, bevorzugt von 10~7 : 1 bis 10~2 : 1 und besonders bevorzugt von 5 x 10~7 : 1 bis 10~4 : 1.
Die Polymerisation kann durch Zugabe eines Desaktivierungsreagen- zes wie Triphenylphosphin oder durch Zugabe eines niedermolekularen Alkohols wie Methanol oder Ethanol abgebrochen werden. Die gemäß dem erfindungsgemäßen Verfahren erhaltenen (Co)polymere weisen Molekulargewichtsverteilungen Mw/Mn im Bereich von 1,1 bis 2,5, bevorzugt von 1,1 bis 1,8 auf, sowie Glasübergangstemperaturwerte von regelmäßig < -40°C, bevorzugt < -50°C und regelmäßig < -20°C im Fall der Nickelübergangsmetallverbindungen (III) .
Die Anzahl der Alkylverzweigungen pro 1000 C-Atome liegt bei den erhaltenen (Co) polymeren üblicherweise oberhalb von 100, wenn z.B. M = Pd in (III). Mit Übergangsmetallverbindungen (III), in denen M = Ni ist, werden dagegen (Co)polymere, zum Beispiel Poly- ethylene, mit einem sehr hohen Grad an Linearität erhalten.
Mit dem erfindungsgemäßen Verfahren lassen sich Homo- und Copolymere aus Monomeren (I) sowie Copolymere aus den Monomeren (I) und (II) erhalten. Das Verfahren läßt sich sowohl kontinuierlich wie auch diskontinuierlich durchführen.
Die Übergangsmetallverbindungen (III) zeichnen sich durch hohe Aktivitäten aus, weisen zudem auch bei längerer Polymerisations - dauer keine Aktivitätseinbußen auf und gewährleisten auf diese Weise hohe Produktivitäten.
Die vorliegende Erfindung wird nachfolgend anhand von Beispielen erläutert.
Beispiele
Die Gelpermeationschromatographie wurde an einem Gerät der Firma Waters (Styragel) mit Tetrahydrofuran als Eluens gegen einen Polystyrolstandard durchgeführt. Die Detektion erfolgte über die Bestimmung der Brechungsindizes.
Die 13C-NMR-Spektren wurden an einem Gerät der Firma Bruker (ARX 300) mit CDC13 bzw. CDC14 als Lösungsmittel aufgenommen. Die 1H- NMR-Spektren wurden an einem Gerät der Firma Bruker (ARX 300) mit CDCI3 bzw. CDC14 als Lösungsmittel aufgenommen.
Die DSC-Spektren wurden an einem Gerät der Firma Perkin-Elmer (Series 7) bei einer Heizrate von 20 K/min aufgenommen.
Die Polymerisationsreaktionen wurden in Anlehnung an die bei Brookhart el al . , J. Am. Chem. Soc. 1996, 118, 267-268 beschriebenen Bedingungen durchgeführt. Alle Arbeiten mit metall- organischen Reagenzien wurden unter einer Inertgasatmosphäre durchgeführt (Stickstoff) . Dichlormethan wurde über Calciumhydrid unter Rückfluß gehalten und vor jeder Polymerisationsreaktion frisch destilliert.
Glycidylacrylat wurde von der Firma Polysciences Inc. bezogen und vor der Zugabe zum Reaktionsgemisch destilliert.
Natrium-tetra (3 , 5-bis- (trifluormethyl) phenyl) borat) wurde von der Firma Fluka bezogen.
A. Herstellung der Übergangsmetallverbindung (III)
1. Bis-2 , 3- (2 , 6-dibrom-4-methylphenyümin)butan-paüadium-dich- lorid (Katalysator A) ) : Bis-acetonitrü-palladium-dichlorid (351 mg) und Bis-2 , 3- (2 , 6-dibrom-4-methylphenyümin) butan (780 mg) wurden 2 d in Dichlormethan (10 ml) bei Raumtemperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der feste Rückstand viermal mit Diethylether (je 10 ml) gewaschen. Im Hochvakuum wurde der Komplex von letzten Lösungsmittelresten be- freit. ^-H-NMR (CDC13) : δ = 7.46 (4H, s) ; 2.35 (6H, s) ; 2.15 (6H, s) .
2. Bis-2 , 3- (2, 6-dibromo-4-methylphenylimin) -butan-palladium (methyl) chlorid (Katalysator B) ) : Zu einer Suspension des nach A. 1.) erhaltenen Feststoffs
(1,34 mmol) in Dichlormethan (10 ml) gab man bei -35°C Zinntetramethyl (0,22 ml). Das Reaktionsgemisch wurde auf Raumtemperatur gebracht und durch Anlegen von Vakuum von flüchtigen Anteilen befreit. Der resultierende Feststoff wurde vier- mal mit Diethylether (je 10 ml) gewaschen. ^-H-NMR (CDCI3) : δ = 7.49 (2H, 2s); 7.44 (2 H, s) ; 2.37 (3H, s) ; 2.34 (3H,s); 2.09 (3H, s); 2.01 (3H, s); 0.57 (3H,s).
3. Bis-2 , 3- (2 , 6-dibrom-4-methylphenyl-imin) butan-palla- dium (methyl) (acetonitril) -hexafluorantimonat (Katalysator C)) :
Die gemäß A. 1.) erhaltene Verbindung (1,34 mmol) und AgSbFg (1,34 mmol) wurden zwei Stunden bei Raumtemperatur in Acetonitril (10 ml) gerührt. Gebildetes Silberchlorid wurde ab- filtriert und die erhaltene Lösung in kalten Diethylether
(100 ml) gegeben. Diethylether wurde vom ausgefallenen Feststoff abdenkantiert und im Hochvakuum von letzten Lösungs- mittelresten befreit.
4. Bi-2 , 3- (2 , 6-diisopropylphenylimin) butan-palladium (methyl) (acetonitril) -hexafluoroantimonat (Katalysator D)) : Diese Verbindung wurde gemäß der Vorschrift von Brookhart et al., J. Am. Chem. Soc, 1396, 118, 267-268 synthetisiert und diente als Vergleichssubstanz.
5. Bis-2 , 3- (2, 6-dibrom-4-methylphenylimin) butan-nickeldibromid (Katalysator E) ) :
1, 2-Dimethoxyethan-nickeldibromid (77 mg) wurde unter Stickstoff - atmosphäre in Dichlormethan (15 ml) suspendiert und mit einer Lösung von Bis-2 , 3- (2 , 6-dibrom-4-methylphenylimin) butan (174 mg) in Dichlormethan (10 ml) versetzt. Die Mischung wurde 20 h bei Raumtemperatur gerührt. Flüchtigen Bestandteile wurden im Vakuum entfernt und der orangegelbe Rückstand mehrfach mit n-Pentan gewaschen. Letzte Lösungsmittelreste wurden im Hochvakuum entfernt.
6. Bis-2 , 3- (2 , 6-düsopropyl-phenylimin) butan-nickeldibromid (Katalysator F) ) :
Katalysator F) wurde analog Katalysator E) hergestellt mit dem Unterschied, daß als bidentater Chelatligand
Bis-2 , 3- (2 , 6-düsopropylphenyÜmin) butan verwendet wurde. B. Polymerisationsreaktionen
In einen mit einem Thermostaten verbundenen und mit Inertgas gespülten Autoklaven gab man Dichlormethan (bei Verwendung der Katalysatoren A) - D) ) bzw. eine 30%-ige Lösung von Methylalumoxan (MAO) in Toluol (bei Verwendung der Katalysatoren E) und F) ) . Das Reaktionsmedium wurde mit Ethengas gesättigt sowie Reaktionstemperatur und -druck ein- gestellt. Man gab den Katalysator in gelöster Form zum Reaktionsgemisch und hielt über die angegebene Reaktionszeit den Druck und die Temperatur konstant. Die Polymerisation wurde durch Zugabe von Ethanol abgebrochen, abgekühlt und der Autoklav entspannt. Die aufkonzentrierte Lösung wurde mit Metha- nol/HCl (im Überschuß) versetzt. Das gebildete Polymer schied sich in Form eines hochviskosen Öls bzw. in Form eines feinen Pulvers ab und konnte mittels Abdekantieren bzw. Filtrieren gewonnen werden. Das erhaltene Polymer wurde mehrere Male mit Ethanol gewaschen. Letzte Lösungsmittelreste wurden im Hochvakuum entfernt.
Nähere Angaben zu den eingesetzten Mengen, den Reaktions- bedingungen sowie den Produktparametern sind den nachfolgenden Tabellen 1 und 2 zu entnehmen. Tabelle 1: Polymerisationsreaktionen
a) Die Versuche 1 und 2 wurden bei einer Reaktionstemperatur von 50°c, die Versuche 3 bis 6 bei 35°C und die Versuche 7 und 8 bei 40 °C durchgeführt. b) Bei den Versuchen 5 und 6 wurde vor dem Druckaufbau mit Ethen Glycidylacrylat als Comonomer
(30 ml) zum Reaktionsgemisch gegeben. c) Bei den Versuchen 1 bis 3 wurde NaB [Ph (CF3 (2] als Cokatalysator in äquimolarer Menge, bezogen auf die eingesetzte Menge an Katalysator, zugesetzt. Bei den Versuchen 7 und 8 wurde Methylalumoxan
(MAO) als 30%-ige Lösung in Toluol als Cokatalysator zugesetzt (AI :Ni-Verhältnis = 1000:1). d) Die Versuche 1 und 2 wurden in einem 100 ml Autoklav, die Versuche 3 bis 8 in einem 2000 ml Autoklav durchgeführt. e) Vergleichsversuch.
Tabelle 2: Analytik der Polymerproben
a) bestimmt mittels Gelpermeationschromatographie; b) bestimmt mittels DSC; c) bestimmt mittels 13C-NMR-Spektroskopie; d) die Alkylverzweigungen wurden nicht bestimmt; e) Vergleichsversuch.

Claims

Patentansprüche
1. Verfahren zur Herstellung von (Co) polymeren aus unpolaren olefinischen Monomeren (I) und ggf. α-Olefinen (II), die über eine funktioneüe Gruppe verfügen, dadurch gekennzeichnet, daß man das oder die Ausgangsmonomeren in Gegenwart einer oder mehrerer Übergangsmetallverbindungen (III) der allgemeinen Formel
in der die Substituenten und Indizes die folgende Bedeutung haben:
R1, R3 Wasserstoff, Cι~ bis Cio-Alkyl, C3- bis Cι0-Cyclo- alkyl, Cg- bis Cig-Aryl, Alkylaryl mit 1 bis 10 C-
Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, Si(R6)3, N(R6) (R7) , OR6, SR6 oder R1 und R3 bilden gemeinsam mit Ca, Cb und gegebenenfalls C einen fünf- sechs- oder siebengüedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten
Carbo- oder Heterocyclus,
R2 , R4 C4- bis Cig-Hetero-Aryl oder Cg- bis Cig-Aryl mit
Halogeno- , Nitro- , Cyano- , Sulfonato- oder Trihalo - genmethylsubstituenten in den beiden ortho-Positionen zu Na und Nb,
R5 Wasserstoff, Cι~ bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,
R6, R7 Cx- bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,
m 0 oder 1 , M ein Metall der Gruppe VIIIB des Periodensystems der Elemente,
T, Q neutral oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C2- oder C3-Alkylenein- heit mit einer Methylketon-, linearen Cι~ bis C4-Alkylester- oder Nitrüendgruppe,
A ein nicht oder schlecht koordinierendes Anion und
x, p 0, 1, 2 oder 3
q, n 1, 2 oder 3
sowie gegebenenfalls in Gegenwart eines Cokatalysators koor- dinativ polymerisiert .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als unpolare olefinische Monomere (I) Verbindungen der allgemeinen Formel (Ia)
(R8)HC=C(R9) (RIO) (Ia)
verwendet, in der die Substituenten die folgende Bedeutung haben:
R8 bis R10 unabhängig voneinander Wasserstoff, Cι~bis
Cio-Alkyl, Cg- bis Cig-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und bis 14 C-Atomen im Aryl' teil oder Si(R1:L)3 mit
R11 Ci- bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C- Atomen im Arylteil oder R8 und R9 oder R8 und R10 bilden zusammen mit der C=C-Doppelbindung einen
Carbocyclus .
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß man als α-Olefine (II) , die über eine funktioneüe Gruppe verfügen, Verbindungen der allgemeinen Formel
CH2=C(R12) (R13) (Ha)
einsetzt, in der die Substituenten und Indizes die folgende Bedeutung haben: R12 Wasserstoff, CN, CF3, Cx- bis Cι0-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl und 6 bis 14 C-Atomen im Arylteil, Pyrrolido- nyl, Carbazolyl,
R13 CN, C(0)R14, C(0)OR14, C (0) N (R14 (R15) , CH2Si(OR16 3,
C(0)-0-C(0)R14, O-Ci- bis -O-Cι0-Alkyl, O-Cg- bis - O-Cig-Aryl mit
R14, R15 Wasserstoff, Cx- bis Cι0-Alkyl, C2- bis Cι0-Alkenyl,
Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, eine Epoxygruppe enthaltende C2- bis Cιo~Alkylgruppe, eine mit einer Epoxygruppe substituierte Cg- bis Cig-Aryl - gruppe oder Si(R16)3 und
R16 Ci- bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil .
Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als α-Olefine (II) (Meth) acrylsäure, die Ester oder Amide der (Meth) acrylsäure, Acrylnitril, Methacrylnitril oder deren Mischungen verwendet.
Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart von Radikalinhibitoren durchführt.
6. Übergangsmetallverbindung der allgemeinen Formel
")x (III)
in der die Substituenten und Indizes die folgende Bedeutung haben:
R1, R3 Wasserstoff, Cι~ bis Cι0-Alkyl, C3- bis Cio-Cyclo- alkyl, Cg- bis Cig-Aryl, Alkylaryl mit 1 bis 10 C- Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, Si(R6)3, N(R6) (R7; , OR6, SR6 oder R1 und R3 bilden gemeinsam mit Ca, Cb und gegebenenfalls C einen fünf-, sechs- oder siebengüedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus,
R2, R4 C4- bis Cig-Heteroaryl oder Cg- bis Cig-Aryl mit Halogeno-, Nitro-, Cyano-, Sulfonato- oder Trihalogenme- thylsubstituenten in den beiden ortho-Positionen zu Na und Nb,
R5 Wasserstoff, Cι~ bis Cio-Alkyl, Cg- bis Cig-Aryl oder
Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis
14 C-Atomen im Arylteil,
R6, R7 Ci- bis Cio-Alkyl, Cg- bis Cig-Aryl oder Alkylaryl mit
1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im
Arylteil,
m 0 oder 1,
M ein Metall der Gruppe VIIIB des Periodensystems der Elemente,
T, Q neutral oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C2- oder C3-Alkylenein- heit mit einer Methylketon-, linearen Cι~ bis C4-Alkylester- oder Nitrüendgruppe,
A ein nicht oder schlecht koordinierendes Anion und
x, p 0, 1, 2 oder 3
q, n 1, 2 oder 3
7. Übergangsmetallverbindung nach Anspruch 6, dadurch gekennzeichnet, daß R2 und R4 unabhängig voneinander 2,6-Dibrom-, 2 , 6-Dichlor-, 2 , 6-Dibrom-4-methyl-, 2 , 6-Dichlor-4-methyl - phenyl oder 2,6-Dibrom- oder 2, 6-Dichlorpyrrolid bedeuten und daß R1 und R3 Methyl, M Palladium oder Nickel und das Anion A B [CgH3 (CF3)2] 4-, SbFg" oder PFg~ bedeuten.
8. Katalysatorsystem für die (Co) Polymerisation von unpolaren olefinischen Monomeren und gegebenenfalls von α-Olefinen, die über eine funktioneüe Gruppe verfügen, enthaltend als wesentliche Bestandteile eine Übergangsmetallverbindung gemäß den Ansprüchen 6 oder 7 und als Cokatalysator eine starke
EP00945905A 1999-07-27 2000-07-11 Verfahren zur (co)polymerisation von olefinen Withdrawn EP1200488A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934464 1999-07-27
DE19934464A DE19934464A1 (de) 1999-07-27 1999-07-27 Verfahren zur (Co)polymerisation von Olefinen
PCT/EP2000/006560 WO2001007492A1 (de) 1999-07-27 2000-07-11 Verfahren zur (co)polymerisation von olefinen

Publications (1)

Publication Number Publication Date
EP1200488A1 true EP1200488A1 (de) 2002-05-02

Family

ID=7915721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00945905A Withdrawn EP1200488A1 (de) 1999-07-27 2000-07-11 Verfahren zur (co)polymerisation von olefinen

Country Status (5)

Country Link
EP (1) EP1200488A1 (de)
JP (1) JP2003505559A (de)
KR (1) KR20020016923A (de)
DE (1) DE19934464A1 (de)
WO (1) WO2001007492A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60014376T2 (de) 1999-02-22 2005-02-24 Eastman Chemical Co., Kingsport Katalysatoren, die n-pyrrolylsubstituierte stickstoffdonoren enthalten
US6545108B1 (en) 1999-02-22 2003-04-08 Eastman Chemical Company Catalysts containing N-pyrrolyl substituted nitrogen donors
US6579823B2 (en) 2000-02-18 2003-06-17 Eastman Chemical Company Catalysts containing per-ortho aryl substituted aryl or heteroaryl substituted nitrogen donors
US6605677B2 (en) 2000-02-18 2003-08-12 Eastman Chemical Company Olefin polymerization processes using supported catalysts
US7056996B2 (en) 2000-02-18 2006-06-06 E. I. Du Pont De Nemours And Company Productivity catalysts and microstructure control
US6706891B2 (en) 2000-11-06 2004-03-16 Eastman Chemical Company Process for the preparation of ligands for olefin polymerization catalysts
US6903169B1 (en) * 2003-12-30 2005-06-07 Equistar Chemicals, Lp LTMC polymerization of unsaturated monomers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0107492A1 *

Also Published As

Publication number Publication date
WO2001007492A1 (de) 2001-02-01
JP2003505559A (ja) 2003-02-12
KR20020016923A (ko) 2002-03-06
DE19934464A1 (de) 2001-02-01

Similar Documents

Publication Publication Date Title
DE69921304T2 (de) Polymerisationskatalysatoren
DE69825559T2 (de) Polymerisation von olefinen
EP1288219B1 (de) Monocyclopentadienylkomplexe von Chrom, Molybdän oder Wolfram mit einer Donorbrücke
DE69912411T2 (de) Olefinpolymerisation
WO2001012687A1 (de) COPOLYMERE VON ETHYLEN MIT C3-C12 α-OLEFINEN
WO2001042257A1 (de) Polymerisationsaktive übergangsmetallkomplexverbindungen mit sterisch anspruchsvollem ligandensystem
DE69917932T2 (de) Katalysatorsystem für olefinpolymerisation
EP1171480B1 (de) Verfahren zur polymerisation von olefinen
WO2001007491A1 (de) Verfahren zur herstellung von olefin(co)polymeren
EP1200488A1 (de) Verfahren zur (co)polymerisation von olefinen
WO2001044317A1 (de) Verfahren zur homogenkatalytischen herstellung von hochverzweigten amorphen polyolefinen
DE60011609T2 (de) Ethylenpolymerisation
DE69600614T2 (de) Katalysator für Olefin-(Co)-Polymerisation und Verfahren unter Verwendung desselben
EP1284271A1 (de) Katalysatoren für die Olefinpolymerisation
DE102005057559A1 (de) Übergangsmetallverbindung, Ligandsystem, Katalysatorsystem und Verfahren zur Herstellung von Polyolefinen
EP1285006B1 (de) Verfahren zur herstellung eines katalysatorsystems für die polymerisation von olefinen
EP1296993B1 (de) Metallverbindungen und ihre verwendung zur polymerisation von olefinen
EP1457502A1 (de) Verfahren zur Herstellung eines Azo-Katalysators für die Polymerisation von Olefinen
WO1998046650A1 (de) Katalysatorzubereitungen für die herstellung von olefin(co)polymeren
EP1336615B1 (de) Metallkomplexe von Iminohydroxamsäuren
EP1454926A1 (de) Monometallische Azokomplexe später Übergangsmetalle für die Polymerization von Olefinen
DE19812124A1 (de) Verfahren zur Herstellung von Copolymeren aus funktionalisierten olefinisch ungesättigten Monomeren und unpolaren olefinisch ungesättigten Verbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020618

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030904