EP1187167B1 - Farbbildschirm mit blauer Leuchtstoffschicht - Google Patents

Farbbildschirm mit blauer Leuchtstoffschicht

Info

Publication number
EP1187167B1
EP1187167B1 EP01000410A EP01000410A EP1187167B1 EP 1187167 B1 EP1187167 B1 EP 1187167B1 EP 01000410 A EP01000410 A EP 01000410A EP 01000410 A EP01000410 A EP 01000410A EP 1187167 B1 EP1187167 B1 EP 1187167B1
Authority
EP
European Patent Office
Prior art keywords
phosphor
blue
color
layer
color picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01000410A
Other languages
English (en)
French (fr)
Other versions
EP1187167A1 (de
Inventor
Helmut Dr. Bechtel
Wolfgang Busselt
Thomas Dr. Jüstel
Martin Weibrecht
Peter Quadflieg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1187167A1 publication Critical patent/EP1187167A1/de
Application granted granted Critical
Publication of EP1187167B1 publication Critical patent/EP1187167B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/187Luminescent screens screens with more than one luminescent material (as mixtures for the treatment of the screens)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/26Luminescent screens with superimposed luminescent layers

Definitions

  • the invention relates to a color screen, in particular a plasma screen, equipped with a blue phosphor layer.
  • the representation of the different colors is determined by so-called standard color curves.
  • a common standard is the CIE color triangle.
  • the range of representable colors in a screen is defined by the color points of the three phosphors, given by the respective emission spectrum.
  • the blue light emission contributes at least to the luminance (brightness) of a screen.
  • US-5866977 discloses a color screen having a blue phosphor layer comprising two different blue-emitting phosphors.
  • US Pat. No. 5,277,841 describes a mixed blue-emitting phosphor composed of a mixture of ZnS: Ag, Al with at least one green-emitting phosphor selected from the group consisting of Y 3 (Al, Ga) 5 O 12 : Tb, Y 2 SiO 5 Tb and LaOCl: Tb, which increases the luminance and the luminance-saturation characteristic.
  • the blue-emitting phosphors are not as efficient as the green and red-emitting phosphors. These two effects lead that the color temperature for white light for television applications is lower than desired.
  • a color screen equipped with a blue phosphor layer comprising a first blue-emitting phosphor having a light emission in the range of 430 to 490 nm, and a second phosphor emitting a deep-violet light emission in the region of 380 to 450 nm contains.
  • the second phosphor has a light emission in the range of 380 to 420 nm.
  • the second phosphor is paid out from the group of Tb 3+ -activated phosphors, the Eu 2+ -activated phosphors, the Bi 3+ -activated phosphors, the Ga 3+ -activated phosphors and the Ce 3+ -activated phosphors.
  • the second phosphor is selected from the group LaOBr: Tb, Y 2 O 2 S: Tb, Y 3 Al 5 O 12 : Tb, Ca 3 (PO 4 ) 2 : Eu, Sr 2 P 2 O 7 : Eu, (Sr, Mg) 2 P 2 O 7 : Eu CaB 2 P 2 O 9 : Eu, CaSO 4 : Eu, CaO: Bi, ZnO: Ga and (Y, Gd) BO 3 : Ce.
  • All these phosphors emit efficiently under UV light excitation or by excitation with an electron beam light with a wavelength between 380 and 450 nm.
  • the phosphor layer contains a physical mixture of particles of the first phosphor and particles of the second phosphor.
  • the proportion of second phosphor in the phosphor layer is between 5 and 50% by weight, based on the amount of the first phosphor.
  • This embodiment is easy to realize because the second phosphor can be easily added to the suspension of the phosphor with which the phosphor layer is made.
  • the phosphor layer comprises a base layer of the first Has phosphor and a cover layer of the second phosphor. It is preferable that the first phosphor is selected from ZnS: Ag, BaMgAl 10 O 17 : Eu and (Ba, Sr, Ca) 5 (PO 4 ) 3 Cl: Eu
  • the ZnS: Ag phosphor is particularly well suited as a blue-emitting phosphor in color cathode ray tubes because it efficiently emits blue light under electron beam excitation.
  • the blue-emitting phosphors BaMgAl 10 O 17 : Eu and (Ba, Sr, Ca) 5 (PO 4 ) 3 Cl: Eu are particularly suitable for use in plasma displays because they provide high color saturation as well as efficient conversion of UV light show in blue light. In addition, they withstand the thermal stress during the production of the plasma screens.
  • the color screen is selected from the group of cathode ray tubes, plasma screens and liquid crystal displays.
  • These color screens equipped with a blue phosphor layer according to the invention have an increased luminance, since the improved blue light emission higher proportions of red and green light can be used for color representation.
  • the red and green light emission contribute more to the luminance of a color screen than the blue light emission.
  • a further advantage is that despite the increased levels of red and green light, the color impression for white light is not changed.
  • a plasma cell of an AC plasma display panel having a coplanar arrangement of the electrodes has a front panel 1 and a support plate 2.
  • the front panel 1 includes a glass plate 3 and on the glass plate 3 is a dielectric layer 4, preferably PbO-containing glass applied.
  • a dielectric layer 4 preferably PbO-containing glass applied.
  • strip-shaped discharge electrodes 6, 7 are applied, which are covered by the dielectric layer 4.
  • the discharge electrodes 6, 7 are made of metal or ITO, for example.
  • On the dielectric layer 4 is a protective layer 5 containing, for example, MgO.
  • the support plate 2 is made of glass and on the support plate 2 are parallel, strip-shaped, perpendicular to the discharge electrodes 6, 7 extending address electrodes 10 applied, for example, Ag. These are covered by a phosphor layer 9, which emits red, green or blue in one of the three basic colors.
  • the individual plasma cells are separated by a rib structure 12 with barrier ribs of preferably dielectric material.
  • a gas preferably a noble gas mixture of, for example, He, Ne or Kr, which is component Xe which generates UV light includes.
  • a plasma is formed in the plasma region 8, through which radiation 11 in the UV region, in particular in the VUV, is formed, depending on the composition of the gas. Area is generated.
  • This radiation 11 excites the phosphor layer 9 to light emitting visible light 13 in one of the three primary colors that passes through the front panel 1 to the outside and thus represents a luminous pixel on the screen.
  • the blue-emitting phosphor layer 9 for example, as blue-emitting phosphor is a Eu 2 + - fluorescent activated as BaMgAl 10 O 17: Eu or (Ba, Sr, Ca) 5 (PO 4) 3 Cl: Eu are used.
  • the blue-emitting phosphor layer also contains a second phosphor which has a light emission in the range from 380 to 450 nm, preferably in the range from 380 to 420 nm.
  • the second phosphor may be selected from the group of Tb 3+ -activated phosphors, the Eu 2+ -activated phosphors, the Bi 3+ -activated Phosphors, the Ga 3+ -activated phosphors and the Ce 3+ -activated phosphors.
  • the second phosphor may be selected, for example, from the group LaOBr: Tb, Y 2 O 2 S: Tb, Y 3 Al 5 O 12 : Tb, Ca 3 (PO 4 ) 2 : Eu, Sr 2 P 2 O 7 : Eu , (Sr, Mg) 2 P 2 O 7 : Eu, CaB 2 P 2 O 9 : Eu, CaSO 4 : Eu, CaO: Bi, ZnO: Ga and (Y, Gd) BO 3 : Ce. It is preferable that the concentration of Tb 3+ in the Tb 3+ -activated phosphors is 0.1 mol% or less.
  • the green-emitting phosphor for example, Zn 2 SiO 4 : Mn may be used, and as the red-emitting phosphor, for example, (Y, Gd) BO 3 : Eu may be used in the phosphor layer 9.
  • a manufacturing method for a phosphor layer 9 are both dry coating methods, such as electrostatic deposition or electrostatically assisted dusting, as well as wet coating method, such as screen printing, dispensing method in which a suspension is introduced with a channel moving along the nozzle, or sedimentation from the liquid phase, into consideration.
  • a suitable first phosphor is dispersed in water, an organic solvent, optionally together with a dispersant, a surfactant and an antifoaming agent or a binder preparation.
  • Suitable for binder formulations for plasma screens are inorganic binders which survive an operating temperature of 450 ° C without decomposition, embrittlement or discoloration, or organic binders which can later be removed by oxidation.
  • the second phosphor is added to the above suspension or it becomes a separate Suspension of the second phosphor produced.
  • the back plate 2 After applying the phosphor layer 9, the back plate 2 together with others Components such as a front plate 1 and a noble gas mixture used for the production of a plasma picture screen.
  • such a blue-emitting phosphor layer preparation can be used in all types of plasma picture screens, such as AC or non-matrix plasma display panels or DC plasma picture screens.
  • a color liquid crystal panel may include a light source, a polarizer, a liquid crystal cell, and an analyzer.
  • the blue phosphor layer may be applied to the inside of the front panel together with a red and a green phosphor layer.
  • a color cathode ray tube may have an electron gun for emitting at least one electron beam, a deflection device, a neck, and a cone connecting the face plate and the neck.
  • the respective areas of the phosphor layer are excited by differently strong irradiation with an electron beam to shine.
  • the current proportions for the production of white light can be equalized. This improves the luminance of the color cathode ray tube.
  • the color stability is also improved because deformations of the shadow mask cause less color changes.
  • a suspension of 40 g of BaMgAl 10 O 17 : Eu and 2 g of LaOBr: Tb (0.01 mol% of Tb 3+ ) was prepared, to which additives such as an organic binder and a dispersant were added.
  • additives such as an organic binder and a dispersant were added.
  • the suspension was applied to a back plate 2, which had a rib structure 12 and address electrodes 10, and dried. This process step was carried out successively for the other two phosphor types of the emission colors green and red.
  • a suspension of BaMgAl 10 O 17 : Eu was prepared to which additives such as an organic binder and a dispersant were added.
  • additives such as an organic binder and a dispersant were added.
  • the suspension was applied to a back plate 2, which had a rib structure 12 and address electrodes 10, and dried.
  • a suspension of 40 g of ZnS: Ag and 4 g of LaOBr: Tb (0.01 mol% of Tb 3+ ) was prepared, to which additives such as an organic binder and a dispersant were added.
  • the suspension was mixed with a 10% polyvinyl alcohol solution and, in addition, ammonium dichromate was added to the suspension.
  • the ratio of polyvinyl alcohol to ammonium dichromate was 10: 1.
  • the resulting mixture was applied to the inside of a faceplate.
  • the resulting layer was irradiated through a mask with UV light, thus crosslinking the polymer at the exposed locations.
  • the non-crosslinked areas of the phosphor layer were rinsed off.
  • An aluminum layer was vapor-deposited on the phosphor layer and the entire front plate was baked at 250 ° C. for 1 h.
  • Such a face plate was used together with a neck, a cone connecting the face plate to the neck, an electron gun for emitting three electron beams inside the neck, a deflection device, and a shadow mask for constructing a color cathode ray tube.
  • a color cathode ray tube having a blue phosphor layer containing ZnS: Ag and 20 wt% of LaOBr: Tb was prepared.
  • a color cathode ray tube with a blue phosphor layer containing only ZnS: Ag. was produced.
  • LaOBr.Tb [wt .-%] Share red Share green Proportion of blue 0 00:42 00:33 00:23 10 00:40 00:32 00:27 20 00:37 00:30 00:32
  • the ratio of the currents with which the individual regions of the phosphor layer are excited to emit visible light in one of the three primary colors is to represent the color white almost identical.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

  • Die Erfindung betrifft einen Farbbildschirm, insbesondere einen Plasmabildschirm, ausgerüstet mit einer blauen Leuchtstoffschicht.
  • Zur Darstellung von farbigen Bildern auf Bildschirmen bedient man sich der additiven Farbmischung. Ein großer Teil der in der Natur vorkommenden Farben lassen sich durch additive Mischung der drei Primärfarben rot, grün und blau entsprechender Intensität darstellen. Dieses Prinzip wird sowohl in emittierenden Bildschirmen wie Kathodenstrahlröhren oder Plasmabildschirmen als auch in nicht-emittierenden Bildschirmen wie Flüssigkristallbildschirmen angewendet.
  • Die Darstellung der verschiedenen Farben ist durch sogenannte Normfarbkurven festgelegt. Ein weit verbreiteter Standard ist das CIE Farbdreieck. Der Bereich der darstellbaren Farben in einem Bildschirm wird durch die Farbpunkte der drei Leuchtstoffe, gegeben durch das jeweilige Emissionsspektrum, definiert.
  • Aufgrund der charakteristischer Farbempfindung des menschlichen Auges trägt die blaue Lichtemission am wenigstens zur Luminanz (Helligkeit) eines Bildschirms bei.
  • US-5866977 offenbart einem Farbbildschirm mit einer blauen Leuchtstoffschicht, die zwei verschiedene blau-emittierende Leuchtstoffe umfaßt.
  • Aus US 5,277,841 ist ein gemischter blau emittierender Leuchtstoff aus einem Gemisch von ZnS:Ag,Al mit mindestens einem grün-emittierenden Leuchtstoff aus der Gruppe aus Y3(Al,Ga)5O12:Tb, Y2SiO5Tb und LaOCl:Tb bekannt, das die Luminanz und die Luminanz-Sättigungs-Charakteristik erhöht.
  • In Plasmabildschirmen sind darüber hinaus die blau-emittierenden Leuchtstoffe nicht so effizient wie die grün- und rot-emittierenden Leuchtstoffe. Diese beiden Effekte führen dazu, dass die Farbtemperatur für weißes Licht für Fernsehanwendungen niedriger als gewünscht ist.
  • Deshalb ist es eine Aufgabe der Erfindung, einen Farbbildschirm ausgerüstet mit einer verbesserten blau-emittierenden Leuchtstoffschicht bereitzustellen.
  • Diese Aufgabe wird gelöst, durch einen Farbbildschirm ausgerüstet mit einer blauen Leuchtstoffschicht, die einen ersten, blau-emittierenden Leuchtstoff, der eine Lichtemission im Bereich von 430 bis 490 nm aufweist, und einen zweiten Leuchtstoff, der eine tief-violette Lichtemission im Bereich von 380 bis 450 nm aufweist, enthält.
  • Es ist bevorzugt, dass der zweite Leuchtstoff eine Lichtemission im Bereich von 380 bis 420 nm aufweist.
  • Durch die Kombination eines ersten, blau-emittierenden Leuchtstoffes mit einem zweiten Leuchtstoff, dessen Lichtemission noch gerade im sichtbaren Bereich und tief-violett ist, wird eine blaue Lichtemission erhalten, die "blauer" erscheint und eine stärkere Farbsättigung aufweist. Auf diese Weise wird weißes Licht erhalten, welches eine hohe Luminanz und eine hoch erscheinende Farbtemperatur aufweist.
  • Es ist besonders bevorzugt, dass der zweite Leuchtstoff ausgezahlt ist aus der Gruppe der Tb3+-aktivierten Leuchtstoffe, der Eu2+-aktivierten Leuchtstoffe, der Bi3+-aktivierten Leuchtstoffe, der Ga3+-aktivierten Leuchtstoffe und der Ce3+-aktivierten Leuchtstoffe.
  • Es ist ganz besonders bevorzugt, dass der zweite Leuchtstoff ausgewählt ist aus der Gruppe LaOBr:Tb, Y2O2S:Tb, Y3Al5O12:Tb, Ca3(PO4)2:Eu, Sr2P2O7:Eu, (Sr,Mg)2P2O7:Eu CaB2P2O9:Eu, CaSO4:Eu, CaO:Bi, ZnO:Ga und (Y,Gd)BO3:Ce.
  • All diese Leuchtstoffe emittieren effizient unter UV-Lichtanregung oder durch Anregung mit einem Elektronenstrahl Licht mit einer Wellenlänge wischen 380 und 450 nm.
  • Es ist bevorzugt, dass die Leuchtstoffschicht eine physikalische Mischung aus Partikeln des ersten Leuchtstoffes und Partikeln des zweiten Leuchtstoffes enthält.
  • Es ist vorteilhaft, dass der Anteil an zweitem Leuchtstoff in der Leuchtstoffschicht zwischen 5 und 50 Gew.-% bezogen auf die Menge des ersten Leuchtstoffs beträgt.
  • Diese Ausführungsform ist einfach zu realisieren, da der zweite Leuchtstoff einfach zur Suspension des Leuchtstoffes, mit der die Leuchtstoffschicht hergestellt wird, gegeben werden kann.
  • Es kann auch bevorzugt sein, dass die Leuchtstoffschicht eine Basisschicht aus dem ersten Leuchtstoff und eine Deckschicht aus dem zweiten Leuchtstoff aufweist. Es ist bevorzugt, dass der erste Leuchtstoff ausgewählt ist aus der Gruppe ZnS:Ag, BaMgAl10O17:Eu und (Ba,Sr,Ca)5(PO4)3Cl:Eu
  • Der Leuchtstoff ZnS:Ag eignet sich besonders gut als blau-emittierender Leuchtstoff in Farbkathodenstrahlröhren, da er effizient unter Elektronenstrahlanregung blaues Licht emittiert. Die blau-emittierenden Leuchtstoffe BaMgAl10O17:Eu und (Ba,Sr,Ca)5(PO4)3Cl:Eu sind besonders geeignet für die Verwendung in Plasmabildschirmen, da sie eine hohe Farbsättigung sowie eine effiziente Umwandlung von UV-Licht in blaues Licht zeigen. Außerdem halten sie der thermischen Belastung während der Herstellung der Plasmabildschirme stand.
  • Weiterhin ist es bevorzugt, dass der Farbbildschirm ausgewählt ist aus der Gruppe der Kathodenstrahlröhren, der Plasmabildschirme und der Flüssigkristallbildschirme.
  • Diese Farbbildschirme ausgerüstet mit einer erfindungsgemäßen blauen Leuchtstoffschicht weisen eine erhöhte Luminanz auf, da durch die verbesserte blaue Lichtemission höhere Anteile an rotem und grünem Licht zur Farbdarstellung verwendet werden können. Die rote und die grüne Lichtemission tragen stärker zur Luminanz eines Farbbildschirms bei als die blaue Lichtemission. Vorteilhaft ist weiterhin, dass trotz der erhöhten Anteile an rotem und grünem Licht der Farbeindruck für weißes Licht nicht verändert wird.
  • Im folgenden soll anhand von einer Figur und drei Ausführungsbeispielen die Erfindung näher erläutert werden. Dabei zeigt
  • Fig. 1
    den Aufbau und das Funktionsprinzip einer einzelnen Plasmazelle in einem AC-Plasmabildschirm.
  • Gemäß Fig. 1 weist eine Plasmazelle eines AC-Plasmabildschirms mit einer koplanaren Anordnung der Elektroden eine Frontplatte 1 und eine Trägerplatte 2 auf. Die Frontplatte 1 enthält eine Glasplatte 3 und auf der Glasplatte 3 ist eine dielektrische Schicht 4, aus vorzugsweise PbO-haltigem Glas aufgebracht. Auf die Glasplatte 3 sind parallele, streifenförmige Entladungselektroden 6, 7 aufgebracht, die von der dielektrischen Schicht 4 bedeckt sind. Die Entladungselektroden 6, 7 sind zum Beispiel aus Metall oder ITO. Auf der dielektrischen Schicht 4 befindet sich eine Schutzschicht 5, welche beispielsweise MgO enthält.
  • Die Trägerplatte 2 ist aus Glas und auf der Trägerplatte 2 sind parallele, streifenförmige, senkrecht zu den Entladungselektroden 6, 7 verlaufende Adresselektroden 10 aus beispielsweise Ag aufgebracht. Diese sind von einer Leuchtstoffschicht 9, die in einer der drei Grundfarben rot, grün oder blau emittiert, bedeckt. Die einzelnen Plasmazellen sind durch eine Rippenstruktur 12 mit Trennrippen aus vorzugsweise dielektrischem Material getrennt.
  • In der Plasmazelle, das heißt zwischen den Entladungselektroden 6, 7, von denen jeweils eine im Wechsel als Kathode bzw. Anode wirkt, befindet sich ein Gas, vorzugsweise ein Edelgasgemisch aus beispielsweise He, Ne oder Kr, welches als UV-Licht generierende Komponente Xe enthält. Nach Zündung der Oberflächenentladung, wodurch Ladungen auf einem zwischen den Entladungselektroden 6, 7 im Plasmabereich 8 liegenden Entladungsweg fließen können, bildet sich im Plasmabereich 8 ein Plasma, durch das je nach der Zusammensetzung des Gases Strahlung 11 im UV-Bereich, insbesondere im VUV-Bereich, erzeugt wird. Diese Strahlung 11 regt die Leuchtstoffschicht 9 zum Leuchten an, die sichtbares Licht 13 in einer der drei Grundfarben emittiert, das durch die Frontplatte 1 nach außen tritt und somit einen leuchtenden Bildpunkt auf dem Bildschirm darstellt.
  • In der Leuchtstoffschicht 9 kann beispielsweise als blau-emittierender Leuchtstoff ein Eu2+-aktivierter Leuchtstoff wie BaMgAl10O17:Eu oder (Ba,Sr,Ca)5(PO4)3Cl:Eu verwendet werden. Die blau-emittierende Leuchtstoffschicht enthält neben diesem ersten Leuchtstoff mit einer Lichtemission im Bereich von 430 bis 490 nm noch einen zweiten Leuchtstoff, der eine Lichtemission im Bereich von 380 bis 450 nm, vorzugsweise im Bereich von 380 bis 420 nm, aufweist. Der zweite Leuchtstoff kann ausgewählt sein aus der Gruppe der Tb3+-aktivierten Leuchtstoffe, der Eu2+-aktivierten Leuchtstoffe, der Bi3+-aktivierten Leuchtstoffe, der Ga3+-aktivierten Leuchtstoffe und der Ce3+-aktivierten Leuchtstoffe. Der zweite Leuchtstoff kann zum Beispiel ausgewählt sein aus der Gruppe LaOBr:Tb, Y2O2S:Tb, Y3Al5O12:Tb, Ca3(PO4)2:Eu, Sr2P2O7:Eu, (Sr,Mg)2P2O7:Eu, CaB2P2O9:Eu, CaSO4:Eu, CaO:Bi, ZnO:Ga und (Y,Gd)BO3:Ce. Es ist vorteilhaft, dass die Konzentration an Tb3+ in den Tb3+-aktivierten Leuchtstoffen 0.1 Mol-% oder weniger beträgt.
  • Als grün-emittierender Leuchtstoff kann beispielsweise Zn2SiO4:Mn und als rot-emittierender Leuchtstoff kann beispielsweise (Y,Gd)BO3:Eu in der Leuchtstoffschicht 9 verwendet werden.
  • Als Herstellungsverfahren für eine Leuchtstoffschicht 9 kommen sowohl Trockenbeschichtungsverfahren, z B. elektrostatische Abscheidung oder elektrostatisch unterstütztes Bestäuben, als auch Nassbeschichtungsverfahren, z B. Siebdruck, Dispenserverfahren, bei denen eine Suspension mit einer sich dem Kanälen entlang bewegenden Düse eingebracht wird, oder Sedimentation aus der flüssigen Phase, in Betracht.
  • Für die Nassbeschichtungsverfahren wird zunächst ein geeigneter erster Leuchtstoff in Wasser, einem organischen Lösungsmittel, gegebenenfalls zusammen mit einem Dispergiermittel, einem Tensid und einem Antischaummittel oder einer Bindemittelzubereitung dispergiert. Geeignet für Bindemittelzubereitungen für Plasmabildschirme sind anorganischen Bindemittel, die eine Betriebstemperatur von 450°C ohne Zersetzung, Versprödung oder Verfärbung überstehen, oder organische Bindemittel, die später durch Oxidation entfernt werden können. Je nachdem ob die blaue Leuchtstoffschicht eine physikalische Mischung aus Partikeln des ersten Leuchtstoffes und Partikeln des zweiten Leuchtstoffes oder eine Basisschicht aus dem ersten Leuchtstoff und eine Deckschicht aus dem zweitem Leuchtstoff aufweisen soll, wird der zweite Leuchtstoff zu der obigen Suspension gegeben oder es wird eine separate Suspension des zweiten Leuchtstoffs hergestellt.
  • Anschließend werden die rot- bzw. grün-emittierenden Bereiche der Leuchtstoffschicht 9 hergestellt.
  • Nach Aufbringen der Leuchtstoffschicht 9 wird die Rückplatte 2 zusammen mit weiteren Komponenten wie zum Beispiel einer Frontplatte 1 und einem Edelgasgemisch zur Herstellung eines Plasmabildschirms verwendet.
  • Grundsätzlich kann eine derartige blau-emittierende Leuchtstoffschichtzubereitung in allen Typen von Plasmabildschirmen, wie zum Beispiel bei AC-Plasmabildschirmen mit oder ohne Matrixanordnung oder DC-Plasmabildschirmen verwendet werden.
  • Handelt es sich bei dem Farbbildschirm um einen Farb-Flüssigkristallbildschirm, kann die blaue Leuchtstoffschicht zusammen mit einer roten und einer grünen Leuchtstoffschicht auf der Innenseite der Frontplatte aufgebracht werden. Weiterhin kann ein Farb-Flüssigkristallbildschirm eine Lichtquelle, einen Polarisator, eine Flüssigkristallzelle und einen Analysator aufweisen.
  • Handelt es sich bei dem Farbbildschirm um eine Farbkathodenstrahlröhre, kann die blaue Leuchtstoffschicht zusammen mit einer roten und einer grünen Leuchtstoffschicht auf der Innenseite der Frontplatte aufgebracht werden. Neben der Frontplatte mit der Leuchtstoffschicht kann eine Farbkathodenstrahlröhre eine Elektronenkanone zur Emission mindestens eines Elektronenstrahls, eine Ablenkungsvorrichtung, einen Hals und einen Konus, der die Frontplatte und den Hals miteinander verbindet, aufweisen.
  • Zur Erzeugung der unterschiedlichen Farben, werden die jeweiligen Bereiche der Leuchtstoffschicht durch unterschiedlich starke Bestrahlung mit einem Elektronenstrahl zum Leuchten angeregt. In einer Farbkathodenstrahlröhre können durch die Verwendung der erfindungsgemäßen blauen Leuchtstoffschicht die Stromanteile für die Erzeugung von weißem Licht egalisiert werden. Dies verbessert die Luminanz der Farbkathodenstrahlröhre. In einer Farbkathodenstrahlröhre mit einer Schattenmaske wird auch die Farbstabilität verbessert, da Verformungen der Schattenmaske weniger Farbveränderungen verursachen.
  • Im folgenden werden Ausführungsformen der Erfindung erläutert, die beispielhafte Realisierungsmöglichkeiten darstellen.
  • Ausführungsbeispiel 1
  • Zunächst wurde eine Suspension aus 40 g BaMgAl10O17:Eu und 2 g LaOBr:Tb (0.01 mol-% Tb3+) hergestellt, der Additive wie ein organisches Bindemittel und ein Dispersionsmittel zugesetzt wurden. Mittels Siebdruck wurde die Suspension auf einer Rückplatte 2, welche eine Rippenstruktur 12 und Adresselektroden 10 aufwies, aufgebracht und getrocknet. Dieser Prozessschritt wurde nacheinander für die anderen beiden Leuchtstofftypen der Emissionsfarben Grün und Rot durchgeführt.
  • Durch thermische Behandlung der Rückplatte 2 bei 400 bis 600 °C in sauerstoffhaltiger Atmosphäre wurden alle in der Leuchtstoffschicht 9 verbliebenen Additive entfernt. Eine derartige Rückplatte 2 wurde dann mit einer Frontplatte 1 und einem Edelgasgemisch zum Bau eines Plasmabildschirms verwendet, dessen Farbtemperatur für weißes Licht deutlich höher erschien.
  • Ausführungsbeispiel 2
  • Zunächst wurde eine Suspension von BaMgAl10O17:Eu hergestellt, der Additive wie ein organisches Bindemittel und ein Dispersionsmittel zugesetzt wurden. Mittels Siebdruck wurde die Suspension auf einer Rückplatte 2, welche eine Rippenstruktur 12 und Adresselektroden 10 aufwies, aufgebracht und getrocknet.
  • Anschließend wurde eine Suspension von Sr2P2O7:Eu hergestellt, der Additive wie ein organisches Bindemittel und ein Dispersionsmittel zugesetzt wurden. Diese Suspension wurde mittels Siebdruck auf die Teile der Rückplatte 2 aufgebracht, wo zuvor BaMgAl10O17:Eu aufgebracht worden war, und getrocknet.
  • Weiterhin wurden nacheinander Suspensionen von Leuchtstofftypen der Emissionsfarben Grün und Rot hergestellt, denen jeweils Additive wie ein organisches Bindemittel und ein Dispersionsmittel zugesetzt wurden. Diese Suspensionen wurden nacheinander mittels Siebdruck auf Rückplatte 2 aufgebracht und getrocknet.
  • Durch thermische Behandlung der Rückplatte 2 bei 400 bis 600 °C in sauerstoffhaltiger Atmosphäre wurden alle in der Leuchtstoffschicht 9 verbliebenen Additive entfernt. Eine derartige Rückplatte 2 wurde dann mit einer Frontplatte 1 und einem Edelgasgemisch zum Bau eines Plasmabildschirms verwendet, dessen Farbtemperatur für weißes Licht deutlich höher erschien.
  • Ausführungsbeispiel 3
  • Zunächst wurde eine Suspension aus 40 g ZnS:Ag und 4 g LaOBr:Tb (0.01 mol-% Tb3+) hergestellt, der Additive wie ein organisches Bindemittel und ein Dispersionsmittel zugesetzt wurden. Die Suspension wurde mit einer 10 %igen Polyvinylalkohol-Lösung gemischt und außerdem wurde Ammoniumdichromat zu der Suspension hinzugefügt. Das Verhältnis Polyvinylalkohol zu Ammoniumdichromat betrug 10:1.
  • Mittels Spincoaten wurde die erhaltene Mischung auf der Innenseite einer Frontplatte aufgebracht. Die erhaltene Schicht wurde durch eine Maske mit UV-Licht bestrahlt und so das Polymer an den belichteten Stellen vernetzt. Anschließend wurden durch Sprühen mit warmem Wasser die nicht vernetzten Flächen der Leuchtstoffschicht abgespült. Die roten und grünen Bereiche der Leuchtstoffschicht, welche Y2O2S:Eu bzw. ZnS:Cu enthielten, wurden analog aufgebracht.
  • Auf die Leuchtstoffschicht wurde eine Aluminiumschicht aufgedampft und die gesamte Frontplatte 1 h bei 250 °C ausgeheizt.
  • Eine derartige Frontplatte wurde zusammen mit einem Hals, einem die Frontplatte mit dem Hals verbindenden Konus, eine im Inneren des Halses vorgesehene Elektronenkanone zur Emission von drei Elektronenstrahlen, einer Ablenkungsvorrichtung und einer Schattenmaske zum Bau einer Farbkathodenstrahlröhre verwendet.
  • Außerdem wurde eine Farbkathodenstrahlröhre mit einer blauen Leuchtstoffschicht, welche ZnS:Ag und 20 Gew.-% LaOBr:Tb enthielt, hergestellt. Es wurde weiterhin eine Farbkathodenstrahlröhre mit einer blauen Leuchtstoffschicht, welche nur ZnS:Ag enthielt, hergestellt.
  • Tabelle 1: Stromanteile für die unterschiedlichen Leuchtstoffe in einer Farbkathodenstrahlröhre bei unterschiedlichen Anteilen an LaOBr.Tb in der blauen Leuchtstoffschicht aus ZnS:Ag zur Erzeugung von weißem Licht (D65; x = 0.313, y = 0.329).
    LaOBr.Tb[Gew.-%] Anteil Rot Anteil Grün Anteil Blau
    0 0.42 0.33 0.23
    10 0.40 0.32 0.27
    20 0.37 0.30 0.32
  • Bei einem Anteil von 20 Gew.-% an Tb3+-aktiviertem LaOBr in der blauen Leuchtstoffschicht aus ZnS:Ag ist das Verhältnis der Ströme, mit dem die einzelnen Bereiche der Leuchtstoffschicht zur Emission von sichtbaren Licht in einer der drei Grundfarben angeregt werden, zur Darstellung der Farbe weiß nahezu identisch.

Claims (9)

  1. Farbbildschirm ausgerüstet mit einer blauen Leuchtstoffschicht (9), die einen ersten, blau-emittierenden Leuchtstoff, der eine Lichtemission im Bereich von 430 bis 490 nm aufweist, enthält,
    dadurch gekennzeichnet,
    dass sie ferner einen zweiten Leuchtstoff, der eine tief- violette Lichtemission im Bereich von 380 bis 450 nm aufweist, enthält.
  2. Farbbildschirm nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der zweite Leuchtstoff eine Lichtemission im Bereich von 380 bis 420 nm aufweist.
  3. Farbbildschirm nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der zweite Leuchtstoff ausgewählt ist aus der Gruppe der Tb3+-aktivierten Leuchtstoffe, der Eu2+-aktivierten Leuchtstoffe, der Bi3+-aktivierten Leuchtstoffe, der Ga3+-aktivierten Leuchtstoffe und der Ce3+-aktivierten Leuchtstoffe.
  4. Farbbildschirm nach Anspruch 3,
    dadurch gekennzeichnet,
    dass der zweite Leuchtstoff ausgewählt ist aus der Gruppe LaOBr:Tb, Y2O2S:Tb, Y3Al5O12:Tb, Ca3(PO4)2:Eu, Sr2P2O7:Eu, (Sr,Mg)2P2O7:Eu CaB2P2O9:Eu, CaSO4:Eu, CaO:Bi, ZnO:Ga und (Y,Gd)BO3:Ce.
  5. Farbbildschirm nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Leuchtstoffschicht eine physikalische Mischung aus Partikeln des ersten Leuchtstoffes und Partikeln des zweiten Leuchtstoffes enthält.
  6. Farbbildschirm nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der Anteil an zweitem Leuchtstoff in der Leuchtstoffschicht zwischen 5 und 50 Gew.-% bezogen auf die Menge des ersten Leuchtstoffs beträgt.
  7. Farbbildschirm nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Leuchtstoffschicht eine Basisschicht aus dem ersten Leuchtstoff und eine Deckschicht aus dem zweiten Leuchtstoff aufweist.
  8. Farbbildschirm nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der erste Leuchtstoff ausgewählt ist der Gruppe ZnS:Ag, BaMgAl10O17:Eu und (Ba,Sr,Ca)5(PO4)3Cl:Eu.
  9. Farbbildschirm nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Farbbildschirm ausgewählt ist aus der Gruppe der Kathodenstrahlröhren, der Plasmabildschirme und der Flüssigkristallbildschirme.
EP01000410A 2000-09-05 2001-08-30 Farbbildschirm mit blauer Leuchtstoffschicht Expired - Lifetime EP1187167B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10043530 2000-09-05
DE10043530A DE10043530A1 (de) 2000-09-05 2000-09-05 Farbbildschirm mit blauer Leuchtstoffschicht

Publications (2)

Publication Number Publication Date
EP1187167A1 EP1187167A1 (de) 2002-03-13
EP1187167B1 true EP1187167B1 (de) 2006-10-04

Family

ID=7654926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01000410A Expired - Lifetime EP1187167B1 (de) 2000-09-05 2001-08-30 Farbbildschirm mit blauer Leuchtstoffschicht

Country Status (7)

Country Link
US (1) US6762548B2 (de)
EP (1) EP1187167B1 (de)
JP (1) JP2002175763A (de)
KR (1) KR100765307B1 (de)
CN (1) CN1305099C (de)
DE (2) DE10043530A1 (de)
TW (1) TWI264035B (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061720A1 (de) * 2000-12-12 2002-06-13 Philips Corp Intellectual Pty Plasmabildschirm mit Leuchtstoffschicht
US6616862B2 (en) * 2001-05-21 2003-09-09 General Electric Company Yellow light-emitting halophosphate phosphors and light sources incorporating the same
WO2004038753A1 (ja) * 2002-10-22 2004-05-06 Matsushita Electric Industrial Co., Ltd. プラズマディスプレイパネル
KR20060033799A (ko) * 2003-07-15 2006-04-19 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 색채 조절 가능 조명 소자
KR100666265B1 (ko) * 2004-10-18 2007-01-09 엘지이노텍 주식회사 형광체 및 이를 이용한 발광소자
KR20090044800A (ko) * 2007-11-01 2009-05-07 삼성전기주식회사 인산계 나노 형광체 및 나노 형광체 제조 방법
CN102660264B (zh) * 2012-04-17 2014-06-04 绍兴文理学院 一种近紫外光激发白光LED用ZnO基荧光粉材料及其制备方法
CN108517210B (zh) * 2018-06-07 2021-01-08 齐鲁工业大学 一种Ce3+, Dy3+掺杂的颜色可控的荧光粉及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8303782A (nl) * 1983-11-03 1985-06-03 Philips Nv Beeldbuis.
US4623816A (en) * 1985-04-22 1986-11-18 General Electric Company Fluorescent lamp using multi-layer phosphor coating
GB2214706B (en) * 1988-01-29 1992-06-03 Ferranti Plc Colour-monochrome visual display device
JPH02120389A (ja) * 1988-10-28 1990-05-08 Toshiba Corp 蛍光ランプ
JPH02135276A (ja) * 1988-11-16 1990-05-24 Hitachi Ltd ブラウン管
CA2041089C (en) * 1990-05-10 1995-01-17 Yasuo Iwasaki Coating film for the faceplate of a colour cathode ray tube
KR100268715B1 (ko) 1993-02-11 2000-11-01 김순택 혼합 청색발광 형광체
MY109224A (en) * 1993-02-11 1996-12-31 Samsung Display Devices Co Ltd Mixed blue emitting phosphor.
EP0686997A3 (de) * 1994-06-06 1996-06-26 Matsushita Electric Ind Co Ltd Entladungslampe und Beleuchtungsinstrument für allgemeine Beleuchtung
KR100197579B1 (ko) * 1996-12-03 1999-06-15 손욱 이중층 형광막 및 그의 제조방법
KR100199557B1 (ko) * 1996-12-13 1999-06-15 손욱 플리커리스 브라운관용 형광막 및 그 제조 방법
JPH10208647A (ja) 1997-01-29 1998-08-07 Nec Kansai Ltd プラズマディスプレイパネル
US6010644A (en) * 1997-05-09 2000-01-04 Kabushiki Kaisha Ohara Long-lasting phosphor
JPH1196923A (ja) * 1997-09-19 1999-04-09 Fujitsu Ltd プラズマディスプレイパネル
JP4151104B2 (ja) 1998-03-31 2008-09-17 株式会社日立製作所 プラズマディスプレイ

Also Published As

Publication number Publication date
US20020047510A1 (en) 2002-04-25
CN1342991A (zh) 2002-04-03
TWI264035B (en) 2006-10-11
KR100765307B1 (ko) 2007-10-10
DE50111136D1 (de) 2006-11-16
CN1305099C (zh) 2007-03-14
EP1187167A1 (de) 2002-03-13
KR20020019392A (ko) 2002-03-12
DE10043530A1 (de) 2002-03-14
JP2002175763A (ja) 2002-06-21
US6762548B2 (en) 2004-07-13

Similar Documents

Publication Publication Date Title
DE19534075C2 (de) Phosphor
DE69824034T2 (de) Lumineszenzmittel, pulverförmiges lumineszenzmittel, plasma-anzeigetafel und herstellungsverfahren dersleben
EP1156507B1 (de) Plasmabildschirm mit einem Terbium(III)-aktivierten Leuchtstoff
EP1215698B1 (de) Plasmabildschirm mit Leuchtstoffschicht
EP1076083A1 (de) Plasmabildschirm mit beschichtetem Leuchtstoff
EP1187167B1 (de) Farbbildschirm mit blauer Leuchtstoffschicht
DE2729416A1 (de) Farbfernseh-kathodenstrahlroehre
DE19962029A1 (de) Plasmabildschirm mit rotem Leuchtstoff
EP1158559A2 (de) Plasmabildschirm mit Terbium(III)-aktiviertem Leuchtstoff
DE10009916A1 (de) Plasmabildschirm mit blauem Leuchtstoff
DE10042427A1 (de) Plasmabildschirm mit verbessertem Kontrast
DE19851348A1 (de) Lumineszierender Schirm mit oxidhaltiger Leuchtstoffzubereitung
DE1512397B2 (de) Leuchtschirm fuer farbbild wiedergaberoehren
DE102004054091B4 (de) Durch Vakuum-ultraviolett angeregtes grünes Phosphormaterial und eine dieses Material verwendende Vorrichtung
DE2826458C3 (de) Fluoreszenzmischung aus Zinn (IV) oxid und einem aktivierten Leuchtstoff
DE60313312T2 (de) Plasmaanzeigetafel enthaltend eine terbium(iii)-aktivierte fluoreszierende substanz
EP1258902A2 (de) Plasmabildschirm mit verbessertem Weissfarbpunkt
EP1103591A1 (de) Plasmabildschirm mit rotem Leuchtstoff
DE19827252A1 (de) Seltenerdborat-Leuchtstoff
DE10146798A1 (de) Plasmabildschirm mit erhöhter Effizienz
DE3004535C2 (de) Fluoreszierendes Material mit einem Gehalt an Indiumoxid
DE60316087T2 (de) Plasma-Anzeigetafel mit grünem Leuchtstoff aus Aluminatmischung mit Spinelstruktur
DE10104364A1 (de) Plasmabildschirm mit einer Leuchtstoffschicht
DE1762982C3 (de) Leuchtschirm für eine Kathodenstrahl-Farbbildwiedergaberöhre
DE10158273A1 (de) Plasmafarbbildschirm mit grünem Leuchtstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

17P Request for examination filed

Effective date: 20020913

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

17Q First examination report despatched

Effective date: 20050411

RTI1 Title (correction)

Free format text: COLOUR DISPLAY PANEL WITH BLUE LUMINOUS LAYER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061012

REF Corresponds to:

Ref document number: 50111136

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071015

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080929

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090830