EP1183304A1 - Carboxylgruppen-haltige dienkautschuke - Google Patents

Carboxylgruppen-haltige dienkautschuke

Info

Publication number
EP1183304A1
EP1183304A1 EP00922658A EP00922658A EP1183304A1 EP 1183304 A1 EP1183304 A1 EP 1183304A1 EP 00922658 A EP00922658 A EP 00922658A EP 00922658 A EP00922658 A EP 00922658A EP 1183304 A1 EP1183304 A1 EP 1183304A1
Authority
EP
European Patent Office
Prior art keywords
rubber
carboxyl groups
rubbers
production
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00922658A
Other languages
English (en)
French (fr)
Inventor
Thomas Scholl
Jürgen Trimbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1183304A1 publication Critical patent/EP1183304A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to rubber mixtures containing diene rubbers with a carboxyl group content of 0.1 to 2% by weight and a glass transition temperature of -120 to -50 °, and mixtures thereof with fillers, optionally further rubbers and rubber auxiliaries and vulcanizates produced therefrom.
  • the rubber mixtures according to the invention are suitable for the production of highly reinforced, abrasion-resistant moldings, in particular for the production of tire treads which have a particularly high wet slip resistance, abrasion resistance and low rolling resistance, and for tire sidewalls with particularly good fatigue resistance.
  • Double bond-containing anionically polymerized solution rubbers such as solution polybutadiene and solution styrene / butadiene rubbers, have advantages over the corresponding emulsion rubbers in the production of low-rolling resistance tire treads.
  • the advantages include in the controllability of the vinyl content and the associated glass transition temperature and the molecular branching. In practical use, this results in particular advantages in relation to the wet skid resistance and rolling resistance of the tire. So describes US-PS 5,227,425
  • 2,662,874 describes the production of elastic materials from metal ion-crosslinked polymeric carboxylates with a content of 0.001 to 0.3 carboxyl equivalents per 100 g of rubber.
  • the elastic materials mentioned have a very broad carboxyl group content and are unsuitable for the tire application of the present invention on account of the inherent sensitivity to hydrolysis of the metal salts.
  • a method for producing carboxyl group-containing (3.9 to 8.9% by weight carboxyl groups) solution polybutadiene rubbers is described, inter alia. in DE-OS 2,653,144. Due to the high vinyl content and the high carboxyl group content, these rubbers have too high glass transition temperatures (> -50 ° C) combined with unfavorable damping properties and are therefore no substitute for 1,4-polybutadiene rubber in tire treads and tire sidewalls.
  • the object of the present invention was therefore to provide mixtures of solution rubbers containing carboxyl groups, from which tires with improved wet-skid resistance, lower rolling resistance and high mechanical strength and improved abrasion behavior can be produced.
  • the present invention therefore relates to rubber mixtures comprising one or more rubbers with in the range from 0.1 to 2% by weight of bound carboxyl groups or their salts and a glass transition temperature in the range from -120 to -50 ° C. and one or more fillers in the range of 10 to 500 parts by weight based on 100 parts by weight of rubber.
  • Rubber mixtures according to the invention are preferred in which the rubber containing carboxyl groups has a content of bound carboxyl groups or their salts of 0.1 to 1% by weight and a glass transition temperature in the range from -120 to -50 ° C., preferably -120 to -70 ° C and a content of 1,2-linked diolefins (vinyl content) in the range of 0 to 50 wt .-%, particularly preferably 1 to
  • a cis-1,4 content in the range from 30 to 100% by weight, particularly preferably 90 to 100% by weight, and average molecular weights (number average) of 50,000 to 2,000,000, preferably 100,000 to 1,000,000 and Mooney viscosities ML 1 + 4 (100 ° C.) of 10 to 200, preferably 30 to 150 .
  • the glass transition temperature can be determined using known methods, e.g. by means of
  • the carboxyl group content can also be determined by known methods such as e.g. Free acid titration, spectroscopy, elemental analysis etc. are carried out.
  • coordination catalysts are understood to mean Ziegler-Natta catalysts, coordination catalysts and monometallic catalyst systems.
  • Preferred coordination catalysts are those based on Ni, Co, Ti or Nd.
  • Catalysts for anionic solution polymerization are based on alkali or alkaline earth metals, e.g. n-butyllithium.
  • the known randomizers and control agents can be used for the microstructure of the polymer.
  • Such solution polymerizations are known and e.g. in I. Franta Elastomers and Rubber Compounding Materials; Elsevier 1989, pages 113 - 131 and in Houben-
  • 1,3-pentadiene 2,3-dimethylbutadiene, 1-vinyl-1,3-butadiene and / or 1,3-hexadiene.
  • 1,3-butadiene and isoprene are particularly preferably used.
  • the carboxyl groups can be introduced into the rubber either by adding carboxyl-providing compounds, for example CO 2 , to metalated solution rubbers, or by reacting the finished rubber treated with carboxyl group-containing compounds, for example carboxyl group-containing mercaptans.
  • carboxyl-providing compounds for example CO 2
  • metalated solution rubbers or by reacting the finished rubber treated with carboxyl group-containing compounds, for example carboxyl group-containing mercaptans.
  • the carboxyl groups are preferably introduced into the rubber after the monomers used have been polymerized in solution by reacting the polymers obtained, if appropriate in the presence of radical initiators, with carboxyl mercaptans of the formula (I)
  • R 1 represents a linear, branched or cyclic C -C-alkylene group, which can optionally be substituted with up to 3 further carboxyl groups, or can be interrupted by nitrogen, oxygen or sulfur atoms, or for a C 6 -C / 2 - Arylene group,
  • X represents hydrogen or a metal or ammonium ion.
  • This method is a further subject of the invention.
  • Ci-C ß ö-alkylene is understood to mean all linear, cyclic or branched alkylene radicals with 1 to 36 C atoms known to the person skilled in the art, such as methylene,
  • Preferred carboxyl mercaptans of the formula (I) are thioglycolic acid, 2-mercapto-propionic acid (thiolactic acid), 3-mercaptopropionic acid, 4-mercaptobutyric acid, Mercaptoundecanoic acid, mercaptooctadecanoic acid, 2-mercaptosuccinic acid, 2- and 4-mercaptobenzoic acid, and their alkali and alkaline earth metal or ammonium salts.
  • 3-Mercaptopropionic acid, mercaptobutyric acid and 2-mercaptosuccinic acid and their lithium, sodium, potassium, magnesium, calcium or ammonium salts are particularly preferably used. 3- is very particularly preferred
  • the reaction of the carboxyl mercaptans with the solution rubbers is carried out in a solvent, for example hydrocarbons such as pentane, hexane, cyclohexane, benzene and / or toluene, at temperatures from 40 to 150 ° C in the presence of free radical initiators, e.g. Peroxides such as dilauroyl peroxide, azo initiators such as azobisisobutyronitrile, benzpinacol silyl ethers or in the presence of photoinitiators and visible or UV light.
  • a solvent for example hydrocarbons such as pentane, hexane, cyclohexane, benzene and / or toluene
  • free radical initiators e.g.
  • Peroxides such as dilauroyl peroxide
  • azo initiators such as azobisisobutyronitrile
  • benzpinacol silyl ethers or in the
  • Preferred radical initiators are diacyl peroxides, such as dilauroyl peroxide, didecanoyl peroxide, di (3,5,5-trimethyl hexanoyl) peroxide and perketals, such as l. L-di (tert-butyl peroxy) -3,3,5-trimethyl-cyclo- hexane, 1.1-di (tert-butylperoxy) cyclohexane and l. l-di (tert-butylperoxy) butane.
  • diacyl peroxides such as dilauroyl peroxide, didecanoyl peroxide, di (3,5,5-trimethyl hexanoyl) peroxide and perketals, such as l. L-di (tert-butyl peroxy) -3,3,5-trimethyl-cyclo- hexane, 1.1-di (tert-butylperoxy) cyclohex
  • the amount of carboxyl mercaptans to be used depends on the desired content of bound carboxyl groups or their salts in the solution rubber to be used in the rubber mixtures.
  • the carboxylic acid salts can also be prepared after the introduction of the carboxylic acid group into the rubber by neutralizing it.
  • Suitable fillers for the rubber mixtures according to the invention are all known fillers used in the rubber industry, including both active and inactive fillers.
  • highly disperse silicas produced, for example, by precipitation of solutions of silicates or flame hydrolysis of silicon halides with specific surface areas of 5-1000, preferably 20-400 m 2 / g (BET surface area) and with primary particle sizes of 10-400 nm. optionally also as mixed oxides with other metal oxides, such as Al, Mg, Ca,
  • synthetic silicates such as aluminum silicate, alkaline earth silicate, such as magnesium silicate or calcium silicate, with BET surface areas of 20-400 m 2 / g and primary particle diameters of 10-400 nm;
  • silicates such as kaolin and other naturally occurring silica
  • Glass fibers and glass fiber products (mats, strands) or micro glass balls Metal oxides such as zinc oxide, calcium oxide, magnesium oxide, aluminum oxide
  • Metal carbonates such as magnesium carbonate, calcium carbonate, zinc carbonate;
  • Metal hydroxides e.g. Aluminum hydroxide, magnesium hydroxide;
  • the soot to be used here is manufactured using the soot, furnace or gas black process and has BET surface areas of 20-200 m 2 / g, for example SAF, ISAF, HAF, FEF or GPF carbon blacks;
  • Rubber gels especially those based on polybutadiene, butadiene / styrene copolymers, butadiene / acrylonitrile copolymers and polychloroprene.
  • the fillers mentioned can be used alone or in a mixture.
  • the rubber mixtures contain, as fillers, a mixture of light-colored fillers, such as highly disperse silicas, and Russians, the mixing ratio of light fillers to Russians being 0.05 to 20, preferably 0.1 to 10.
  • the fillers are used in amounts in the range from 10 to 500 parts by weight based on 100 parts by weight of rubber. 20 to 200 are preferred
  • the rubber mixtures according to the invention can also contain other rubbers, such as natural rubber as well as others
  • Preferred synthetic rubbers are described, for example, by W. Hofmann, Kautschuktechnologie, Gentner Verlag, Stuttgart 1980 and I. Franta, Elastomers and Rubber Coumpounding Materials, Elsevier, Amsterdam 1989. They include
  • NBR - butadiene / acrylonitrile copolymers with acrylonitrile contents of 5-60, preferably 10-40 wt.%
  • Very particularly preferred rubber mixtures according to the invention contain, in addition to one or more rubbers containing carboxyl groups and a glass transition temperature between -120 ° and -50 ° C, additional rubbers selected from the series of natural rubber, polysisoprene and styrene / butadiene copolymers with styrene contents between 10 and 50% by weight. .
  • the amount of these additional rubbers is usually in the range from 0.5 to 95, preferably 40 to 90% by weight, based on the total amount of rubber in the rubber mixture.
  • the amount of additionally added rubbers depends again on the particular intended use of the rubber mixtures according to the invention.
  • the rubber mixtures according to the invention can also contain other rubber auxiliaries which serve, for example, to crosslink the vulcanizates produced from the rubber mixtures or which improve the physical properties of the vulcanizates produced from the rubber mixtures according to the invention for their specific application.
  • Crosslinking agents that can be used are, for example, sulfur or sulfur-providing compounds, such as radical-providing crosslinking agents, such as organic peroxides. Sulfur is preferably used as crosslinking agent.
  • the rubber mixtures according to the invention can be further
  • Auxiliaries such as the known reaction accelerators, anti-aging agents, heat stabilizers, light stabilizers, ozone protection agents, processing aids, plasticizers, tackifiers, blowing agents, dyes, pigments, waxes, extenders, organic acids, retarders, metal oxides and activators.
  • the rubber auxiliaries according to the invention are used in the customary, known amounts, the amount used depending on the later intended use of the rubber mixtures. For example, amounts of rubber auxiliaries in the range from 2 to 70 parts by weight, based on 100 parts by weight of rubber, are customary.
  • filler activators are sulfur-containing silyl ethers, in particular bis (trialkoxisilyl-alkyl) polysulfides, as described in DE 2,141,159 and DE 2,255,577.
  • oligomeric and / or polymeric sulfur-containing silyl ethers are suitable, as described in DE 4,435,311 and EP 670,347.
  • Mercapatoalkyltrialkoxisilane, in particular mercaptopropyltriethoxisilane and thiocyanatoalkylsilyl ether are also to be used.
  • the filler activators are used in usual amounts, i.e. in quantities of
  • the rubber mixtures according to the invention can e.g. are produced by mixing the solution rubbers containing carboxyl groups with the corresponding fillers and, if appropriate, further rubbers and others
  • Rubber auxiliaries in suitable mixing equipment such as kneaders, rollers or extruders.
  • the rubber mixtures according to the invention are preferably prepared by first carrying out the polymerization of the monomers mentioned in solution
  • the present invention furthermore relates to the use of the rubber mixtures according to the invention for the production of moldings of all kinds, in particular for the production of tires, particularly preferably tire treads and tire sidewalls.
  • Buna VSL 5025-1 (with 37.5 phr mineral oil 61.9 61.9 drawn L-SBR from Bayer AG)
  • Antioxidant Vulkanox HS (Bayer AG) 1 1
  • Antioxidant Vulkanox 4020 (Bayer AG) 1 1
  • test results demonstrate the significantly lower dynamic damping at 70 ° C, measured as rebound resilience and as tan delta, which experience has shown to correlate with a significantly reduced tire rolling resistance.
  • Example 1 According to the procedure of Example 1, 500 g of BR rubber Buna CB 65 were reacted in 4 l of cyclohexane at 80 ° C. with 12.5 g of 3-mercaptopropionic acid and 0.5 g of dilauroyl peroxide. Response time: 5 hours. At this point, 36% of the 3-mercapto-propionic acid had reacted. Carboxyl group content of the polymer 0.38% by weight. Then 2.5 g of stabilizer Vulkanox® 4020 (Bayer AG), 189.5 g of aromatic mineral oil Renopal ® 450 (Fuchs Mineralölwerke) and 405 g of highly active precipitated silica Vulkasil ® S (N 2 - Surface approx.
  • Example 3 The procedure was as in Example 3, wherein a solution of 500 g BR rubber Buna CB 65 and 2.5 g of Vulkanox ® 4020 in 4 1 of cyclohexane at 75 ° C with 400 g of highly active precipitated silica Vulkasil® S was mixed. The solvent was then removed by introducing steam (100-110 ° C.), the
  • Reaction vessel was heated from the outside at 75-80 ° C.
  • the moist solid was then removed and filtered through a sieve of finely divided silica and then dried at 65 ° C. in vacuo. 597 g (66% of theory) of an inhomogeneous silica / rubber masterbatch were obtained.
  • the wastewater contained large amounts (approx. 75% of the amount used) of silica.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Die vorliegende Erfindung betrifft Kautschukmischungen enthaltend Dienkautschuke mit einem Gehalt an Carboxylgruppen von 0,1 bis 2 Gew.-% und einer Glastemperatur von -120 bis -50 DEG sowie deren Mischungen mit Füllstoffen, gegebenenfalls weiteren Kautschuken und Kautschukhilfsmitteln und daraus hergestellte Vulkanisate. Die erfindungsgemässen Kautschukmischungen eignen sich zur Herstellung von hochverstärkten, abriebbeständigen Formkörpern, insbesondere zur Herstellung von Reifenlaufflächen, die eine besonders hohe Nassrutschfestigkeit, Abriebbeständigkeit und niedrigen Rollwiderstand aufweisen sowie für Reifenseitenwände mit besonders guter Ermüdungsbeständigkeit.

Description

Carboxylgruppen-haltige Dienkautschuke
Die vorliegende Erfindung betrifft Kautschukmischungen enthaltend Dienkautschuke mit einem Gehalt an Carboxylgruppen von 0,1 bis 2 Gew.-% und einer Glastemperatur von -120 bis -50° sowie deren Mischungen mit Füllstoffen, gegebenenfalls weiteren Kautschuken und Kautschukhilfsmitteln und daraus hergestellte Vulkani- sate. Die erfindungsgemäßen Kautschukmischungen eignen sich zur Herstellung von hochverstärkten, abriebbeständigen Formkόrpern, insbesondere zur Herstellung von Reifenlaufflächen, die eine besonders hohe Naßrutschfestigkeit, Abriebbeständigkeit und niedrigen Rollwiderstand aufweisen sowie für Reifenseitenwände mit besonders guter Ermüdungsbeständigkeit.
Doppelbindungshaltige anionisch polymerisierte Lösungskautschuke, wie Lösungs- Polybutadien und Lösungs-Styrol/Butadien-Kautschuke, besitzen gegenüber entsprechenden Emulsionskautschuken Vorteile bei der Herstellung rollwiderstandsarmer Reifenlaufflächen. Die Vorteile liegen u.a. in der Steuerbarkeit des Vinylgehalts und der damit verbundenen Glastemperatur und der Molekülverzweigung. Hieraus ergeben sich in der praktischen Anwendung besondere Vorteile in der Relation von Naß- rutschfestigkeit und Rollwiderstand des Reifens. So beschreibt US-PS 5.227.425 die
Herstellung von Reifenlaufflächen aus einem Lösungs-SBR-Kautschuk und Kieselsäure. Zur weiteren Verbesserung der Eigenschaften sind zahlreiche Methoden zur Endgruppen-Modifizierung entwickelt worden, wie in EP-A 334 042 beschrieben, mit Dimethylaminopropyl-acrylamid, oder, wie in EP-A 447.066 beschrieben, mit Silylethern. Durch das hohe Molekulargewicht der Kautschuke ist der Gewichtsanteil der Endgruppe jedoch gering und kann daher die Wechselwirkung zwischen Füllstoff und Kautschukmolekül nur wenig beeinflussen. Es war u.a. eine Aufgabe der vorliegenden Erfindung Dienkautschuke mit einem deutlich höheren Gehalt an wirkungsvollen Gruppen zur Füllstoffwechselwirkung und besonders niedriger Glastemperatur herzustellen. US-PS 2.662.874 beschreibt die Herstellung von elastischen Materialien aus Metall- ionen-vernetzten polymeren Carboxylaten mit einem Gehalt von 0,001 bis 0,3 Carboxyläquivalenten pro 100 g Kautschuk. Die genannten elastischen Materialien weisen einen sehr breiten Carboxylgruppengehalt auf und sind für die Reifenanwen- düng der vorliegenden Erfindung aufgrund der inhärenten Hydrolysempfindlichkeit der Metallsalze ungeeignet.
Ein Verfahren zur Herstellung von carboxylgruppenhaltigen (3,9 bis 8,9 Gew.-% Carboxylgruppen) Lösungs-Polybutadien-Kautschuken wird u.a. in DE-OS 2.653.144 beschrieben. Diese Kautschuke besitzen aufgrund des hohen Vinylgehalts und des hohen Carboxylgruppengehalts zu hohe Glastemperaturen (> -50°C) verbunden mit ungünstigen Dämpfungseigenschaften sind damit kein Ersatz für 1,4- Polybutadienkautschuk in Reifenlaufflächen und Reifenseitenwänden.
Aufgabe der vorliegenden Erfindung war es daher, Mischungen carboxylgruppen- haltiger Lösungskautschuke zu Verfügung zu stellen, aus denen sich Reifen mit verbesserter Naßrutschfestigkeit, niedrigerem Rollwiderstand sowie hoher mechanischer Festigkeit und verbessertem Abriebverhalten herstellen lassen.
Gegenstand der vorliegenden Erfindung sind daher Kautschukmischungen, enthaltend einen oder mehrere Kautschuke mit im Bereich von 0,1 bis 2 Gew.-% an gebundenen Carboxylgruppen oder deren Salzen und einer Glastemperatur im Bereich von -120 bis -50°C und einen oder mehrere Füllstoffe im Bereich von 10 bis 500 Gew. -Teilen bezogen auf 100 Gew. -Teile Kautschuk.
Bevorzugt sind erfindungsgemäße Kautschukmischungen, in denen der carboxyl- gruppenhaltige Kautschuk einen Gehalt an gebundenen Carboxylgruppen oder deren Salzen von 0,1 bis 1 Ge\v.-% besitzt sowie eine Glastemperatur im Bereich von -120 bis -50° C, vorzugsweise -120 bis -70°C besitzt und einen Gehalt an 1,2-gebundenen Diolefinen (Vinylgehalt) im Bereich von 0 bis 50 Gew.-%, besonders bevorzugt 1 bis
15 Gew. % und einen cis-l ,4-Gehalt im Bereich von 30 bis 100 Gew. %, besonders bevorzugt 90 bis 100 Gew. %, sowie mittlere Molgewichte (Zahlenmittel) von 50.000 bis 2.000.000, bevorzugt 100.000 bis 1.000.000 sowie Mooney-Viskositäten ML 1+4 (100°C) von 10 bis 200, vorzugsweise 30 bis 150 besitzt.
Die Glastemperatur kann mit bekannten Methoden bestimmt werden, z.B. mittels
DSC (Differential-Scanning-Calorimetrie, Aufheizrate 20 K/Min.). Die Bestimmung des Carboxylgruppengehalts kann ebenfalls nach bekannten Methoden wie z.B. Titration der freien Säure, Spektroskopie, Elementaranalyse etc. erfolgen.
Die Herstellung der erfindungsgemäßen Kautschuke für die erfindungsgemäßen
Kautschukmischungen erfolgt bevorzugt durch Polymerisation mittels Koordinationskatalysatoren oder anionische Lösungspolymerisation. Unter Koordinationskatalysatoren sind in diesem Zusammenhang Ziegler-Natta-Katalysatoren, Koordinations-Katalysatoren und monometallische Katalysatorsysteme zu verstehen. Bevor- zugte Koordinationskatalysatoren sind solche auf Basis Ni, Co, Ti oder Nd. Katalysatoren für die anionische Lösungspolymerisation sind auf Alkali- oder Erdalkalimetallbasis, wie z.B. n-Butytllithium. Zusätzlich können die bekannten randomizer und Kontrollagentien für die MikroStruktur des Polymers verwendet werden. Derartige Lösungspolymerisationen sind bekannt und z.B. in I. Franta Elastomers and Rubber Compounding Materials; Elsevier 1989, Seite 113 - 131 und in Houben-
Weyl, Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 1961 , Band XIV/1 Seiten 645 bis 673 oder im Band E 20 (1987) , Seiten 114 bis 134 und Seiten 134 bis 153 beschrieben.
Als Diolefine dienen erfindungsgemäß zur Polymerisation 1 ,3-Butadien, Isopren,
1,3-Pentadien, 2,3-Dimethylbutadien, 1-Vinyl-1,3-Butadien und/oder 1,3-Hexadien. Besonders bevorzugt werden 1 ,3-Butadien und Isopren eingesetzt.
Die Carboxylgruppen können in den Kautschuk eingeführt werden dadurch, daß man entweder metallierten Lösungskautschuken Carboxyl-liefernde Verbindungen, beispielsweise CO2, zusetzt oder indem man in einer nachgeschalteten Reaktion den fertigen Kautschuk mit Carboxylgruppen-haltigen Verbindungen, beispielsweise Carboxylgruppen-haltigen Mercaptanen behandelt.
Bevorzugt erfolgt die Einführung der Carboxylgruppen in den Kautschuk nach erfolgter Polymerisation der eingesetzten Monomere in Lösung durch Umsetzung der erhaltenen Polymerisate, gegebenenfalls in Gegenwart von Radikalstartern, mit Carboxylmercaptanen der Formel (I)
HS - R'-COOX (I),
woπn
R1 für eine lineare, verzweigte oder cyclische Cι -C36-Alkylengruppe steht, die gegebenenfalls mit bis zu 3 weiteren Carboxylgruppen substituiert sein kann, oder durch Stickstoff-, Sauerstoff oder Schwefelatome unterbrochen sein kann, oder für eine C6-C/2-Arylengruppe steht,
und
X für Wasserstoff oder für ein Metall- oder Ammoniumion steht.
Dieses Verfahren stellt einen weiteren Gegenstand der Erfindung dar.
Unter Ci-Cßö-Alkylen werden sämtliche dem Fachmann bekannte lineare, cyclische oder verzweigte Alkylenreste mit 1 bis 36 C- Atomen verstanden, wie Methylen,
Ethylen, n-Propylen, i-Propylen, n-Butylen, i-Butylen, t-Butylen, n-Pentylen, i-Pentylen, neo-Pentylen, n-Hexylen, Cyclohexylen, i-Hexylen, Heptylen, Octylen, Nonylen, Decylen, Undecylen und Dodecylen.
Bevorzugte Carboxylmercaptane der Formel (I) sind Thioglykolsäure, 2-Mercapto- propionsäure (Thiomilchsäure), 3-Mercaptopropionsäure, 4-Mercaptobuttersäure, Mercaptoundecansäure, Mercaptooctadecansäure, 2-Mercaptobernsteinsäure, 2- und 4-Mercaptobenzoesäure, sowie deren Alkali- und Erdalkali oder Ammoniumsalze. Besonders bevorzugt werden 3-Mercaptopropionsäure, Mercaptobuttersäure und 2- Mercaptobernsteinsäure sowie deren Lithium, Natrium, Kalium, Magnesium, Calcium oder Ammoniumsalze eingesetzt. Ganz besonders bevorzugt wird 3-
Mercaptopropionsäure sowie deren Lithium, Natrium, Kalium, Magnesium, Calcium oder Ammoniumsalze.
Im allgemeinen führt man die Reaktion der Carboxylmercaptanen mit den Lösungs- kautschuken in einem Lösungsmittel, beispielsweise Kohlenwasserstoffen, wie Pen- tan, Hexan, Cyclohexan, Benzol und/oder Toluol, durch bei Temperaturen von 40 bis 150°C in Gegenwart von Radikalstartern, z.B. Peroxiden, wie Dilauroylperoxid, Azoinitiatoren, wie Azobisisobutyronitril, Benzpinakolsilylethern oder in Gegenwart von Photoinitiatoren und sichtbarem oder UV-Licht. Bevorzugte Radikalstarter sind Diacylperoxide, wie Dilauroylperoxid, Didecanoylperoxid, Di (3,5,5-trimethyl hexa- noyl) peroxid und Perketale, wie l .l-Di(tert.-butylperoxy)-3,3,5-trimethyl-cyclo- hexan, 1.1 -Di(tert.-butylperoxy)-cyclohexan und l .l-Di(tert.-butylperoxy)-butan.
Die Menge an einzusetzenden Carboxylmercaptanen richtet sich nach dem gewünschten Gehalt an gebundenen Carboxylgruppen oder deren Salzen in dem in die Kautschukmischungen einzusetzenden Lösungskautschuk.
Die Carbonsäuresalze können auch nach der Einführung der Carbonsäuregruppe in den Kautschuk durch deren Neutralisation hergestellt werden.
Als Füllstoffe kommen für die erfindungsgemäßen Kautschukmischungen alle bekannten in der Kautschukindustrie verwendeten Füllstoffe in Betracht, diese umfassend sowohl aktive als auch inaktive Füllstoffe.
Zu erwähnen sind: - o -
hochdisperse Kieselsäuren, hergestellt z.B. durch Fällung von Lösungen von Silikaten oder Flammenhydrolyse von Siliciumhalogeniden mit spezifischen Oberflächen von 5 - 1000, vorzugsweise 20 - 400 m2/g (BET-Oberfläche) und mit Primärteilchengrößen von 10 - 400 nm. Die Kieselsäuren können ge- gebenenfalls auch als Mischoxide mit anderen Metalloxiden, wie AI-, Mg-, Ca-,
Ba-, Zn-, Zr-,Ti-oxiden vorliegen;
synthetische Silikate, wie Aluminiumsilikat, Erdalkaisilikat wie Magnesiumsilikat oder Calciumsilikat, mit BET-Oberflächen von 20 - 400 m2/g und Primärteilchendurchmessern von 10 - 400 nm;
natürliche Silikate, wie Kaolin und andere natürlich vorkommende Kieselsäure; Glasfasern und Glasfaserprodukte (Matten, Stränge) oder Mikroglaskugeln; Metalloxide, wie Zinkoxid, Calciumoxid, Magnesiumoxid, Aluminiumoxid; - Metallcarbonate, wie Magnesiumcarbonat, Calciumcarbonat, Zinkcarbonat;
Metallhydroxide, wie z.B. Aluminiumhydroxid, Magnesiumhydroxid;
Ruße. Die hierbei zu verwendenen Russe sind nach dem Flammruß, Furnace- oder Gasrußverfahren hergestellt und besitzen BET-Oberflächen von 20- 200 m2/g, z.B. SAF-, ISAF-, HAF-, FEF- oder GPF-Ruße;
Kautschukgele, insbesondere solche auf Basis Polybutadien, Butadien/Styrol- Copolymere, Butadien/ Acrylnitril-Copolymere und Polychloropren.
Bevorzugt werden als Füllstoffe eingesetzt hochdisperse Kieselsäuren und/oder
Ruße.
Die genannten Füllstoffe können alleine oder im Gemisch eingesetzt werden. In einer besonders bevorzugten Ausführungsfomi enthalten die Kautschukmischungen als Füllstoffe ein Gemisch aus hellen Füllstoffen , wie hochdispersen Kieselsäuren, und Russen, wobei das Mischungsverhältnis von hellen Füllstoffen zu Russen bei 0,05 bis 20 bevorzugt 0,1 bis 10 liegt.
Die Füllstoffe werden hierbei in Mengen im Bereich von 10 bis 500 Gew. -Teile bezogen auf 100 Gew. -Teile Kautschuk eingesetzt. Bevorzugt werden 20 bis 200
Gew. -Teile eingesetzt.
Die erfindungsgemäßen Kautschukmischungen können neben einem, zwei, drei oder mehreren verschiedenen erfindungsgemäßen Carboxylgruppen-haltigen Lösungskau- tschuken noch andere Kautschuke enthalten, wie Naturkautschuk als auch andere
Synthesekautschuke.
Bevorzugte Synthesekautschuke sind beispielsweise bei W. Hofmann, Kautschuktechnologie, Gentner Verlag, Stuttgart 1980 und I. Franta, Elastomers and Rubber Coumpounding Materials , Elsevier, Amsterdam 1989 beschrieben. Sie umfassen u.a.
BR - Polybutadien
ABR - Butadien/Acrylsäure-Cl-4-alkylester-Copolymere
CR Polychloropren IR - Polyisopren
SBR - Styrol/Butadien-Copolymerisate mit Styrolgehalten von 1-60, vorzugsweise 20-50 Gew. %
IIR - Isobutylen/Isopren-Copolymerisate
NBR - Butadien/ Acrylnitril-Copolmere mit Acrylnitrilgehalten von 5-60, vorzugsweise 10-40 Gew. %
HNBR - teilhydrierter oder vollständig hydrierter NBR-Kautschuk
EPDM - Ethylen/Propylen/Dien-Copolymerisate
sowie Mischungen dieser Kautschuke. Für die Herstellung von Kfz-Reifen sind insbesondere Naturkautschuk, Emulsions-SBR sowie Lösungs-SBR-Kautschuke mit einer Glastemperatur oberhalb von -50°C, die gegebenenfalls mit Silylethern oder anderen funktionellen Gruppen z.B. nach EP-A 447.066 modifiziert sein können, Polybutadienkautschuk mit hohem 1,4-cis-Gehalt (> 90 %), der mit Katalysatoren auf Basis Ni, Co, Ti oder Nd hergestellt wurde, sowie Polybutadienkautschuk mit einem Vinylgehalt von bis zu 75 % sowie deren Mischungen von Interesse.
Ganz besonders bevorzugte erfindungsgemäße Kautschukmischungen enthalten neben einem oder mehreren Carboxylgruppen-haltigen Kautschuken mit einer Glastemperatur zwischen -120° bis -50°C zusätzliche Kautschuke ausgewählt aus der Reihe Naturkautschuk, Polysisopren und Styrol/Butadien-Copolymere mit Styrolgehalten zwischen 10 und 50 Gew. %. Die Menge an diesen zusätzlichen Kautschuken liegt üblicherweise im Bereich von 0,5 bis 95, bevorzugt 40 bis 90 Gew.-%, bezogen auf die gesamte Kautschukmenge in der Kautschukmischung. Die Menge an zusätzlich zugegebenen Kautschuken richtet sich wieder nach dem jeweiligen Verwendungszweck der erfindungsgemäßen Kautschukmischungen.
Selbstverständlich können die erfindungsgemäßen Kautschukmischungen noch andere Kautschukhilfsmittel enthalten, die beispielsweise der Vernetzung der aus den Kautschukmischungen hergestellten Vulkanisate dienen, oder die die physikalischen Eigenschaften der aus den erfindungsgemäßen Kautschukmischungen hergestellten Vulkanisate für deren speziellen Einsatzzweck verbessern.
Als Vernetzeragentien können beispielsweise Schwefel oder Schwefel-liefernde Verbindungen eingesetzt werden, so wie Radikale-liefernde Vernetzeragentien, wie organische Peroxide. Bevorzugt wird Schwefel als Vernetzeragenz eingesetzt. Darüber hinaus können, wie erwähnt, die erfindungsgemäßen Kautschukmischungen weitere
Hilfsmittel, wie die bekannten Reaktionsbeschleuniger, Alterungsschutzmittel, Wärme- stabilisatoren, Lichtschutzmittel, Ozonschutzmittel, Verarbeitungshilfsmittel, Weichmacher, Tackifier, Treibmittel, Farbstoffe, Pigmente, Wachse, Streckmittel, organische Säuren, Verzögerer, Metalloxide sowie Aktivatoren, enthalten. Die erfindungsgemäßen Kautschukhilfsmittel werden in den üblichen, bekannten Mengen eingesetzt, wobei sich die eingesetzte Menge nach dem späteren Verwendungszweck der Kautschukmischungen richtet. Üblich sind beispielsweise Mengen an Kautschukhilfsmitteln im Bereich von 2 bis 70 Gew. -Teilen, bezogen auf 100 Gew.-Teile Kautschuk.
Für die erfindungsgemäßen Kautschukmischungen, die mit hochaktiven Kieselsäuren gefüllt sind, ist die Verwendung von zusätzlichen Füllstoffaktivatoren besonders vorteilhaft. Bevorzugte Füllstoffaktivatoren sind schwefelhaltige Silylether, insbesondere Bis-(trialkoxisilyl-alkyl)-polysulfιde, wie sie in DE 2.141.159 und DE 2.255.577 beschrieben sind. Darüber hinaus kommen in Frage oligomere und/oder polymere schwefelhaltige Silylether entsprechend der Beschreibung in DE 4.435.31 1 und EP 670.347. Außerdem sind einzusetzen Mercapatoalkyltrialkoxisilane, insbesondere Mercaptopropyltriethoxisilan und Thiocyanatoalkylsilylether (siehe DE 19.544.469). Die Füllstoffaktivatoren werden in üblichen Mengen eingesetzt, d.h. in Mengen von
0,1 bis 15 Gew.-Teile, bezogen auf 100 Gew.-Teile Kautschuk.
Die erfindungsgemäßen Kautschukmischungen können z.B. hergestellt werden durch Abmischung der Carboxylgruppen-haltigen Lösungskautschuke mit den entsprechen- den Füllstoffen sowie gegebenenfalls weiteren Kautschuken und weiteren
Kautschukhilfsmitteln in geeigneten Mischapparaturen, wie Knetern, Walzen oder Extrudern.
Bevorzugt werden die erfindungsgemäßen Kautschukmischungen hergestellt, indem man zunächst die Polymerisation der genannten Monomeren in Lösung vornimmt, die
Carboxylgruppen in den Lösungskautschuk einführt und nach Beendigung der Polymerisation und der Einführung der Carboxylgruppen den im entsprechenden Lösungsmittel vorliegenden Lösungskautschuk mit den entsprechenden Füllstoffen und gegebenenfalls weiteren Kautschuken und weiteren Kautschukhilfsmitteln, insbe- sondere Weichmachern, in den entsprechenden Mengen vermischt und anschließend das Lösungsmittel mit heißem Wasser und/oder Wasserdampf bei Temperaturen von 50 bis 200°C, gegebenenfalls unter Vakuum, entfernt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfin- dungsgemäßen Kautschukmischungen zur Herstellung von Formkörpern aller Art, insbesondere für die Herstellung von Reifen, besonders bevorzugt Reifenlaufflächen und Reifenseitenwänden, dienen.
Beispiele
Beispiel 1
Eine Lösung von 500 g Lösungs-Polybutadien-Kautschuk Buna CB 45 NF
(Bayer AG, Li-Typ, cis-l,4-Gehalt ca. 40 %) in 4 1 Cyclohexan wird bei 80°C mit 6,25 g 3-Mercaptopropionsäure und 1 g Dilauroylperoxid versetzt. Anschließend rührte man 7 Stunden bei 80°C nach. Dann setzte man 2,5 g Antioxidant Vulkanox 4020 (Bayer AG) und 101,3 g aromatisches Mineralöl Enerthene 1849-1 (BP) hinzu und destillierte das Lösungsmittel mit Wasserdampf (100-1 10°C) ab. Nach dem
Trocknen bei 70°C im Vakuum erhielt man 593 g eines mit 20 phr Mineralöl verstreckten Kautschuks mit dem Schwefelgehalt 0,3 Gew.-%, Carboxylgruppen- Gehalt 0,5 Gew.-% bezogen auf Kautschuk, Viskosität , ML 1+4 (100°C) 59, cis-1,4- Gehalt 40 %. Glastemperatur: -88°C.
Beispiel 2:
In einem 1,5 1 Kneter (Mischzeit 5 Minuten, Auswurftemperatur 150°C) wurden die nachfolgenden Kautschukmischungen hergestellt. Schwefel und Beschleuniger wurden zum Schluß auf einer Walze (50°C) zugemischt.
Vergleich Beispiel
2.A 2.1 im Kneter wurden gemischt:
Buna VSL 5025-1 (mit 37,5 phr Mineralöl 61,9 61,9 verstrecktes L-SBR der Bayer AG)
Naturkautschuk 10 10
Butadienkautschuk buna CB 45 45 0 carboxylgruppenhaltiger 0 54
Butadienkautschuk gemäß Beispiel 1
(20 phr Ölgehalt)
Mineralöl Enerthene 1849-1 (BP) 20 1 1
Kieselsäure Vulkasil S (Bayer AG) 70 70
Silan Si 69 (Degussa Hüls) 6 6
Ruß Corax N 121 (Degussa Hüls) 10 10
Zinkoxid 3 3
Sterinsäure 1 1
Ozonschutzwachs Antilux 654 1,5 1,5
(Rheinchemie)
Antioxidans Vulkanox HS (Bayer AG) 1 1
Antioxidans Vulkanox 4020 (Bayer AG) 1 1
auf der Walze wurden zugemischt:
N-Cyclohexylmercaptobenthiazolsulfen- amid Vulkacit CZ (Bayer AG) 1,8 1,8 Dipenylguanidin Vulkacit D (Bayer AG) 2 2 Schwefel 1,5 1,5 Die Kautschukmischungen wurden anschließend 15 Minuten bei 170°C vulkanisiert. Es wurden folgende Vulkanisateigenschaften erhalten:
Zugfestigkeit (MPa) 16,8 18,2
Bruchdehnung (%) 450 330
Spannungswert bei 100 % Dehnung (MPa) 2,4 2,9
Spannungswert bei 300 % Dehnung (MPa) 9,5 16,3
Rückprallelastizität bei 70°C (%) 54 63
Härte (Shore A) 66 66 tan delta bei 70°C 0,138 0,108
Die Prüfergebnisse belegen die deutlich geringere dynamische Dämpfung bei 70°C, gemessen als Rückprallelastizität und als tan delta, die erfahrungsgemäß mit einem deutlich reduzierten Reifen-Rollwiderstand korreliert.
Beispiel 3:
Herstellung eines Masterbatches aus gefällter Kieselsäure und Carboxylgrup- pen-haltigem BR-Kautschuk:
Nach dem Verfahren von Beispiel 1 setzte man 500 g BR-Kautschuk Buna CB 65 in 4 1 Cyclohexan bei 80°C mit 12,5 g 3-Mercaptopropionsäure und 0,5 g Dilauroylperoxid um. Reaktionsdauer: 5 Stunden. Zu diesem Zeitpunkt hatte sich die 3-Mercapto- propionsäure zu 36 % umgesetzt. Carboxylgruppengehalt des Polymers 0,38 Gew.-%. Dann setzte man unter Rühren bei 75°C 2,5 g Stabilisator Vulkanox® 4020 (Bayer AG), 189,5 g aromatisches Mineralöl Renopal® 450 (Fuchs Mineral- ölwerke) und 405 g hochaktive gefällte Kieselsäure Vulkasil® S (N2-Oberfläche ca.
180 m2/g, Bayer AG) hinzu und rührte bis zur gleichmäßigen Verteilung bei dieser Temperatur ca. 30 Minuten nach. Anschließend wurde das Lösungsmittel durch Einleiten von Wasserdampf (100-1 10°C) entfernt. Dabei wurde das Reaktionsgefäß von außen bei 75 - 80°C beheizt.. Im Anschluß daran wurde der feuchte Feststoff ent- nommen und über ein Sieb von feinteiliger Kieselsäure abfiltriert und dann bei 65°C im Vakuum getrocknet. Man erhielt 1090 g eines braunen Kieselsäure/Kautschuk- Masterbatches (99 % der Theorie). Das Abwasser war frei von Kieselsäure.
Vergleichsbeispiel 3.A:
Es wurde wie in Beispiel 3 verfahren, wobei eine Lösung von 500 g BR-Kautschuk Buna CB 65 und 2,5 g Vulkanox® 4020 in 4 1 Cyclohexan bei 75°C mit 400 g hochaktiver gefällter Kieselsäure Vulkasil® S gemischt wurde. Anschließend entfernte man das Lösungsmittel durch Einleiten von Wasserdampf (100-1 10°C), wobei das
Reaktionsgefäß von außen mit 75-80°C beheizt wurde. Im Anschluß daran wurde der feuchte Feststoff entnommen und über ein Sieb von feinteiliger Kieselsäure ab filtriert und dann bei 65°C im Vakuum getrocknet. Man erhielt 597 g (66 % d. Theorie) eines inhomogenen Kieselsäure/Kautschuk-Masterbatches. Das Abwasser enthielt große Mengen (ca. 75 % der eingesetzten Menge) Kieselsäure.

Claims

Patentansprüche
1. Kautschukmischung enthaltend einen oder mehrere Kautschuke mit im Bereich von 0,1 bis 2 Gew.-% an gebundenen Carboxylgruppen oder deren Salzen und einer Glastemperatur im Bereich von -120 bis -50°C und einen oder mehrere Füllstoffe im Bereich von 10 bis 500 Gew. -Teilen bezogen auf 100 Gew.-Teile Kautschuk.
2. Kautschukmischung gemäß Anspruch 1, dadurch gekennzeichnet, daß der Kautschuk aus Diolefmen aufgebaut wurde.
3. Verfahren zur Herstellung eines Kautschuks mit im Bereich von 0,1 bis 2 Gew.-% an gebundenen Carboxylgruppen, dadurch gekennzeichnet, daß man den Kautschuk nach der Polymerisation in Lösung mit Carboxylmercaptanen der allgemeinen Formel (I)
HS - R'-COOX (I),
wobei
R1 für eine lineare, verzweigte oder cyclische Cj-Cßg Alkylgruppe steht, die gegebenenfalls mit bis zu 3 weiteren Carboxylgruppen substituiert sein kann, oder durch Stickstoff-, Sauerstoff oder Schwefelatome unterbrochen sein kann oder für eine CD-Ci2-Arylengruppe steht
und
X für Wasserstoff oder für ein Metall- oder Ammoniumion steht.
gegebenenfalls in Gegenwart von Radikalstartern umsetzt.
4. Verwendung der Kautschukmischungen gemäß Anspruch 1 zur Herstellung von Formkörpern aller Art.
5. Verwendung der Kautschukmischungen gemäß Anspruch 1 zur Herstellung von Reifen.
EP00922658A 1999-05-06 2000-04-20 Carboxylgruppen-haltige dienkautschuke Withdrawn EP1183304A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19920788A DE19920788A1 (de) 1999-05-06 1999-05-06 Carboxylgruppen-haltige Dienkautschuke
DE19920788 1999-05-06
PCT/EP2000/003618 WO2000068307A1 (de) 1999-05-06 2000-04-20 Carboxylgruppen-haltige dienkautschuke

Publications (1)

Publication Number Publication Date
EP1183304A1 true EP1183304A1 (de) 2002-03-06

Family

ID=7907125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00922658A Withdrawn EP1183304A1 (de) 1999-05-06 2000-04-20 Carboxylgruppen-haltige dienkautschuke

Country Status (10)

Country Link
EP (1) EP1183304A1 (de)
JP (1) JP2002544311A (de)
KR (1) KR20010111317A (de)
AU (1) AU4297500A (de)
BR (1) BR0010332A (de)
CA (1) CA2372512A1 (de)
DE (1) DE19920788A1 (de)
MX (1) MXPA01011266A (de)
TW (1) TW527388B (de)
WO (1) WO2000068307A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012407A1 (de) 2000-03-15 2001-09-20 Bayer Ag Polyether enthaltende Kautschukmischungen
JP5462428B2 (ja) * 2000-05-26 2014-04-02 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤトレッドとして使用可能なゴム組成物
DE10060519A1 (de) * 2000-08-07 2002-02-28 Continental Ag Vulkanisierbare Kautschukmischung zur Herstellung eines Fahrzeugluftreifens
JP4071950B2 (ja) * 2001-10-04 2008-04-02 住友ゴム工業株式会社 サイドウォール用ゴム組成物およびそれを用いた空気入りタイヤ
FR2854404B1 (fr) * 2003-04-29 2005-07-01 Michelin Soc Tech Procede d'obtention d'un elastomere greffe a groupes fonctionnels le long de la chaine et compositions de caoutchouc
DE102007044175A1 (de) 2007-09-15 2009-03-19 Lanxess Deutschland Gmbh Funktionalisierte Hochvinyl-Dienkautschuke
CN108017727B (zh) * 2016-11-02 2020-10-23 中国石油化工股份有限公司 改性二烯烃聚合物及其制备方法和橡胶组合物及硫化橡胶

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1179252A (en) * 1966-05-04 1970-01-28 Internat Synthetic Rubber Comp Thermoplastic Elastomer Compositions.
GB1158980A (en) * 1968-07-04 1969-07-23 Shell Int Research A Process for preparing a Novel Thermoplastic Rubber and a novel Thermoplastic Rubber
DE2653144C2 (de) * 1976-11-23 1984-12-20 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von modifiziertem Polybutadien
US4412031A (en) * 1983-02-18 1983-10-25 Nippon Zeon Co., Ltd. Modified rubber composition employing a compound containing a carboxyl and an aldehyde group
JPH0651726B2 (ja) * 1985-03-29 1994-07-06 日本ゼオン株式会社 ゴムの改質方法
US4937290A (en) * 1988-09-26 1990-06-26 The Goodyear Tire & Rubber Company Nylon modified rubber composition wherein either nylon or rubber or both are reacted with a thio acid
JPH0411501A (ja) * 1990-04-27 1992-01-16 Bridgestone Corp 空気入りタイヤ
US5462979A (en) * 1994-09-28 1995-10-31 The Goodyear Tire & Rubber Company Sulfur cured rubber composition containing epoxidized natural rubber and carboxylated nitrile rubber
EP1000971B1 (de) * 1998-11-16 2003-10-15 Bayer Aktiengesellschaft Carboxylgruppen-haltige Lösungskautschuke enthaltende Kautschukmischungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0068307A1 *

Also Published As

Publication number Publication date
CA2372512A1 (en) 2000-11-16
TW527388B (en) 2003-04-11
DE19920788A1 (de) 2000-11-09
BR0010332A (pt) 2002-02-26
AU4297500A (en) 2000-11-21
KR20010111317A (ko) 2001-12-17
JP2002544311A (ja) 2002-12-24
WO2000068307A1 (de) 2000-11-16
MXPA01011266A (es) 2002-05-06

Similar Documents

Publication Publication Date Title
EP1000971B1 (de) Carboxylgruppen-haltige Lösungskautschuke enthaltende Kautschukmischungen
EP2177374B1 (de) Kautschukmischungen mit funktionalisierten Dienkautschuken und Mikrogelen, ein Verfahren zur Herstellung und deren Verwendung
EP2152791B1 (de) Verfahren zur herstellung von kautschukmischungen
WO2009034001A1 (de) Funktionalisierte hochvinyl-dienkautschuke
EP0974616A1 (de) Hydroxylgruppenhaltige Lösungskautschuke
EP1183305A1 (de) Hydroxylgruppenhaltige dienkautschuke
EP1110973A1 (de) Lösungskautschuke mit unpolaren Seitengruppen
EP1183304A1 (de) Carboxylgruppen-haltige dienkautschuke
EP1341822A1 (de) Polyether/diolefin-kautschuke enthaltende kautschukmischungen und deren verwendung zur herstellung von insbesondere rollwiderstandsarmen reifen
EP1130034A2 (de) Kautschuke mit Polyether-Seitengruppen
EP2193163A1 (de) Funktionalisierte russhaltige kautschuke
WO2002031028A1 (de) Haftmischungen aus hydroxyl- oder carboxylgruppenhaltigen lösungskautschuken
EP1169384A1 (de) Hydroxylgruppenhaltige lösungskautschuke
WO2017190859A1 (de) Kautschukmischung, vulkanisat der kautschukmischung und fahrzeugreifen
EP1165641B1 (de) Kautschukmischungen basierend auf aminoisopren-polymeren und deren verwendung zur herstellung rollwiderstandsarmer reifenlaufflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20040427

18W Application withdrawn

Effective date: 20040526