EP1174200B1 - Giessverfahren und Giesskern für die Verwendung in diesem Verfahren - Google Patents

Giessverfahren und Giesskern für die Verwendung in diesem Verfahren Download PDF

Info

Publication number
EP1174200B1
EP1174200B1 EP01117615A EP01117615A EP1174200B1 EP 1174200 B1 EP1174200 B1 EP 1174200B1 EP 01117615 A EP01117615 A EP 01117615A EP 01117615 A EP01117615 A EP 01117615A EP 1174200 B1 EP1174200 B1 EP 1174200B1
Authority
EP
European Patent Office
Prior art keywords
melt
core
infiltration
phase
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01117615A
Other languages
English (en)
French (fr)
Other versions
EP1174200A3 (de
EP1174200A2 (de
Inventor
Wolfgang Dipl.-Ing. Beck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adam Opel GmbH
Original Assignee
Adam Opel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adam Opel GmbH filed Critical Adam Opel GmbH
Publication of EP1174200A2 publication Critical patent/EP1174200A2/de
Publication of EP1174200A3 publication Critical patent/EP1174200A3/de
Application granted granted Critical
Publication of EP1174200B1 publication Critical patent/EP1174200B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for casting a light alloy consisting of a lost casting core, which consists of a traversed by infiltration channels matrix.
  • the components must be as light as possible.
  • the total weight of the vehicle is reduced, which is positively u. a.
  • the so-called unsprung chassis mass minimized, which has a positive effect on driving behavior and ride comfort.
  • a workpiece which consists of a lightweight material.
  • foam bodies of relatively high compressive strength and fine-pored to coarsely porous structure, which are held together by means of a shape-defining compound.
  • the foam body can z. B. be formed of a silicate mineral foam.
  • the formulation given in the specification gives foam bodies having a density of about 0.3 g / cm 3 .
  • the present invention takes up this consideration. However, it should be achieved even higher strength of the workpiece in lightweight construction.
  • the melt penetrates at least into the edge zone of the casting core and that formed by the solidified melt Cast body has a by the cellular structure (matrix) self-supporting structure.
  • the solidification of the melt in the outer periphery of the matrix of the casting core results in a macrostructure, which is known from statics as a vaulting effect and favors the reduction of material stress in the material upon attack of an externally acting load collective on the cast body.
  • the material areas of the matrix which delimit the infiltration channels consist of a light but dense material, so that these areas are not penetrated by the melt.
  • the material may be z. B. be a silicate foam.
  • such a matrix has a structure-borne sound damping effect with an eradication efficiency of up to 20% in the frequency spectrum between 80 and 800 Hz, so that a chain formation of chassis and drivetrain components and subsequent body structure components with internal foam structures sufficient insulation effect can be achieved without the use of eradication masses.
  • the infiltration channels can be easily reached by the melt, their space size should be at least three to five times larger than the crystal bodies of the light metal used for the melt.
  • the matrix consists of a larger number of mineral foam spheres which are glued to one another at the contact surfaces, thus forming a dense spherical matrix.
  • the diameter of the ball is between 1 and 8 mm. The bonding takes place with the aid of a suitable degassing binder for lost casting cores.
  • the filling of the infiltration channels of the core is carried out with a 100% liquid melt, wherein the infiltration progress is controlled by monitoring the pressure and the temperature of the melt. Due to the infiltration and the necessary period of time, heat is released into the matrix and the environment, so that the melt passes into the thixotropic (semi-solid) phase (cooling phase). This process is also monitored and controlled by means of temperature sensors. This phase is followed by a pressure phase in which the semi-solidified melt is pressurized. In this way, it is avoided that the cast workpiece receives too high a solidification porosity.
  • the casting core or preform is made of mineral foam balls, which consist essentially of a silicate whose temperature resistance is at least 700 ° C. These balls are mechanically compacted and glued together at the contact points with a binder. Due to their composition, the spheres have dimensional stability at isostatic pressures of up to 1000 bar. This ensures their dimensional stability throughout the casting process.
  • the interspaces of the spheres form coherent continuous infiltration channels whose spatial size is at least three to five times greater than the diameter of the crystal bodies in the molten metal.
  • This preform is placed in a casting mold, using receptacle and spacer to the mold or at the preform creates a gap, which is filled or encapsulated in the docking with the material namely magnesium or aluminum.
  • the casting phase is divided into three main phases, namely the docking, the infiltration and the pressure phase (thixocasting phase) just mentioned.
  • the docking phase the gap space is prefilled with the liquid melt virtually without pressure, wherein the melt has a temperature of about 630 ° C.
  • the melt has a temperature of 610-620 ° C. She is still liquid and her condition is still above the liquidus line. By exerting pressure on the melt from the outside, it penetrates into the outer infiltration channels between the balls and in this way fills at least the outer regions of the infiltration channels of the preform.
  • the depth of the edge zone of the casting core which is to be filled with the melt, can be controlled.
  • the temperature of the melt decreases, so that it goes into the thixotropic phase, ie in a semi-solid state. Again, this is monitored by a thermometer to initiate the beginning of the printing phase as a dynamic control feature.
  • the casting process is complete.
  • the casting receives a very good contour sharpness, which corresponds to the desired final contour, so that the workpiece does not need to be reworked. Only the casting system has to be removed by a cutting or cutting process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Mold Materials And Core Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Gießen einer aus Leichtmetall bestehenden Baueinheit mit einem verlorenen Gießkern, der aus einer von Infiltrationskanälen durchzogenen Matrix besteht.
  • Mit der Erfindung soll insbesondere ein Bauteil für das Fahrwerk oder dem Antriebsstrang eines Kraftfahrzeuges hergestellt werden. In dieser Anwendung müssen die Bauteile möglichst leicht sein. Dadurch wird nämlich einerseits das Gesamtgewicht des Fahrzeuges reduziert, was sich positiv u. a. auf den Kraftstoffverbrauch auswirkt, und andererseits auch die sogenannte ungefederte Fahrwerksmasse minimiert, was einen positiven Einfluss auf das Fahrverhalten und den Fahrkomfort bewirkt.
  • In der DE 195 01 508 C1 wird daher für das Fahrwerk eines Kraftfahrzeuges vorgeschlagen, ein Bauteil mit einem verlorenen Kern aus Aluminium im Aluminiumdruckguss-Verfahren herzustellen, wobei der verlorene Kern aus Aluminiumschaum bestehen soll.
  • Aus der DE 196 53 149 A1 ist ein Werkstück bekannt, das aus einem Leichtbau-Werkstoff besteht. In dieser Schrift wird vorgeschlagen, den Kern nicht aus einem Aluminiumschaum zu bilden, sondern aus Schaumkörpern von relativ großer Druckfestigkeit und feinporiger bis grobporiger Struktur, die mittels einer formbestimmenden Verbindung zusammengehalten werden. Die Schaumkörper können z. B. aus einem silikatischen Mineralschaum gebildet werden. Mit der Rezeptur, die in der Schrift angegeben ist, erhält man Schaumkörper mit einer Dichte von ca. 0,3 g/cm3.
  • Die vorliegende Erfindung greift diese Überlegung auf. Es soll allerdings eine noch höhere Festigkeit des Werkstückes in Leichtbauweise erzielt werden.
  • Es wird daher ein Verfahren zum Gießen einer aus Leichtmetall bestehenden Baueinheit, die einen aus einer Matrix bestehenden verlorenen Kern besitzt, mit den folgenden Phasen vorgeschlagen:
    • eine Andockphase, in der in den Zwischenraum zwischen dem Kern und einer den Kern umgebenden Schale eine flüssige Schmelze eingebracht wird,
    • eine Infiltrationsphase, in der bei niedrigem Druck die Schmelze in einem noch flüssigen Zustand in die Infiltrationskanäle der Randzone des Kernes eindringt,
    • eine Abkühlphase, in der die Schmelze in einen thixotropen Zustand übergeht, und
    • eine Druckphase, in der die thixotrope Schmelze unter Druck gesetzt wird, um eine Erstarrungsporosität in dem Gusswerkstück zu vermeiden.
  • Mit einem solchen Verfahren wird erreicht, dass die Schmelze zumindest in die Randzone des Gießkerns eindringt und der von der erstarrten Schmelze gebildete Gusskörper eine durch den zellularen Aufbau (Matrix) selbsttragende Struktur aufweist. Durch die Erstarrung der Schmelze in der äußeren Peripherie der Matrix des Gießkernes entsteht eine Makrotragstruktur, die aus der Statik als Gewölbewirkung bekannt ist und den Abbau von Materialspannung im Werkstoff bei Angriff eines von außen wirkenden Lastkollektives auf den Gusskörper begünstigt.
  • Dies wird insbesondere auch dadurch erreicht, dass die Materialbereiche der Matrix, die die Infiltrationskanäle begrenzen, aus einem leichten, aber dichten Material bestehen, so dass diese Bereiche von der Schmelze nicht durchdrungen werden. Bei dem Material kann es sich z. B. um einen silikatischen Schaum handeln.
  • Es hat sich herausgestellt, dass eine solche Matrix eine körperschalldämmende Wirkung mit einer Tilgungseffizienz von bis zu 20 % im Bereich des Frequenzspektrums zwischen 80 und 800 Hz besitzt, so dass durch eine Kettenbildung von Fahrwerks- und Antriebstrangkomponenten und nachfolgenden Karosserie-Strukturkomponenten mit inneren Schaumstrukturen eine hinreichende Dämmwirkung ohne Verwendung von Tilgungsmassen erzielt werden kann.
  • Damit die Infiltrationskanäle von der Schmelze gut erreicht werden können, soll deren Raumgröße mindestens drei- bis fünffach größer sein als die Kristallkörper des für die Schmelze verwendeten Leichtmetalls.
  • Am einfachsten wird dies erreicht, wenn die Matrix aus einer größeren Anzahl mineralischer Schaumkugeln besteht, die an den Kontaktflächen miteinander verklebt sind, also eine dichte Kugelmatrix bilden. Vorzugsweise liegt der Durchmesser der Kugel zwischen 1 und 8 mm. Die Verklebung erfolgt mit Hilfe eines geeigneten entgasungsarmen Bindemittels für verlorene Gießkerne.
  • Das Befüllen der Infiltrationskanäle des Kerns erfolgt mit einer 100 % flüssigen Schmelze, wobei der Infiltrationsfortschritt durch Überwachung des Druckes und der Temperatur der Schmelze gesteuert wird. Durch die Infiltration und des hierfür notwendigen Zeitraumes wird Wärme in die Matrix und die Umgebung abgegeben, so dass die Schmelze in die thixotrope (halbfeste) Phase übergeht (Abkühlphase). Auch dieser Vorgang wird mit Hilfe von Temperaturfühlern überwacht und gesteuert. An diese Phase schließt sich eine Druckphase an, in der die halberstarrte Schmelze unter Druck gesetzt wird. Auf diese Weise wird vermieden, dass das Gusswerkstück eine zu hohe Erstarrungsporosität erhält.
  • Im Folgenden soll an einem Beispiel die Erfindung näher erläutet werden.
  • Der Gießkern oder auch Preform genannt besteht aus Mineralschaumkugeln, die im Wesentlichen aus einem Silikat bestehen, dessen Temperaturbeständigkeit mindestens 700 °C beträgt. Diese Kugeln werden mechanisch verdichtet und an den Kontaktstellen mit einem Bindemittel miteinander verklebt. Die Kugeln weisen aufgrund ihrer Zusammensetzung eine Formbeständigkeit bei isostatischen Drücken bis zu 1000 bar auf. Dadurch ist ihre Formbeständigkeit während des gesamten Gießprozesses gewährleistet. Die Zwischenräume der Kugeln bilden zusammenhängende durchgängige Infiltrationskanäle, deren Raumgröße mindestens drei- bis fünfmal größer ist als der Durchmesser der Kristallkörper in der Metallschmelze.
  • Diese Preform wird in eine Gießform eingelegt, wobei durch Aufnahme- und Abstandshalter an der Gießform bzw. an der Preform ein Spaltraum entsteht, der in der Andockphase mit dem Werkstoff nämlich Magnesium oder Aluminium ausgefüllt bzw. umgossen wird.
  • Die Gießphase gliedert sich in drei Hauptphasen, nämlich der eben erwähnten Andock-, der Infiltrations- und der Druckphase (Thixogießphase). In der Andockphase wird der Spaltraum mit der flüssigen Schmelze praktisch drucklos vorgefüllt, wobei die Schmelze eine Temperatur von ca. 630 °C aufweist.
  • In der sich anschließenden Infiltrationsphase hat die Schmelze eine Temperatur von 610 - 620 °C. Sie ist damit weiterhin flüssig und ihr Zustand liegt noch über der Liquiduslinie. Indem von außen Druck auf die Schmelze ausgeübt wird, dringt sie in die äußeren Infiltrationskanäle zwischen den Kugeln ein und füllt auf diese Weise zumindest die äußeren Bereiche der Infiltrationskanäle der Preform. Mittels einer Überwachung des Schmelzevolumens (= Gießkolbenposition), kann dabei die Tiefe der Randzone des Gießkerns, die mit der Schmelze gefüllt werden soll, gesteuert werden. Außerdem sinkt die Temperatur der Schmelze, so dass sie in die thixotrope Phase übergeht, also in einen halbfesten Zustand. Auch dies wird mittels eines Thermometers überwacht, um den Beginn der Druckphase als dynamisches Steuerungsmerkmal einleiten zu können.
  • Mit dem Ende der Infiltrations- und Abkühlphase wird der Druck auf den Gießkolben erhöht, so dass der Druck in der thixotropen Schmelze steigt. Dadurch wird die Schmelze verdichtet und die Erstarrungsporosität der Schmelze vermieden. Diese abschließende Phase wird Druckphase oder Verdichtungsphase genannt.
  • Sobald der Druck am Ende dieser Phase wieder abgesenkt wird, ist der Gießprozess insgesamt abgeschlossen. Insbesondere durch den letzten Schritt erhält das Gussteil eine sehr gute Konturenschärfe, die der gewünschten Endkontur entspricht, so dass das Werkstück nicht mehr nachbearbeitet werden muss. Lediglich das Angießsystem muss durch eine spanende oder schneidende Bearbeitung entfernt werden.

Claims (8)

  1. Verfahren zum Gießen einer aus Leichtmetall bestehenden Baueinheit mit einem verlorenen Gießkern, der aus einer von Infiltrationskanälen durchzogenen Matrix besteht,
    mit einer Andockphase, in der in den Zwischenraum zwischen dem Kern und einer den Kern umgebenden Schale die flüssige Schmelze eingebracht wird,
    mit einer Infiltrationsphase, in der bei niedrigem Druck die Schmelze im noch flüssigen Zustand in die Infiltrationskanäle der Randzone des Kernes eindringt,
    mit einer Abkühlphase, in der die Schmelze in einen thixotropen Zustand übergeht, und
    mit einer Druckphase, in der die thixotrope Schmelze unter Druck gesetzt wird, um eine Erstarrungsporosität in dem Gusswerkstück zu vermeiden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Materialbereiche der Matrix, die die Infiltrationskanäle begrenzen, aus einem leichten, aber dichten Material bestehen, so dass diese Bereiche von der Schmelze nicht durchdrungen werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Raumgröße der Infiltrationskanäle im Kern, mindestens drei- bis fünffach größer ist als der Durchmesser der Kristallkörper des für die Schmelze verwendeten Leichtmetalls.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Matrix aus mineralischen Schaumkugeln besteht, die an den Kontaktflächen miteinander verklebt sind.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Durchmesser der Kugeln zwischen 1 und 8 mm beträgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Infiltrationsphase die Temperatur der Schmelze gerade so hoch ist, dass diese zu 100 % flüssig ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gießvorgang insbesondere in der Infiltrationsphase mit einem Druck- und Temperatursensor überwacht wird.
  8. Gießkern insbesondere für die Verwendung in einem Verfahren nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der Gießkern eine von Infiltrationskanälen durchzogene Matrix bildet, die aus mineralischen Schaumkugeln besteht, die an den Kontaktflächen mit einem Bindemittel miteinander verklebt sind.
EP01117615A 2000-07-20 2001-07-17 Giessverfahren und Giesskern für die Verwendung in diesem Verfahren Expired - Lifetime EP1174200B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10035202 2000-07-20
DE10035202A DE10035202A1 (de) 2000-07-20 2000-07-20 Gießverfahren und Gusskern für die Verwendung in diesem Verfahren

Publications (3)

Publication Number Publication Date
EP1174200A2 EP1174200A2 (de) 2002-01-23
EP1174200A3 EP1174200A3 (de) 2003-10-01
EP1174200B1 true EP1174200B1 (de) 2006-06-21

Family

ID=7649521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117615A Expired - Lifetime EP1174200B1 (de) 2000-07-20 2001-07-17 Giessverfahren und Giesskern für die Verwendung in diesem Verfahren

Country Status (4)

Country Link
EP (1) EP1174200B1 (de)
AT (1) ATE330736T1 (de)
DE (2) DE10035202A1 (de)
ES (1) ES2266055T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006057786A1 (de) * 2006-12-06 2008-06-12 Almecon Entwicklungs-, Beratungs- Und Beschaffungsgesellschaft Mbh Verfahren zur Herstellung von Formteilen aus Metall mittels einer Pressvorrichtung und Pressvorrichtung zur Durchführung des Verfahrens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149244A1 (de) * 2001-10-05 2003-04-24 Daimler Chrysler Ag Tragelement für Fahrzeugkarosserie
DE102006017104A1 (de) 2006-04-10 2007-10-11 Kurtz Gmbh Verfahren zur Herstellung von offenporigen Bauteilen aus Metall, Kunststoff oder Keramik mit geordneter Schaumgitterstruktur
FR2927269B1 (fr) * 2008-02-13 2010-10-29 C T I F Ct Tech Des Ind De La Preforme et procede pour la fabrication d'une piece dont une partie interieure est en mousse metallique
DE102009040934B4 (de) 2009-09-11 2020-06-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kunststoffformteil für ein Kraftfahrzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355413A (en) * 1976-10-29 1978-05-19 Miyazakiken Method of manufacturing grainndispersed metallic light compound material having metal layer or metal portion of optional shape on its surface or in its interior
DE3444406A1 (de) * 1984-12-05 1986-06-05 Kolbenschmidt AG, 7107 Neckarsulm Gegossene bauteile fuer brennkraftmaschinen mit eingegossenen bewehrungskoerpern sowie verfahren zur herstellung der verbindung zwischen den bauteilen und den bewehrungskoerpern
FR2592374B1 (fr) * 1985-12-27 1991-08-16 Peugeot Procede de liaison directe ceramique-metal
GB9108297D0 (en) * 1991-04-18 1991-06-05 Gkn Sankey Ltd Reinforced light metal article and method for its production
DE4343945C1 (de) * 1993-12-22 1995-09-14 Austria Metall Verfahren zum Herstellen von Metall-Matrix-Verbundwerkstoffen
GB9414660D0 (en) * 1994-07-20 1994-09-07 Gkn Sankey Ltd An article and method for its production
JP3212245B2 (ja) * 1995-08-30 2001-09-25 マツダ株式会社 鋳造方法及び鋳造装置並びに鋳造品
DE19728358A1 (de) * 1996-07-06 1998-01-08 Thyssen Guss Ag Verfahren zur Herstellung von lokal keramikverstärkten, gegossenen Bremsscheiben aus Leichtmetallegierungen
DE19650613B4 (de) * 1996-12-06 2005-12-29 Daimlerchrysler Ag Bauteil mit einem Metallschaum-Kern
DE19653149A1 (de) * 1996-12-19 1998-06-25 Bayerische Motoren Werke Ag Werkstück aus einem Leichtbau-Werkstoff und Verfahren zur Herstellung des Werkstückes
DE19800594A1 (de) * 1998-01-09 1999-07-15 Gut Gieserei Umwelt Technik Gm Verfahren zum Herstellen eines Bauteils mit teilflüssigen Werkstoffen
DE19826848C5 (de) * 1998-06-16 2006-02-23 Borbet Gmbh Leichtmetallrad für Kraftfahrzeuge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006057786A1 (de) * 2006-12-06 2008-06-12 Almecon Entwicklungs-, Beratungs- Und Beschaffungsgesellschaft Mbh Verfahren zur Herstellung von Formteilen aus Metall mittels einer Pressvorrichtung und Pressvorrichtung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
DE10035202A1 (de) 2002-01-31
ES2266055T3 (es) 2007-03-01
EP1174200A3 (de) 2003-10-01
DE50110214D1 (de) 2006-08-03
EP1174200A2 (de) 2002-01-23
ATE330736T1 (de) 2006-07-15

Similar Documents

Publication Publication Date Title
DE19650613B4 (de) Bauteil mit einem Metallschaum-Kern
DE19501508C1 (de) Bauteil für das Fahrwerk eines Kraftfahrzeuges und Verfahren zur Herstellung eines solchen Bauteils
DE60100370T2 (de) Druckgussmagnesiumlegierung
DE4231344A1 (de) Achsgehaeuse
DE112013007406B4 (de) Verfahren zum Herstellen von Bauteilen aus einer Aluminiumlegierung
DE102011120988A1 (de) Flächiges Halbzeug aus einer Aluminiummatrixverbundlegierung mit Borcarbid-Partikeln zur Herstellung einer mit Borcarbid-Partikeln angereicherten Platte und Herstellungsverfahren
EP1174200B1 (de) Giessverfahren und Giesskern für die Verwendung in diesem Verfahren
EP1354651A2 (de) Metallschaum enthaltender Leichtbauteil, sowie Verfahren und Vorrichtung zu dessen Herstellung
DE10101960A1 (de) Plastisch bearbeitetes Aluminiumlegierungsgußprodukt, ein Verfahren zur Herstellung davon und ein Verfahren zum Verbinden unter Verwendung plastischer Verformung
DE3810497C2 (de) Verfahren zur Herstellung einer Aluminiumlegierung mit ausgezeichneter Knetbarkeit
DE19538242C2 (de) Thixo-Giessverfahren und Verwendung eines Thixo-Giesslegierungsmaterials
DE102004030780A1 (de) Verbundwerkstoff und Verfahren zu seiner Herstellung
DE3835253A1 (de) Gegenstand aus einer aluminium-silizium-legierung und verfahren zu seiner herstellung
DE19915237A1 (de) Deformationselement aus einem duktilen metallischen Leichtwerkstoff und dessen Verwendung
EP0963264B1 (de) Verfahren zur herstellung eines gehäuseblocks für ein hydraulikaggregat und der gehäuseblock
WO2005007910A1 (de) Geschweisstes aluminium-strukturbauteil mit metallisch induzierter rissabweichung
DE2422348A1 (de) Fliesspress-rohling und verfahren zu seiner herstellung
DE2929812C2 (de) Rad für Kraftfahrzeuge
EP1201334B1 (de) Warmkammerdruckgiessmaschine und Betriebsverfahren hierfür
AT133534B (de) Verfahren und Gußform zur Herstellung poren- und lunkerfreier Gußblöcke mit feinkörnigem Gefüge.
EP2143809B1 (de) Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung
DE2108052A1 (de) Warmhauben für Gußblöcke
DE1508127B2 (de) Verfahren zur Erzeugung von feinkarbidischen Werkzeug- und Schnellarbeitsstählen
DE2627406A1 (de) Metallgiessform mit sich nach unten erweiterndem querschnitt
DE102006057786A1 (de) Verfahren zur Herstellung von Formteilen aus Metall mittels einer Pressvorrichtung und Pressvorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 22D 19/14 A

Ipc: 7B 22D 17/00 B

Ipc: 7B 22D 19/00 B

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040331

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50110214

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060824

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266055

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090219 AND 20090225

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090305 AND 20090311

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20091029 AND 20091104

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20091105 AND 20091111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50110214

Country of ref document: DE

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US

Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, MICH., US

Effective date: 20110323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160613

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160613

Year of fee payment: 16

Ref country code: FR

Payment date: 20160613

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160711

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160713

Year of fee payment: 16

Ref country code: DE

Payment date: 20160712

Year of fee payment: 16

Ref country code: CH

Payment date: 20160712

Year of fee payment: 16

Ref country code: IT

Payment date: 20160720

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160630

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110214

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 330736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170717

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170717

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170717

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718