EP1164116B1 - Procédé de production de matière à haute énergie fonctionelle - Google Patents

Procédé de production de matière à haute énergie fonctionelle Download PDF

Info

Publication number
EP1164116B1
EP1164116B1 EP00810520A EP00810520A EP1164116B1 EP 1164116 B1 EP1164116 B1 EP 1164116B1 EP 00810520 A EP00810520 A EP 00810520A EP 00810520 A EP00810520 A EP 00810520A EP 1164116 B1 EP1164116 B1 EP 1164116B1
Authority
EP
European Patent Office
Prior art keywords
powder
grain
emulsion
energy
plasticizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00810520A
Other languages
German (de)
English (en)
Other versions
EP1164116A1 (fr
Inventor
Kurt Ryf
Beat Vogelsanger
Ulrich Schaedeli
Bruno Ossola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitrochemie Wimmis AG
Original Assignee
Nitrochemie Wimmis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitrochemie Wimmis AG filed Critical Nitrochemie Wimmis AG
Priority to ES00810520T priority Critical patent/ES2235813T3/es
Priority to DE50009362T priority patent/DE50009362D1/de
Priority to AT00810520T priority patent/ATE287863T1/de
Priority to EP00810520A priority patent/EP1164116B1/fr
Priority to US09/879,187 priority patent/US7473330B2/en
Publication of EP1164116A1 publication Critical patent/EP1164116A1/fr
Application granted granted Critical
Publication of EP1164116B1 publication Critical patent/EP1164116B1/fr
Priority to US12/292,942 priority patent/US20090208647A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • C06B45/22Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0083Treatment of solid structures, e.g. for coating or impregnating with a modifier

Definitions

  • the invention relates to a method for producing a functional high-energy Layered grain material containing a high energy plasticizer and a polymeric phlegmatizer, wherein the plasticizer and / or the Phlegmatizer in the form of an aqueous emulsion is diffused into the receptive grain will or will be. Furthermore, the invention relates to such a material.
  • TLP Propellant Charge Powder
  • nitrocellulose based monobasic Propellant powders have a higher kinetic energy on the ammunition component can transfer.
  • the problem with providing this required new high performance TLP is now to avoid unwanted side effects, i. on the demanded increased performance level nevertheless the full extended system compatibility concerning pipe (erosion, corrosion), weapon (top gas pressures, cadence) and environment (avoidance environmentally problematic formulation components).
  • the ballistic stability i. the period of time within which the with the propellant charge powder filled ammunition can be fired safely and in compliance with requirements, opposite can not be reduced to the conventional propellant charge powder.
  • the required high-performance TLP can be produced inexpensively, i. starting from easily accessible, inexpensive starting materials and in particular no complicated processing processes (such as rolling processes in polybasic TLP) need.
  • Another approach to increasing the energy content is to include a suitable one high-energy blasting oil to the grain matrix.
  • a suitable one high-energy blasting oil to the grain matrix.
  • ball powder The maximum size of the spherical Powder particles are limited. However, these powders are inherently very explosive and have acquired a technical importance, especially in the small caliber area. Moreover these powders have a strongly limited ballistic compared to monobasic TLPs and chemical stability.
  • the powders have a high kinetic Muzzle energy and a high thermal efficiency.
  • the layered structure of the outer skin and the inner zones of the novel causes Powder a burning behavior, which largely independent of the temperature of the powder body is.
  • the functional materials have very high bulk densities.
  • Bulk density is a measure of what weight of propellant powder can be accommodated in a given volume unit and is typically expressed in g TLP / l unit. This positive property is of great importance because the shell volume of a given ammunition component is given. The more powder that can be accommodated in this given tube volume, the higher the potential, which can be converted into kinetic energy. Thus, for example, with comparable top gas pressure, a muzzle energy increased by up to 12% over conventional monobasic TLP can be achieved.
  • US 2 771 351 describes a powder having a surface area of 10-84 cm 2 / g with a surface Comes size of about 0.015 and 0.070 inches and one introduced into the surface Deterrent.
  • the grain can z. B. be prepared by extrusion of nitrocellulose (NC).
  • NC nitrocellulose
  • ethyl acetate is added and stirred until the NC dissolves Has.
  • gum arabic and sodium sulfate are added.
  • the grains are separated from the liquid phase. It becomes a suspension again prepared in water and added a nitroglycerin / ethyl acetate / water emulsion.
  • the solvents ethyl acetate / toluene
  • the grain will then treated in an emulsion of dibutyl phthalate and emulsifiers in water.
  • the Grain is then pressed to a size of 0.019 inches and dried.
  • Last but not least The grain is treated with potassium nitrate, diphenyl phthalate and Dinitrotoluen and with Graphite coated.
  • the post-published document EP 1 031 548 A1 relates to a method for Producing a TLP, in which a flattening of the maximum pressure curve in the Temperature range for which the weapon is intended, is reached.
  • Usual one, two or one Polybasic powders are to be surface treated with phlegmatizers which are used in the Essentially have no migration.
  • the surface treatment by Spraying a solution or emulsion of Phlegmatisators done. It should be substances such as Non-energetic polyesters, energetic polymers, alkylnitratoethylnitramines, Dinitrodiazaalkane, nitric acid esters, etc. are used.
  • example 3 is a single-base 7-hole TLP with NC as the energy carrier and Centralit I as a stabilizer in an emulsion of nitroglycerin in water in a rotating drum at 30 ° C incubated.
  • NC as the energy carrier
  • Centralit I as a stabilizer in an emulsion of nitroglycerin in water in a rotating drum at 30 ° C incubated.
  • US Pat. No. 5,682,009 proposes a green grain on the basis of nitrocellulose a thermoplastic polymer as phlegmatizer diffuse.
  • a thermoplastic polymer as phlegmatizer diffuse.
  • the preparation of the TLP becomes an aqueous with the powder Suspension to which a non-aqueous solution of the thermoplastic Phlegmatizer is given.
  • Has the phlegmatizer penetrated into the grain with am Edge is the highest concentration, the solvent is removed.
  • US 5 520 757 is concerned with the preparation of blends with alkyl NENA and DINA and its use for a NG-based TLP.
  • the object of the invention is to provide a method of the type mentioned, which the precise adjustment of the layer structure allows.
  • the plasticizer and / or the phlegmatizer in the form of an aqueous emulsion in one Diffusion depth in the range of 100-500 ⁇ m into the receptive (unimpregnated) grain, i.e. diffused into the so-called green powder.
  • the invention is based on the surprising finding that the impregnation for Production of the functional materials can also be carried out in an aqueous emulsion, wherein TLP also result in the desired layered construction.
  • the present invention therefore includes the process of impregnating an untreated one monobasic green powder in aqueous emulsion, and the subsequent completion to provide the functional, layered TLP.
  • the invention thus differs significantly from the known methods, in which Impregnations by means of which the layered distribution of the explosive oil and the Let phlegmatizers set specifically, typically in so-called polishing drums be performed.
  • highly sensitive explosive oils such as nitroglycerin due to acute safety risks would arise and the production of larger quantities of functional high-energy Considerably complicating, if not destroying, materials avoided in the inventive method.
  • the impregnation process can be carried out in a 2-stage process or in a 1-stage process be performed.
  • the green grain is first in a aqueous emulsion treated with the blasting oil. After completion of the action will be pumped off the excess emulsion.
  • the liquid components in the reactor can by a Drained sieve. Thereafter, the (remaining in the reactor) powder mass in a further process step of an aqueous emulsion containing the polymeric phlegmatizer exposed. This procedure allows a good control of the process parameters.
  • the green grain is first with a aqueous emulsion of the blasting oil. After completion of the exposure time, the remaining emulsion but not separated from the powder, but with the addition of the polymeric Phlegmatisators continue to be used. By varying the addition times of the blasting oil or the polymeric phlegmator and the time point, the concentration profiles be selectively changed.
  • the 1-step process involves fewer process steps and is therefore more economical.
  • the aqueous emulsion used can be used both in the 1-stage and in the 2-stage process if necessary, known auxiliaries (stabilizers and / or wetting agents) added which, inter alia, suppress foaming, stabilize the emulsion or can specifically influence the penetration of the components of action.
  • auxiliaries stabilizers and / or wetting agents
  • layered TLPs are obtained which have similarly advantageous properties as the materials described in EP 0 960 083 A1, ie over the entire temperature range, a markedly increased power potential can be achieved under arms-compatible conditions (see Table 1).
  • Another aspect of the present invention is the provision of novel functional ones Materials that improved over the materials described above Have properties.
  • K. Ryf Int. Annu. Conf. ICT (1998), 29th (Energetic Materials), 38.1-38.14
  • Impregnation exclusively using blasting oils such as nitroglycerin.
  • One such disadvantage is the extremely high sensitivity of these blasting oils.
  • nitroglycerin and dinitrodiglycol each have a sensitivity to impact of only 0.2 Nm, what their handling during processing severely hampered and restricted.
  • blasting oils Another disadvantage of these blasting oils is their high Energy content (explosion heat), for nitroglycerin 6542 J / g and for dinitrodiglycol 4527 J / g. If the powder now contains larger quantities of these blasting oils, it increases during combustion, the flame temperature and hereby leads to an increase in pipe erosion.
  • blasting oils can be replaced in the impregnation process by energetic plasticizers, which have a lower energy content and advantageous thermodynamic properties and which are additionally less sensitive to impact.
  • the resulting novel powders are surprisingly characterized by a significantly improved ratio of Vo / Pmax, ie when using the pressure reserves higher muzzle velocities can be realized.
  • functional materials also have a favorable ratio of ⁇ Vo gTLP / ⁇ Pmax gTLP , ie, per gram charge increase, the muzzle velocity increases more than the pressure on TLP based on blasting oils. This effect is illustrated in Example 3 below.
  • energetic plasticizers include in particular low molecular weight aliphatic nitric acid esters, nitro compounds, nitramines and azides.
  • a particularly suitable substance class form the so-called 2-nitroxyethyl-nitramaine (alkyl-NENA) having the general structural formula I, wherein R 1 represents an aliphatic radical.
  • alkyl-NENA 2-nitroxyethyl-nitramaine
  • Another particularly suitable class of substances for this purpose form the so-called dinitro diazaalkane of the general formula II, wherein R 2 and R 3 are aliphatic radicals.
  • the present invention also relates to novel functional materials which additionally contain a crystalline energy carrier in the basic matrix of nitrocellulose.
  • crystalline energy carriers are known per se. These are, for example, so-called crystalline nitramines of general formula III.
  • the radical R 4 forms part of a ring system and may preferably contain further units of the structure (-CH 2 -N-NO 2 ).
  • Particularly preferred compounds of structure III are Hexogen IV, Oktogen V and CL-20 VI.
  • the upper limit of the content of crystalline energy is such that the obtained mechanical strength of the resulting powder grain even at low temperature remains. To detect the expected positive effect ballistically, the amount should not be less than about 5%.
  • These compounds of general structure III or mixtures thereof are therefore used in amounts of between. 5-80%, preferably 10-50% of the total powder mass, the nitrocellulose matrix mixed and are homogeneously distributed in the finished grain.
  • the thus pretreated powders (which functionally correspond to the green powder) become then by an impregnation process, which the previously described Layerwise grain structure results and is also part of the present invention, treated with an energetic plasticizer and a phlegmatizer.
  • This stratified functional material is that it faces the functional materials, which do not contain any crystalline energy carrier in the grain matrix contain an increased Energyinhait, which thanks to the special Layer structure optimally converted into kinetic energy in a system-compatible manner can be.
  • the impregnation process for the production of high-energy functional materials is described below.
  • the impregnation process goes from untreated Green powder of any form, which consists essentially of nitrocellulose with an N content between 11-13.5% exists.
  • the green powder used can optionally in the powder technology known additives for stabilization, pipe protection, softening and fire damping contain.
  • Known additives which are suitably used For increasing stability for example, sodium hydrogen carbonate (CAS #: 144-55-8), calcium carbonate (CAS #: 471-34-1), magnesium oxide (CAS #: 1309-48-4), acardite II (CAS #: 724-18-5), Centralit I (CAS #: 90-93-7), Centralit II (CAS #: 611-92-7), 2-nitrodiphenylamine (CAS #: 836-30-6) and diphenylamine (CAS #: 122-39-4), for plasticizing about diethyl phthalate (CAS #: 84-66-2), camphor (CAS #: 76-22-2), dibutyl phthalate (CAS #: 84-74-2), Di-n-propyl adipate (CAS #: 106-19-4) or methylphenylurethane (CAS #: 261-79-6), for Tube protection about magnesium oxide (CAS #: 1303-48-4), molybdenum trioxide (CAS #: 1313-27-5), Magnesium silicate (CAS #: 14807
  • the green powder Still other known additives, such as to improve the Anzünd s and Modulation of the burning behavior, included. All the mentioned accessories are during the green grain preparation has been added to the powder dough, i. they are even in distributed the grain matrix.
  • the total amount of these additives in the green grain is between 0-20% the nitrocellulose, preferably between 5-15%.
  • the green powder is typically cylindrical single or multi-hole powder with a diameter / grain length ratio between 0.5-2.0, preferably 0.9-1.5.
  • the Outer diameters of the green powders are in the range between 0.5 and 10 mm, preferably 0.5-5 mm.
  • the hole diameters are in the range between 0.03-0.7 mm.
  • the green com can open known manner by compression of a solvent-containing powder dough in a strand press or by extrusion.
  • the production process according to the invention can be one-stage or two-stage.
  • Impregnation process should first be clarified in the 2-step process:
  • the above described green powder is placed in a metallic reactor vessel, which with Lid inlet valve, bottom outlet valve, mechanical and static flow internals and connections is equipped for vacuum and which with 1-5 times the amount Water (compared to the amount of powder to be treated) is charged.
  • the powder can first with stirring for 4-24 hours at a temperature of 20-85 ° C pre-bathed become. Thereafter, for a period of 10-60 minutes, a solution of the Sprengöls (about 20% dissolved in a suitable solvent) was added, wherein the proportion of the Blasting oil is compared to the used green grain in the range of 3-20%.
  • the 1-stage process is analogous to the 2-stage process described above with the only difference that after completion of the exposure time of blasting solution the liquid components remain in the reactor and directly to the phlegmatizer emulsion is added.
  • the addition times By varying the addition times, the exposure times and the time the pressure reduction can reduce the burning characteristics of the finished powder be specifically influenced.
  • Suitable explosive oils may be nitroglycerin (CAS #: 55-63-0) or diethylene glycol dinitrate (Dinitrodiglycol, CAS #: 693-21-0). It's a lot of connections possible, which can be used as suitable phlegmatizers. On the one hand the affinity with the nitrocellulose must be such that the phlegmatizer will react with the appropriate Solvent as transport medium (carrier) diffuse into the powder grain can. On the other hand, after the removal of the solvent no further diffusion which would lead to a change in the distribution profile.
  • organic ether and ester compounds having a molecular weight between 100-100,000, preferably between 1000-10,000.
  • a hitherto unknown novel class of functional energetic materials is obtained by replacing the blasting oils described above with less impact-sensitive (in simplified terms: "insensitive") energetic plasticizers of the general structures I or II.
  • these novel functional materials are distinguished by a particularly favorable ratio of Vo / Pmax.
  • such functional materials have a favorable ratio of ⁇ Vo gTLP / ⁇ Pmax gTLP , ie, per gram of charge increase, the muzzle velocity increases more than the pressure than the layered TLP based on blasting oils.
  • Example 1 Production process in aqueous emulsion
  • the batch is heated to a temperature of 85 ° C and under constant Stir while keeping the temperature preheated for 15 hours. After that will at 80 ° C a mixture containing 12.5 kg of nitroglycerin and 0.25 kg of 2-nitrodiphenylamine, dissolved in 60 liters of ethanol, added dropwise over a period of 30 minutes. You leave now during 2 1/4 hours with optimal baking mix setting (powder bed completely in Suspension) and then dripping for a period of 15 minutes a suspension containing 1.97 kg of a high-viscosity, non-solid at room temperature Polyester of average molecular weight of 3000 (which is water-soluble and as Phlegmatizer acts) in 30 kg of water.
  • the moist powder is now spread evenly on coarse mesh metal screens and with passing hot air at a temperature of 60 ° C for 24 hours dried.
  • the TLP is finally polished by about 0.3% graphite and if necessary by treatment with special moderators in a known manner in the polishing drum completed.
  • the finished TLP has an explosive heat of 3999 J / g, its bulk density is 1062 g / liter.
  • a muzzle velocity of 1438 m / s can be achieved with a subcaliber arrowhead of mass 123 g at 21 ° C while maintaining the weapon permissible peak gas pressure, which corresponds to a muzzle energy of 1271 J / g TLP .
  • Example 2 Production process in aqueous emulsion
  • Example 1 Analogously to Example 1, 200 kg of a 7-hole green powder with 2.57 mm outer diameter, 2.94 mm in length and a mean hole diameter of 0.16 mm, constructed from the solid portions of 1.2% acardite, 0.2% calcium carbonate, 1.4% potassium sulfate and 97.2% nitrocellulose with a nitrogen content of 13.15%, with 14.4 kg nitroglycerin and 3.3 kg of the same polyester as in Example 1 treated. That after completion As in Example 1 resulting propellant powder has a bulk density of 1063 g / l at an explosion heat of 3961 J / g.
  • a muzzle velocity of 908 m / s can be achieved for a bullet of mass 126 g and a charge mass of 44.5 g at 21 ° C, whereas 853 m / s are achieved for a charge mass of 42 g.
  • the same ratio has a value of only 0.07.
  • the increase in speed is accompanied by a significantly lower pressure increase than in the case of the propellant charge powder of Example 2.
  • Example 4 TLP with grain matrix of nitrocellulose + crystalline energy source
  • the propellant powder resulting after completion analogously to Example 1 has a bulk density of 1071 g / l at an explosion heat of 3963 J / g.
  • TLPs are proposed in which the known explosive oils NGL and DEGN by sensitivity-reduced energetic Plasticizers are replaced. These TLPs are less sensitive to shocks. to Performance optimization can be added to the grain matrix crystalline energy sources.
  • the resulting layered TLPs exhibit full system compatibility a higher level of performance compared to normal TLP and a balanced temperature behavior on.
  • the TLP are cheaper to produce compared to dibasic TLP and Do not have the adverse burn-off properties (pipe erosion) nitramine-containing TLP on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Colloid Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Air Bags (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Claims (16)

  1. Procédé de production d'un matériau fonctionnel à haute énergie ayant un grain structuré de manière stratifiée, contenant un plastifiant énergétique et un stabilisateur bilisateur polymère, caractérisé en ce que le plastifiant et/ou le stabilisasateur est ou sont diffusé(s) dans le grain capable d'absorber sous forme d'une émulsion aqueuse et qu'une profondeur de diffusion dans le domaine de 100 à 500 µm est produite.
  2. Procédé selon la revendication 1, caractérisé en ce que le grain est essentiellement composé de nitrocellulose, en particulier qu'il est composé d'au moins 80 % de nitrocellulose ayant une teneur en azote de 11 à 13,5 %.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le grain a une structure cylindrique ayant un rapport du diamètre à la longueur entre 0,5 et 2,0, un diamètre externe entre 0,5 et 10 mm et en ce qu'en particulier au moins une cavité, de préférence plusieurs cavités, ayant un diamètre de cavité entre 0,03 et 0,7 mm est ou sont présente(s).
  4. Procédé selon la revendication 3, caractérisé en ce que le grain est produit par compression d'une pâte en poudre en nitrocellulose contenant du solvant dans une presse à compression ou en l'extrudant, dans lequel la pâte en poudre contenant du solvant contient en particulier des substances de structure générale III avec R4 = (-CH2-N-NO2)n et n=2 ou 3, dans une part totale de 5 à 80% de la substance sèche de pâte en poudre, dans laquelle les substances ajoutées présentent de préférence les structures IV, V ou VI et la part totale de ces substances dans le grain capable d'absorber se trouve entre 10 et 60 % :
    Figure 00340001
    Figure 00340002
    Figure 00340003
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'une solution ou émulsion du plastifiant à haute énergie dans un solvant organique est ajouté à un mélange de poudre verte non traitée dans de l'eau, suivi de l'adjonction d'une solution ou émulsion du stabilisateur dans l'eau, dans lequel, de préférence, l'adjonction de la solution ou de l'émulsion du plastifiant à haute énergie dans un solvant organique et de la solution ou émulsion du stabilisateur dans l'eau est effectuée à une température entre 20 et 85°C.
  6. Procédé selon la revendication 5, caractérisé en ce que la poudre verte à traiter est trempée préalablement dans un solvant organique dans le réacteur et est agitée pendant 4 à 24 heures à une température de 20 à 85°C avant d'ajouter la solution ou l'émulsion du plastifiant à haute énergie, qui est liquide à température ambiante.
  7. Procédé selon l'une des revendications 5 ou 6, caractérisé en ce que la poudre verte est placée dans 1 à 5 fois la quantité en poids d'eau.
  8. Procédé selon l'une des revendications 5 à 7, caractérisé en ce qu'une fois le procédé d'addition de la solution ou de l'émulsion de stabilisateur terminé, la pression dans la cuve du réacteur est réduite à 400 à 800 mbar pendant un période de 2 à 6 heures et en ce que les composants liquides restants sont évacués à travers un tamis au fond du réacteur et que la masse de poudre résultante est séchée avec de l'air chaud.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que 0,01 à 2 % de graphite est ajouté dans un tambour de polissage à la masse de poudre séchée pour obtenir une poudre en vrac ayant une densité apparente > 1000 g/l.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le plastifiant à haute énergie est la nitroglycérine ou le dinitrate de diéthylène glycol ou, en particulier, présente la structure I ou II, dans laquelle R1 = alkyle en C1 à C10, alcoxy en C1 à C10 ou aryle, R2 et R3 sont indépendamment l'un de l'autre alkyle en C1 à C5 ou alcoxy en C1 à C5 et est utilisé en une quantité de 5 à 20 % par rapport à la poudre verte :
    Figure 00350001
  11. Procédé selon la revendication 10, caractérisé en ce que le plastifiant à haute énergie présente la structure I ou II, dans laquelle R1 = C1 à C4 (méthyle, éthyle, n-propyle, i-propyle, n-butyle, i-butyle, t-butyle), et dans laquelle R2/R3 sont indépendamment l'un de l'autre C1-C2 (méthyle, éthyle ) :
    Figure 00360001
  12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'un composé d'éther et d'ester organique ayant une masse moléculaire entre 100 et 100 000 est utilisé en tant que stabilisateur polymère.
  13. Matériau fonctionnel à haute énergie ayant un grain structuré de manière stratifiée, formé par un plastifiant à haute énergie introduit dans une poudre verte et un stabilisateur polymère, caractérisé en ce que le plastifiant à haute énergie présente la structure I ou II, dans laquelle R1 = alkyle en C1 à C10, alcoxy en C1 à C10 ou aryle, R2 et R3 sont indépendamment l'un de l'autre alkyle en C1 à C5 ou alcoxy en C1 à C5 et est utilisé en une quantité de 5 à 20 % par rapport à la poudre verte et est introduit à une profondeur de diffusion dans le domaine de 100 à 500 µm:
    Figure 00360002
  14. Matériau fonctionnel à haute énergie selon la revendication 13, caractérisé en ce que la poudre verte est produite par compression d'une pâte en poudre de nitrocellulose contenant du solvant, dans laquelle la pâte en poudre contenant du solvant contient des substances ayant la structure IV, V ou VI dans une part totale de 10 à 60 % de la substance sèche de la pâte en poudre :
    Figure 00370001
    Figure 00370002
  15. Poudre propulsive contenant un matériau fonctionnel à haute énergie selon la revendication 13 ou 14.
  16. Munition ayant une poudre propulsive selon la revendication 15.
EP00810520A 2000-06-15 2000-06-15 Procédé de production de matière à haute énergie fonctionelle Expired - Lifetime EP1164116B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES00810520T ES2235813T3 (es) 2000-06-15 2000-06-15 Procedimiento para la fabricacion de un material funcional altamente energetico.
DE50009362T DE50009362D1 (de) 2000-06-15 2000-06-15 Verfahren zur Herstellung eines funktionalen hochenergetischen Materials
AT00810520T ATE287863T1 (de) 2000-06-15 2000-06-15 Verfahren zur herstellung eines funktionalen hochenergetischen materials
EP00810520A EP1164116B1 (fr) 2000-06-15 2000-06-15 Procédé de production de matière à haute énergie fonctionelle
US09/879,187 US7473330B2 (en) 2000-06-15 2001-06-13 Method for producing a functional, high-energetic material
US12/292,942 US20090208647A1 (en) 2000-06-15 2008-12-01 Method for producing a funtional, high-energy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00810520A EP1164116B1 (fr) 2000-06-15 2000-06-15 Procédé de production de matière à haute énergie fonctionelle

Publications (2)

Publication Number Publication Date
EP1164116A1 EP1164116A1 (fr) 2001-12-19
EP1164116B1 true EP1164116B1 (fr) 2005-01-26

Family

ID=8174756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810520A Expired - Lifetime EP1164116B1 (fr) 2000-06-15 2000-06-15 Procédé de production de matière à haute énergie fonctionelle

Country Status (5)

Country Link
US (1) US7473330B2 (fr)
EP (1) EP1164116B1 (fr)
AT (1) ATE287863T1 (fr)
DE (1) DE50009362D1 (fr)
ES (1) ES2235813T3 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1857429T3 (pl) 2006-05-19 2013-08-30 Nitrochemie Wimmis Ag Układ napędowy do przyspieszania pocisków
WO2011153655A2 (fr) * 2011-09-15 2011-12-15 Nitrochemie Wimmis Ag Système de propulsion à perforations multiples haute performance, exempt de nitroglycérine
PL2951137T3 (pl) * 2013-01-29 2021-08-30 Nitrochemie Wimmis Ag Proch do przyspieszania pocisków do systemów moździerzowych
US9539752B2 (en) * 2013-08-09 2017-01-10 General Dynamics Ordnance and Tactical Systems—Canada Valleyfield, Inc. Continuous celluloid twin screw extrusion process
JP6363714B2 (ja) 2013-09-12 2018-07-25 タレス オーストラリア リミテッド 燃焼率調節剤
EP3049376B1 (fr) 2013-09-24 2019-11-27 Thales Australia Limited Modificateur du taux de combustion
CA2990862C (fr) 2015-07-03 2022-05-31 Nitrochemie Wimmis Ag Systeme de charge de propulsion destine a des obus d'artillerie
CN109516890A (zh) * 2019-01-10 2019-03-26 长沙智能制造研究总院有限公司 一种自动化作业黑火药生产工艺
CN110963874B (zh) * 2019-11-28 2021-03-23 湖北航天化学技术研究所 一种以聚酯-丁羟嵌段聚合物为粘合剂的固体推进剂

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2337943A (en) * 1938-12-03 1943-12-28 Western Cartridge Co Propellent powder process
US2349048A (en) * 1940-09-04 1944-05-16 Du Pont Smokeless powder
US2771351A (en) * 1953-06-09 1956-11-20 Olin Mathieson Propellant
US3037891A (en) * 1959-06-08 1962-06-05 Olin Mathieson Smokeless powder
US3108916A (en) * 1959-09-02 1963-10-29 Olin Mathieson Dustless propellent powder containing coated spherical nitrocellulose
US3779826A (en) 1960-12-02 1973-12-18 Atlantic Res Corp Nitrocellulose propellent compositions containing inorganic oxidizing agents with aluminum
US3290190A (en) 1965-07-06 1966-12-06 Atlantic Res Corp Plastisol propellant process with improved dispersion stability
GB1605427A (en) 1976-03-03 2003-02-05 Royal Ordnance Plc Propellant composition
DE2753555C1 (de) 1977-12-01 1990-09-20 Dynamit Nobel Ag Verwendung von polymeren Polynitroaromaten in Treibsaetzen
DE3635296C2 (de) 1986-10-16 1995-12-21 Nitrochemie Gmbh Verfahren zum Herstellen von Treibladungspulver
US5520757A (en) * 1988-08-25 1996-05-28 Ici Explosives Usa Inc. Low vulnerability propellants
US5682009A (en) * 1994-07-21 1997-10-28 Primex Technologies, Inc. Propellant containing a thermoplatic burn rate modifer
WO1998034891A1 (fr) 1997-02-08 1998-08-13 Diehl Stiftung & Co. Poudre propulsive pour armes a canon
US6241833B1 (en) * 1998-07-16 2001-06-05 Alliant Techsystems, Inc. High energy gun propellants
ATE298736T1 (de) 1999-02-23 2005-07-15 Gen Dynamics Ordnance & Tactic Perforierter treibstoff und verfahren zu seiner herstellung
DE19907809C2 (de) 1999-02-24 2002-10-10 Nitrochemie Gmbh Verfahren zur Herstellung von ein-, zwei- oder dreibasigen Triebladungspulvern für Rohrwaffenmunition

Also Published As

Publication number Publication date
DE50009362D1 (de) 2005-03-03
ES2235813T3 (es) 2005-07-16
EP1164116A1 (fr) 2001-12-19
US20020043316A1 (en) 2002-04-18
ATE287863T1 (de) 2005-02-15
US7473330B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
CA2179389A1 (fr) Processus de production de charge propulsive composite pour canon
DE4445991A1 (de) Anzündsystem für Treibladungen und Verfahren zur Herstellung derartiger Anzündsysteme
EP1857429B1 (fr) Propulseur pour l'accélération de projectiles
EP1031548B1 (fr) Procédé de production de poudres à simple, double ou triple base pour munition pour armes à canon
EP1164116B1 (fr) Procédé de production de matière à haute énergie fonctionelle
DE102010020776B4 (de) Treibladung und Verfahren zu ihrer Herstellung
EP2723700A2 (fr) Utilisation d'une matière solide pour la fabrication d'une poudre de charge propulsive
CH669786A5 (fr)
DE69816046T2 (de) Zusammensetzung auf basis von hexanitrohexaazaisowurtizitan und hexanitrohexaazaisowurtizitan enthaltende sprengstoffzusammensetzung
DE2753555C1 (de) Verwendung von polymeren Polynitroaromaten in Treibsaetzen
DE2603927A1 (de) Temperaturkompensierende treibladung
DE2900020C2 (de) Verfahren zur Herstellung eines mehrbasigen Treibladungspulvers
DE3744680C2 (de) Energiereiche Materialien sowie deren Verwendung
EP2951137B1 (fr) Poudre pour accélérer des projectiles pour mortiers
DE10027413B4 (de) Verfahren zum Herstellen einer Treibmittelzusammensetzung unter Anwendung eines Trockenmischverfahrens
EP1241152B1 (fr) Poudre propulsive insensible à la température
US20090208647A1 (en) Method for producing a funtional, high-energy material
EP1241151A1 (fr) Poudre propulsive insensible à la température
DE4143310C2 (de) Extrudierbare Treibladungszusammensetzung und daraus hergestellte Treibladung für Geschützmunition
RU2256636C1 (ru) Способ получения сферического пороха
EP0656332A1 (fr) Amorçage à percussion pour armes à feu portatives, procédé pour sa préparation ainsi que son application
EP1616845B1 (fr) Poudre propulsive pouvant être versée
DE2449777A1 (de) Treibladungspulver und insbesondere gekoernte inhibierte treibladungspulver fuer projektile sowie ein verfahren zu deren herstellung
DE1909701C (de) Brennbare Munitionshulse und Verfah ren zu deren Herstellung
DE1212458B (de) Verfahren zur Steuerung der Abbrand-geschwindigkeit von Feststofftreibsaetzen sowie Strahltriebwerk zur Durchfuehrung dieses Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020302

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050126

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050126

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009362

Country of ref document: DE

Date of ref document: 20050303

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050426

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050401404

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050615

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2235813

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051027

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190531

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20190628

Year of fee payment: 20

Ref country code: FR

Payment date: 20190528

Year of fee payment: 20

Ref country code: BE

Payment date: 20190626

Year of fee payment: 20

Ref country code: SE

Payment date: 20190528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190715

Year of fee payment: 20

Ref country code: ES

Payment date: 20190703

Year of fee payment: 20

Ref country code: GB

Payment date: 20190611

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50009362

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200614

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200614

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200616