EP1241152B1 - Poudre propulsive insensible à la température - Google Patents

Poudre propulsive insensible à la température Download PDF

Info

Publication number
EP1241152B1
EP1241152B1 EP20020405191 EP02405191A EP1241152B1 EP 1241152 B1 EP1241152 B1 EP 1241152B1 EP 20020405191 EP20020405191 EP 20020405191 EP 02405191 A EP02405191 A EP 02405191A EP 1241152 B1 EP1241152 B1 EP 1241152B1
Authority
EP
European Patent Office
Prior art keywords
temperature
tlp
solid
moderator
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020405191
Other languages
German (de)
English (en)
Other versions
EP1241152A1 (fr
Inventor
Markus Fahrni
Beat Dr. Vogelsanger
Alfred Dr. Steinmann
Bruno Ossola
Kurt Ryf
Ulrike Jeck-Prosch
Alexander Dr. Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitrochemie Wimmis AG
Nitrochemie Aschau GmbH
Original Assignee
Nitrochemie Wimmis AG
Nitrochemie Aschau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP01810255A external-priority patent/EP1241151A1/fr
Application filed by Nitrochemie Wimmis AG, Nitrochemie Aschau GmbH filed Critical Nitrochemie Wimmis AG
Priority to EP20020405191 priority Critical patent/EP1241152B1/fr
Publication of EP1241152A1 publication Critical patent/EP1241152A1/fr
Application granted granted Critical
Publication of EP1241152B1 publication Critical patent/EP1241152B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0083Treatment of solid structures, e.g. for coating or impregnating with a modifier
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • C06B45/22Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/16Cartridges, i.e. cases with charge and missile characterised by composition or physical dimensions or form of propellant charge, with or without projectile, or powder

Definitions

  • the invention relates to a process for the production of a propellant charge powder and to a propellant powder obtainable by this process, the grain of which comprises at least one passage in an axial direction with openings leading to an outer surface of the grain, the openings being closed with a non-volatile solid.
  • TLP Propellant charge powders
  • gunpowder also has a constant demand for performance enhancement (e.g., higher tank missile kinetic energy, longer ranges for artillery shells, shorter anti-aircraft missile gun times, higher first strike probability, etc.).
  • performance enhancement e.g., higher tank missile kinetic energy, longer ranges for artillery shells, shorter anti-aircraft missile gun times, higher first strike probability, etc.
  • the desired performance improvements can be achieved only by exhausting all reserves and by a combination of suitable measures (optimization of internal ballistic processes), whereby the weapon technical conditions remain unchanged.
  • the required high performance TLPs be inexpensive to manufacture, i. can be made with easily accessible, cost-effective starting materials and simple processes.
  • the burning rate depends on the autoignition temperature and the initial temperature of the propellant charge body. This behavior leads to the well-known property of such classical propellants that their linear burning rate depends more or less on the initial temperature. This inevitably also implies that peak gas pressure and muzzle velocity have a more or less steep temperature gradient. This temperature-dependent performance of such propellants has significant disadvantages, such as small Warschuss Economicser probability and much lower projectile energy at normal and especially at low operating temperatures. The limiting factor is always the maximum peak gas pressure occurring at high temperatures.
  • Another proposal for reducing the temperature dependence relates to adjusting the cartridge storage volume as a function of the powder temperature.
  • the method according to US 3,506,505 assumes a surface coating with a plasticizer (Centralit I) to stabilize the powder and to influence the progressive burn-up.
  • a plasticizer Centralit I
  • To the ignitability of NC-based propellant charge To be able to control powder more effectively and to prevent the formation of lumps of graphite, special metal oxides and metal sulfides are used as additives.
  • the surface treatment of a multihole powder uses 4% camphor, 0.1% graphite and 1.0% titanium white to reduce the ignition delay by about 30 percent.
  • the object of the invention is to provide a process for the preparation of a propellant powder of the type mentioned above, which shows a largely temperature-independent combustion behavior, without substantial losses must be taken in other properties. In particular, neither the ignition behavior nor the chemical and ballistic stability of the propellant charge powder should be impaired.
  • a propellant powder of the type mentioned is characterized in that the pin has a temperature-dependent mobility, which is such that at lower application temperature is given a higher mobility than at higher application temperature, so that the pin at a lower application temperature stronger Lochabbrand allows than at higher application temperature.
  • the effect mentioned is based on the temperature-dependent journal mobility during the ignition process of the TLP.
  • the cones remain at high powder temperature (and thus at faster burning rate) in the hole channels. There is thus a minimal surface available for burnup.
  • the pins are all removed by the ignition shock wave and There is a maximum surface available for burnup.
  • the product of burnup rate times surface is constant at all bombardment temperatures, which equates to temperature-independent burnup behavior.
  • the temperature-dependent peg mobility is controlled by tuning the relevant parameters in the surface treatment and by the temperature-dependent expansion of the propellant grain matrix or pegs.
  • Two important parameters in this context are the amount of graphite used and the treatment time. The longer it treats, the stronger the cones become.
  • the inventive effect can not be generated solely by the introduction of graphite.
  • the graphite must also be compressed or glued to a kind of solid. Contributes to this, e.g. the use of solvents or phlegmatizers. (If the grain is soft, for example, phlegmatizers can be dispensed with.)
  • elastomers such as e.g. the bi- or polybasic nitrocellulose expand more or less proportionally with increasing temperature above their glass transition temperature (> -40 ° C).
  • the surface treatment to obtain a SCDB® effect is usually carried out at 30 ° C.
  • propellant grains and also the cones (in which the solid is adhered by small amounts of blasting oil and nitrocellulose) at high temperatures have an increased adhesive behavior. The pins can thus hardly move during the ignition by the shock wave.
  • the hole diameter is larger than at 30 ° C due to the contraction of the grain material.
  • the pin diameter decreases at this temperature because of the material contraction.
  • the pins sit so relaxed in the hole channels.
  • the adhesive effect of the cold grain material is also reduced.
  • the firing shock drives the pins immediately into the hole inside or pulverizes them, since the brittleness of the majority composed of solid pin increases significantly at low temperatures.
  • TLP composition and amount, amount and grain size of the solid, polarity and amount of solvent, amount and polarity of the phlegmatizer or moderator, treatment time and temperature which can be varied to the pin mobility so that it actually decreases steadily from the lowest to the highest exposure temperature.
  • pin stability described above in the hole channels is a statistical size. Not every pin shows the same behavior on the ignition pressure wave.
  • the invention has various advantages over the approaches proposed in the prior art. First of all, it should be noted that it is basically suitable for bi- and polybasic perforated propellants (TLP) for gun applications.
  • Propellant charge powders can be produced which have a temperature-independent burn-off behavior, can be well initiated by conventional igniters and also have high ballistic stability (service life). Due to the temperature independence (more or less constant gas formation rate) the powder energy can be optimally exploited over the entire temperature range.
  • the spigot should consist of a substance that is not soluble in the green grain (i.e., the untreated perforated TLP). In this way it is ensured that the anchoring of the pin in the opening and thus the mobility of the pin can not change by diffusion processes.
  • the anchoring is thus determined essentially by surface parameters at the level of the grain or cone structure.
  • the pin consists essentially of an inert solid.
  • the active surface area is increased and, as a result, the evolution of gas per unit of time.
  • the pin dissolves very quickly from its anchorage.
  • the anchorage of the pin is quite robust and the flammable TLP surface is reduced to a minimum.
  • a solid having a particle size in the range of 0.01 to 100 micrometers can be used.
  • the grain size will have to be matched to the size of the opening. If the grains of the solid are relatively large, they can only be introduced into the opening with difficulty. Typically, the grain size will be in the range of 0.1 to 50 microns.
  • the solid is inert. He can also be energetic. However, it must burn and burn less quickly than the green grain.
  • Suitable inert solids are e.g. Graphite, talc, titanium oxide, carbon black, potassium sulfate, potassium cryolite and / or calcium carbonate. Other substances which do not react with the green grain are also usable. The substances mentioned can be used both individually and in conjunction with each other.
  • the invention is not limited to that the pin consists exclusively of inert substances. It is quite possible to add small amounts of an energetic solid, in particular nitrocellulose Hexogen Octogen nitroguanidine nitrotriazole Ethylenedinitramine, ethyltetryl, ammonium picrate, trinitrotoluene, trinitrobenzene, tetranitroaniline, etc., it may also be expected strong oxidants, such as ammonium nitrate, potassium nitrate, ammonium perchlorate, potassium perchlorate, etc., provided that they have no intolerances with the selected recipe. It should be ensured that the stability or the resistance of the pin formed in the openings (perforations) against the Anzündstosswelle is not lost at higher powder temperatures.
  • Suitable immiscible energetic solids are compounds having a melting point above about 80 ° C. These solids must not have high impact or friction sensitivities. A selection of highly explosive and therefore only very limited suitable substances are in R. Meyer, explosives, Verlag Chemie 1979, page 121 ff , listed.
  • the pin of the claimed propellant charge powder has a melting temperature which is above a manufacturing, storage and / or application temperature, in particular above 90 ° C.
  • the propellant charge powder is typically a bi- or multi-base single or multi-hole powder. That is, the grain is cylindrical (having an outer diameter of, for example, 1 mm to 20 mm, or preferably 3 mm to 15 mm), and preferably has 7 to 19 axially continuous holes.
  • the ratio of grain diameter to grain length is usually in the range between 0.3-2.0, preferably 0.8-1.2.
  • Other powder geometries, e.g. Rosette shape, hexagon shape are also possible.
  • the diameter of the holes is z. B. in a range of 0.03 to 0.5 mm in particular 0.1 to 0.3 mm. Finer holes are within the scope of the invention advantageous. It can then be worked with smaller amounts of inert material. In addition, the quality of the anchoring of the pins can be better controlled. Typically, the compact (compacted) pins have a length to diameter ratio in the range of 5 to 60.
  • the green grain can be obtained in a known manner by compression of a solvent-containing or solvent-free powder dough or roll with or without blasting oil additives in a extrusion press or by extrusion.
  • the cavities closed by the spikes are axially continuous channels with a void volume that is several times a volume of a compact spigot.
  • a solid is introduced into the opening and solidified in the form of a pin and fixed so that the pin has a temperature-dependent mobility, which is such that at lower application temperature, a higher mobility (displacement in the hole) is given than at higher application temperature, so that the pin at a lower application temperature allows a faster hole erosion than at higher temperature.
  • the solid is preferably introduced into the opening with the aid of a moderator, in particular a grain-insoluble moderator, and a highly volatile liquid.
  • a moderator in particular a grain-insoluble moderator
  • a highly volatile liquid e.g. B. a drum
  • the mixture of moderator, liquid and solid is successively stuffed into the holes of the grain by the powder mass pressure or the moist mixture works under the influence of the powder mass pressure into the holes.
  • the holes of the TLP fill up relatively quickly with the dry solid.
  • the green grain, the solid and the moderator are mixed with a liquid in a mixing apparatus at a temperature in the range of 0 ° C to 90 ° C during a Treatment time between 10 minutes and 3 hours and processed with a rotation speed of the mixing apparatus between 2 and 30 revolutions per minute.
  • a moderator is used, which is radically crosslinkable.
  • a radical generator is additionally used.
  • the solid and the moderator are used in the mixing apparatus in the smallest possible amount of 0.085 wt.% To 2 wt.% Of or 0.001 wt.% To 0.5 wt.% Based on the weight of the untreated green grain.
  • the solid is added to the drum of the mixer in an amount of significantly less than 1% by weight.
  • the low-viscosity liquid is added in the mixing apparatus: 0.1 wt.% To 5 wt.% Based on the weight of the untreated grain.
  • Low viscosity is a liquid in the present context when it is well transportable with the dissolved moderator at room temperature.
  • Low molecular weight common solvents such as water, alcohol, toluene, cyclohexane, etc. can be used.
  • a radical generator may, for. B. in an amount of 0.1 mol% to 5 mol% based on the molar amount of the crosslinkable moderator are used, wherein the radical generator has a high decay stability at the surface treatment temperature in the mixing apparatus.
  • the disintegration time during the surface treatment is greater than 10 hours for half of the radical generator.
  • the radical generator is expected to rapidly decompose into radicals.
  • the disintegration time for half of the radical generator can be less than 1 hour.
  • the propellant charge powder must be deoxygenated by inert gas purging or vacuum / inert gas purging at room temperature after it has been treated with the crosslinkable moderator and with an initiator.
  • the crosslinking of the moderator is typically carried out under inert gas at atmospheric pressure, at a temperature of less than 90 ° C, and for a duration of less than six times the decomposition half life of the radical generator at that temperature.
  • Suitable non-crosslinked moderators are, in particular, polyvinyl alcohol, poly ( ⁇ -methylstyrene) poly (vinyl alcohol-co-vinyl acetate), poly (vinyl alcohol-co-ethylene), polybutadiene diol, polybutadiene diol dimethacrylate, polybutadiene diol diacrylate or longer-chain hydrocarbons such as waxes. Because these moderators are not soluble in the TLP matrix, they remain in the cone and on the TLP surface. Diffusion into the TLP grain or away from the TLP surface does not occur.
  • the liquid used is water, hexane, cyclohexane, toluene or a mixture of water / ethanol, water / methanol, water / acetone, ethanol / cyclohexane or toluene / hexane.
  • hexanediol diacrylate dipropylene glycol diacrylate, ethylene glycol dimethacrylate, tetraethylene glycol diacrylate, trimethylolpropane triacrylate, triethylene glycol diacrylate, propoxylated glycerol triacrylate, pentaerythritol tetraacrylate, ethoxylated bisphenol A diacrylate, propoxylated neopentylglycol diacrylate, ethoxylated neopentylglycol diacrylate, polyethylene glycol diacrylate, Polybutadiendioldiacrylat, polybutadienedioldimethacrylate, polyethylene glycol dimethacrylate, Polypropylenoxiddiacrylat ,
  • the liquid can be removed by evaporation under rotation from the opened mixing apparatus.
  • the finished treated propellant powder is then stored at elevated temperature (e.g., 3 days at 60 ° C) for several days to remove residual solvent and other volatiles.
  • the perforated TLP can be of any formulation and dimension.
  • they can be made from the following energy sources:
  • Nitrocellulose of various degrees of nitration polyglycidyl nitrate, polyglycidyl azide, polyNIMMO, polyAMMO, polyBAMO, ethylene glycol dinitrate, diethylene glycol dinitrate, nitroglycerine, butanetriol trinitrate, metriol trinitrate, nitroguanidine, hexogen, octogen, alkyl-NENA, CL-20, DNDA57, NTO, PETN, etc.
  • the perforated TLP may optionally contain additives known in powder manufacture for stabilization, pipe preservation, softening and fire damping.
  • Known stability enhancers which are suitably used are, for example, Akardit II (CAS No. 724-18-5), Centralit I (CAS No. 90-93-7), Centralit II (CAS No. 611-92 7), 2-nitrodiphenylamine (CAS No. 836-30-6) and diphenylamine (CAS No. 122-39-4), for the preservation of the pipe such as talc (CAS No. 14807-96-6), titanium dioxide ( CAS No. 13463-67-7), calcium carbonate (CAS No. 1317-65-3) or magnesium silicate (CAS No. 14807-96-6), for softening camphor (CAS No.
  • the green powder may contain other known additives for improving the ignition behavior and for modulating the burn-off behavior. All of the additives mentioned can be added to the powder dough during green-grain production, i. they are thus evenly distributed in the grain matrix. The total amount of these additives in the green grain is between 0-20 wt.%, Based on the content of nitrocellulose, preferably between 0.1-5 wt.%. But it is also possible to introduce these additives by the inventive surface treatment.
  • the perforated green grains are mixed in a polishing drum with a solid, a pin-stabilizing moderator and a low-viscosity liquid and mixed at a certain temperature for a certain time at a certain rotational speed.
  • the individual surface treatment materials must be compatible with the TLP green grain.
  • Compatibility must be determined on a case-by-case basis using appropriate measurement methods.
  • the solid used may be a pure substance or a mixture of different solids. It is important that the mean particle size of the solid or the solid mixture is in a favorable range, since the solid or the solid mixture are not soluble in the low-viscosity liquid.
  • the solid or the solid mixture should be easily introduced into the hole by means of the mixing apparatus. He should also compress well so that the pin has sufficient strength.
  • the grain size of the solid should, for example, not be greater than 1/10 of the hole diameter.
  • grain sizes are in the range between 0.01 microns and 200 microns, preferably in the range 0.1 to 50 microns. (In the experimental examples described below, the grain size was in the range of 0.5 to 45 microns.)
  • the liquid and the solid and the ratio solid / liquid should be chosen so that the solid grains do not agglomerate, but retain their full mobility. This is important for efficient closure of the perforations at their outer ends.
  • any solid or solid mixture may be used which is chemically stable and compatible with the TLP formulation within the application temperature range of the TLP and thus does not adversely affect the chemical life.
  • the solid must not melt in the entire manufacturing, bombardment and storage temperature range and do not sublime away and / or diffuse into the TLP grain during its entire service life. It selects substances whose melting point is at least 10 ° C - 20 ° C above the maximum operating temperature. Preference is given to substances which have a melting point above 90 ° C. and are insoluble in the TLP formulation or at most have only a very low solubility therein.
  • LOVA properties low-vulnerability ammunition, high bulk density, good flowability, erosion-reducing, fire-retardant, high energy content, electrical conductivity and good ignitability).
  • the solids or their mixtures are mainly inert substances.
  • inert solids or mixtures thereof For reasons of ignitability of the TLP of inert solids or mixtures thereof must be used as small amounts as possible. Based on the green grain, between 0.085 and 2 percent inert solids or solid mixtures are used.
  • inert solids which can be used neat or as mixtures are graphite, talc, titanium oxide, potassium cryolite, tungsten trioxide, molybdenum trioxide, magnesium oxide, boron nitride, potassium sulfate, acardite, centralite, calcium carbonate, oxalamide, ammonium carbamate, ammonium oxalate, etc. also polymers and copolymers with or without functional groups, linear, branched or crosslinked.
  • Moderators use solid or liquid substances.
  • the solid moderators must dissolve in the low-viscosity liquid used as the third component.
  • Liquid moderators or moderator solutions may also be present in the low-viscosity liquid as emulsifier.
  • Moderators are in principle all solid and liquid substances that have good chemical compatibility with the basic recipe of the green grain and a low volatility (eg vapor pressure at 21 ° C of ⁇ 10 -2 bar).
  • the moderator can be used as a pure substance or as a substance mixture.
  • the moderators used are generally inert substances. However, it is quite possible that energetic "moderators" can be used: However, these must be insensitive to the mechanical stress during the surface treatment process, in the later ammunition laboratory or ammunition transport and its use.
  • the amounts of moderator or moderator mixtures used are between 0.001 and 0.5%, preferably between 0.01 and 0.5%.
  • the moderator may be either soluble or insoluble in the TLP matrix. If the moderator is soluble, he is also referred to as a phlegmatizer and can also be used in accordance with this known function.
  • a concentration gradient forms in the surface treatment in the outermost TLP layer. This concentration gradient may degrade during the TLP lifetime, which inevitably alters the burning properties of the TLP. This usually manifests itself in higher animations and peak gas pressures, which adversely affects the ballistic properties and in extreme cases can destroy the weapon.
  • the diffusion of moderators is relatively favored. Therefore, the inventive surface treatment must be designed so that during TLP storage no or only a slight diffusion-induced change in the internal ballistic properties occur. If lightly diffusing moderators are used, then either sufficiently small amounts must be used, or it must be ensured that the diffusion process is virtually completed before being placed in the ammunition.
  • Low molecular weight, soluble moderators suitable for the inventive surface treatments of bi- and polybasic TLP have the lowest possible vapor pressure at 21 ° C and are either liquid or, if they are soluble in the low-viscosity liquid, solids.
  • Suitable classes of substances include ethers, esters, urethanes, ureas and ketones. Examples are camphor, dibutyl phthalate, diamyl phthalate, centralite, dipropyl adipate, di (2-ethylhexyl) adipate, diphenyl urethane, methylphenyl urethane, hexanediol diacrylate, ethylene glycol dimethacrylate, etc.
  • oligomeric, soluble moderators such as polyethers and polyesters having molecular weights of 500 to 3000 daltons.
  • a suitable thermally activatable radical initiator (initiator) must be added to the crosslinkable moderator.
  • the initiator should be so well soluble in the moderator that it is homogeneously distributed in the moderator.
  • the treatment conditions and the initiator must be chosen so that the initiator during the surface treatment process in the polishing drum as possible can not decompose into radicals. If the initiator and polymerizable moderator are either present as a layer on the TLP surface or diffused into the outermost TLP layer, then the oxygen in the air and z.T.
  • the oxygen present in the outermost TLP layer is removed by vacuum at room temperature and replaced by inert gas. This is necessary so that the radical reactions (polymerization, crosslinking) take place without interfering side reactions and with high yields. Under inert gas, the temperature of the TLP is increased so that the initiator decomposes as quickly as possible and completely into radicals. These radicals then start the polymerization or crosslinking of the moderators.
  • Radical initiators used are preferably initiators which do not decompose at room temperature practically at temperatures around 60 ° C to 90 ° C but very quickly into the corresponding radicals. This guarantees a fast, gentle and complete reaction of the polymerizable moderators.
  • suitable radical starters are tert. Butyl peroxyneodecanoate, di (4-tert-butylcyclohexyl) peroxydicarbonate, tert. Butyl peroxypivalate, dilauroyl peroxide, bis (aza-isobutyronitrile) etc.
  • the amount of polymerization initiator used depends on the amount of crosslinkable moderator used. Thus, between 0.1 and 5 mol% of initiator, based on 1 mol of moderator used. Initiator amounts between 1 and 4 mol% are preferred.
  • Suitable crosslinkable TLP-soluble moderators are derivatives of diacrylates, triacrylates, tetraacrylates, dimethacrylates, trimethacrylates, tetramethacrylates, diacrylamides, triacrylamides, dimethacrylamides, trimethacrylamides, divinyl esters, trivinyl esters, divinyl ethers, trivinyl ethers, divinylaromatics, trivinylaromatics, etc.
  • low molecular weight, radically crosslinkable moderators examples include hexanediol diacrylate, hexanediol dimethacrylate, ethylene glycol dimethacrylate, tetraethylene glycol diacrylate, triethylene glycol diacrylate, dipropylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, etc.
  • oligomeric, radically crosslinkable moderators are low molecular weight polyethylene glycol diacrylate, low molecular weight polyethylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, propoxylated neopentyl glycol diacrylate, ethoxylated neopentyl glycol diacrylate, propoxylated glycerol triacrylate, ethoxylated pentaerythritol tetraacrylate, etc.
  • polymeric, radically crosslinkable moderators examples include polybutadiene diol diacrylate, high molecular weight polyethylene glycol diacrylate, high molecular weight polyethylene glycol dimethacrylate, high molecular weight polypropylene oxide diacrylate, etc.
  • the moderators which are sparingly soluble in TLP or completely insoluble, are solid or liquid compounds which are soluble in the low-viscosity liquid or at least finely emulsifiable.
  • the compounds in question may be inert or energetic substances. It must be assumed that the moderator concentration on the TLP surface can not change due to sublimation or diffusion. This can be done by using either high melting, low carbon the volatility of insoluble compounds having polymerizable groups, after application to the TLP grain, is further reduced by a polymerization reaction (as described above).
  • Suitable insoluble moderators are apolar polymers and oligomers or highly polar polymers and oligomers with or without polymerizable groups.
  • Examples include totally or partially hydrolyzed polyvinyl acetate, poly (vinyl alcohol-co-ethylene), polybutadiene, polybutadiene diol, polybutadiene diol diacrylate, polystyrene, polyvinylpyrrolidone, poly (acrylonitrile-co-butadiene), poly ( ⁇ -methylstyrene), poly (vinyltoluene-co- ⁇ -) Methylstyrene), etc.
  • the low-viscosity liquid needed to carry out the surface treatments according to the invention is a solvent or solvent mixture which can very well dissolve or finely emulsify the solid or liquid cone-stabilizing moderator, but which does not, or only very so, mix the TLP grain to swell little.
  • Well suited are liquids with high or low polarity.
  • the boiling point of the liquid must be higher than the surface treatment temperature. Nevertheless, the low-viscosity liquid should have a sufficiently high volatility that evaporation at the treatment temperature can take place in a short time (between 5 and 60 minutes).
  • the liquid can also be removed by means of pressure reduction or by means of a warm gas stream.
  • pure solvent or a solvent mixture can be used as the liquid.
  • For the surface treatment amounts of 0.1% to 5% liquid (based on the amount of TLP) are used. Preferably, between 0.5% and 2% liquid is used.
  • Examples of particularly suitable low-viscosity liquids are water, mixtures of water and methanol, mixtures of water and ethanol, mixtures of water and propanol, mixtures of water and acetone, mixtures of water and tetrahydrofuran, and pentane, hexane, heptane, cyclohexane, toluene, methylene chloride and mixtures thereof.
  • perforated TLP are treated in a polishing drum.
  • the desired degree of filling is between 5 and 50%, preferably between 10 and 40%.
  • the TLP can be ungraphed or graphitized.
  • the solid or the solid mixture is first applied with rotation and distributed homogeneously over the entire TLP surface. If the TLP used is already sufficiently graphitized, it may be possible to dispense with further introduction of solid, or it may additionally be added another solid. Then, a solution of the low-viscosity liquid and the moderator or the moderator mixture is added. In the case of a desired crosslinking of polymerizable moderators, this solution additionally contains the polymerization initiator.
  • At least one of the solid components should either be graphite dust or acetylene black.
  • the solid consists of inert (non-energetic) material, it is only used in small amounts (based on the TLP). Thus, between 0.085% and 2% solids are homogeneously distributed to the TLP in the polishing drum. In the case of an admixture of energetic material, a concentration of more than 2% can be used because of the better ignitability of this mixture.
  • the added substances are allowed to act on the TLP surface for a certain time.
  • the exposure process lasts between 5 minutes and 4 hours, preferably between 15 minutes and 120 minutes.
  • the polishing drum must be closed gas-tight during the exposure time (depending on the vapor pressure of the liquid used).
  • the time interval may be between 5 minutes and 4 hours, preferably it is evaporated between 10 minutes and 120 minutes.
  • the evaporation can be further supported or promoted by further measures.
  • an air or inert gas stream is passed over the wet TLP.
  • the treated TLP is then subjected to a sharp drying process.
  • the last traces of solvents are removed and the treatment layer is stabilized.
  • the TLP is typically left at 60 ° C for about 3 days in a convection oven. This can be used e.g. Remove ethanol completely ( ⁇ 0.01%).
  • a radically polymerizable moderator is used and a polymerization reaction is to be carried out, a corresponding polymerization initiator is additionally added.
  • the surface treatment of the TLP is carried out at the lowest possible temperature and the low-viscosity liquid is removed at the same temperature. Preferably, the surface treatment is carried out at room temperature.
  • the TLP is freed of solvent residues and the atmospheric oxygen in vacuo and placed under inert gas.
  • the TLP can also be purged only with the inert gas to displace the oxygen in the air.
  • an inert gas e.g. Argon or nitrogen can be used. Only then the TLP mass is heated under inert gas to the required polymerization temperature, which is usually 30 ° C to 60 ° C above the treatment temperature.
  • a polymerization initiator which is thermally stable at room temperature, but at 50 ° C to 80 ° C decomposes very rapidly into the corresponding radicals.
  • the decomposition half life of a polymerization initiator is the time in which half of the initiator has decomposed into free radicals at a certain temperature. This disintegration half-life is, because of its central importance, known in all commercially available thermal initiators.
  • the polymerization time at a specific temperature is set to four to six times the decomposition half-life of the initiator used at this temperature for safety.
  • the TLP is cooled to room temperature directly in air or under the inert gas. Since low-boiling, apolar solvents are preferably used for the application of the polymerizable moderator, the TLP is virtually solvent-free after evacuation and polymerization.
  • the above-described surface treatment processes cause the hole channels in the entrance area to be closed with compact, compacted cones consisting mainly of the solids or solid mixtures used and of moderator.
  • the low-viscosity liquid and / or the moderator soluble in the TLP causes the pin to be additionally solidified and anchored in the hole channel.
  • the burnup in the perforations of the TLP is therefore slowed down by the treatment-related influence on the shape function with increasing powder temperatures. This counteracts the, with increasing temperature faster burning burning speed of the TLP. Ideally, the two effects compensate each other, so that the surface-treated TLP has a temperature-independent burn-off behavior.
  • This mechanism of action according to the invention thus differs completely from the other mechanisms described in the literature for achieving a reduced temperature dependence.
  • this mechanism is not based on the (dangerous) embrittlement of the TLP at low temperatures.
  • the surface treated TLP has good ballistic stability, i.
  • the filled with this propellant powder ammunition can be fired safely and with consistent performance.
  • the inventive surface treatment also has a favorable effect on the flowability and the bulk density of the TLP.
  • the bulk densities of the treated TLP are up to 10% higher than the bulk densities of the untreated TLPs.
  • the sleeve volume of a given ammunition component is predetermined, with increased bulk density more powder can be accommodated in this given sleeve volume.
  • TU behavior temperature-independent burn-up characteristic
  • high bulk density now contribute to the fact that existing tubes can be filled with more TLP and thus the kinetic energy of the projectile can be raised without exceeding the given maximum pressure in the weapon over the entire operating temperature range.
  • a TLP which has been subjected to a surface treatment according to the invention, is able to realize significant and cost-effective combat value increases in existing weapon systems without impairing full system compatibility. Furthermore, this treated TLP can also be used in newly developed weapon systems. It can be achieved by skillful choice of solids z. B. improves the ignition and / or the pipe erosion can be reduced.
  • treatment drum In a treatment facility (treatment drum) 90 kg of green grain, prepared with a 10.5x (19x0.2) mm template, presented at 16 ° C. To this is added 180 grams of graphite (0.2 wt% based on the TLP) and a solution of 1440 milliliters 80% ethanol (16 ml per kilogram TLP) and 225 grams polytetrahydrofuran 650 (0.25 wt% based on the TLP).
  • the mixture is stirred at 16 ° C. and 14 rpm. Stirred for 30 minutes. Then the lid of the polishing drum is removed and the solvent is evaporated for 105 minutes.
  • the treated TLP is dried at 60 ° C for 3 days.
  • Fig. 1a-c shows a comparison of the experimental results of the burning behavior of a propellant charge powder in the ballistic bomb.
  • the ratio of the instantaneous pressure P to the maximum pressure Pmax and the ordinate, the dynamic liveliness (1 / bar sec) x100 is plotted.
  • Fig. 1a the behavior of the untreated green grain can be seen at the application temperatures -40 ° C, + 21 ° C and + 50 ° C.
  • Fig. 1b are the bomb tests immediately after the powder production and in Fig. 1c recorded after storage for 5 years at 21 ° C.
  • the surface-treated (SCDB) TLP FM 2032n / 9 in the 150 ml pressure bomb shows very small differences in vividness at the three powder temperatures. This means that the burn-up is virtually independent of temperature.
  • TLP A portion of the treated TLP is stored in a sealed vessel at room temperature for 5 years. From this stored TLP another bomb is fired ( Fig. 1c ). The TLP shows virtually the same dynamic liveliness as 5 years ago, ie the burnup is still temperature independent.
  • the thus treated TLP is dried at 60 ° C for 3 days.
  • Fig. 3a again shows the bomb blast results of the untreated grit FM2708n.
  • Fig. 3b and 3c show the test results of the two samples FM 2712n and FM 2758n. It is clear that the temperature dependence of the TLP burnup could be greatly reduced.
  • the mass is stirred at room temperature for 60 minutes. Then the cover of the treatment device is removed and the solvent is evaporated for 30 minutes while rotating.
  • the treated TLP is transferred to a vacuum cabinet and evacuated there at room temperature until a final pressure of about 1 mbar is reached. Then the vacuum cabinet is filled with nitrogen and the heater is turned on. Once the TLP has reached a temperature of 70 ° C, this temperature is left to act for about two hours. Thereafter, the TLP is allowed to cool to room temperature.
  • 1 kilogram of the treated TLP is sealed in a gastight bag and stored at 71 ° C for 4 weeks. This corresponds to storage at room temperature of several decades (50 to 100 years). The remainder of the TLP is stored at room temperature.
  • a 150 ml pressure bomb (loading density 0.2) is shot at -40 ° C, + 21 ° C and + 50 ° C.
  • the results are in Fig. 5a-c shown.
  • the dynamic animations of the treated TLP ( Fig. 5b ) at the different firing temperatures do not differ as much as those of the green grain ( Fig. 5a ).
  • the treated TLP has become less sensitive to temperature.
  • the dynamic animations have not changed due to artificial aging ( Fig. 5c ), because diffusion of the polymerized moderator is no longer possible. This is partly due to the greatly increased molecular weight of the moderator due to the crosslinking and, in addition, due to the entanglement of the polymer moderator chains with the nitrocellulose chains. This means that the treated TLP is ballistically stable.
  • Example 4 Analogously to Example 4, a green grain, prepared with the template 11.0x (19x0.20) mm, treated with a crosslinkable moderator.
  • Ethylene glycol dimethacrylate (1.3% by weight based on TLP) was used.
  • the residual content of ethylene glycol di-methacrylate was determined by means of GC / MS. It was found that> 95% of the dimethacrylate was reacted.
  • the TLP was stored at 71 ° C for 4 weeks and then by FTIR microspectroscopy its concentration profile compared with normal stored TLP. In the Fig. 7 shown concentration profiles of the networked moderator prove that even under drastic storage conditions, no diffusion can be detected. This in turn means that this TLP is ballistically stable.
  • the warm green grain is given by turning at 26 rpm. 12 grams of graphite (0.12 wt% based on the TLP). Once the graphite is homogeneously distributed on the TLP, a solution of 90 grams of water (1.1 wt% based on the TLP) and 5.6 grams of polyvinyl alcohol (0.07 wt% based on the TLP) is added thereto and with the drum closed at 60 ° C mixed for 70 minutes.
  • the treated TLP is dried at 60 ° C for three days.
  • Fig. 8a-c are the bomb blasts at different powder temperatures of the green grain ( FIG. 8a : untreated), of the treated powder ( Fig. 8b after storage at 21 ° C for 4 weeks) and the accelerated aged, treated powder ( Fig. 8c : 4 Weeks at 63 ° C).
  • the pressure bomb clearly shows the reduction of the temperature dependence of Pulverabbrands after the inventive surface treatment. This reduction remains unchanged when the treated TLP is artificially aged. Because of its insolubility, polyvinyl alcohol can not diffuse into the TLP matrix. Thus, even this treated TLP is ballistically stable.
  • the warm green wheat is added while turning at 13.6 rpm. 55 grams of graphite (0.10 wt% based on the TLP). Once the graphite is homogeneously distributed on the TLP, a solution of 512 grams of ethanol (75% ethanol, 25% water vol.) And 27.5 grams polytetrahydrofuran 650 (0.05% wt. On TLP) is added and the drum is closed mixed at 30 ° C for 60 minutes.
  • the treated TLP is dried at 60 ° C for three days.
  • Fig. 9a-d are the bomb blasts at different powder temperatures of the green grain ( FIG. 9a : untreated), of the treated powder ( Fig. 9b after storage at 21 ° C for 4 weeks) and the accelerated aged, treated powder ( Fig. 9c : 4 Weeks at 63 ° C).
  • the pressure bomb clearly shows the reduction of the temperature dependence of Pulverabbrands after the inventive surface treatment. This reduction remains unchanged when the treated TLP is artificially aged. Thus, even this treated TLP is ballistically stable.
  • Fig. 9d a blend of 70 wt% green grain and 30 wt% treated grain is shown. With such mixtures, the liveliness of the TLP burn-off can be additionally controlled.
  • the mass is stirred at room temperature for 100 minutes. Then the cover of the treatment device is removed and the solvent is evaporated while turning for 20 minutes.
  • the treated TLP is then dried at 60 ° C for 3 days.
  • Part of this surface-treated TLP is artificially aged at 71 ° C for 4 weeks in a gas-tight bag ( Fig. 10b ) during which the other part of the TLP is stored in a gastight manner at room temperature ( Fig. 10a ).
  • the inventive effect is achieved without phlegmatizer.
  • the warm green grain is given by turning at 13.5 rpm. 42 g of graphite (0.075% based on the TLP) and 55 g of talc (0.10%). As soon as the graphite and talc are homogeneously distributed on the TLP, 695 g of solvent (ethanol: water, 3: 1, 15 ml per kg of green grain) are added and mixed with the drum closed at 30 ° C for 60 minutes.
  • solvent ethanol: water, 3: 1, 15 ml per kg of green grain
  • the treated TLP is dried at 60 ° C for three days.
  • Fig. 11a Green grain
  • Fig. 11b after the treatment according to the invention
  • the bombardment bombardments are shown at different powder temperatures of the green grain (untreated) and the treated powder (after storage at 21 ° C. for 4 weeks).
  • the pressure bomb clearly shows the reduction of the temperature dependence of Pulverabbrands after the inventive surface treatment.
  • the treatment process is simple, reproducible and relatively inexpensive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)

Claims (23)

  1. Procédé pour la préparation d'une poudre propulsive, où un grain présentant au moins un canal continu dans un sens axial avec des ouvertures qui débouchent en une surface extérieure du grain, est préparé et où les ouvertures sont fermées avec un solide non volatil, caractérisé en ce que
    a) des grains crus, le solide et un modérateur éventuel et un liquide de faible viscosité sont introduits dans un appareil de mélange, en ce que
    b) le solide est une substance dont le point de fusion est situé au moins 10°C-20°C au-dessus d'une température d'utilisation maximale de la poudre propulsive et qui n'entre pas en réaction avec le grain cru et qui est utilisée en une quantité de 0,085-2% en poids par rapport au poids du corps cru, en ce que
    c) - pour autant que le modérateur éventuel soit présent - le modérateur est une substance solide ou liquide qui présente une bonne compatibilité chimique avec la formulation de base du corps cru et une faible volatilité, c'est-à-dire une tension de vapeur à 21°C de < 10-2 bars, et qui est utilisée en une quantité de 0,001% en poids à 0,5% en poids par rapport au poids du grain cru,
    d) le liquide de faible viscosité est un solvant ou un mélange de solvants, qui dissout très bien le modérateur solide ou liquide stabilisant le bouchon ou qui peut l'émulsionner finement, mais qui ne gonfle pas ou seulement très peu le grain cru et qui est utilisé en une quantité de 0,1% en poids à 5% en poids par rapport au poids du grain cru, où le solide n'est pas soluble dans le liquide de basse viscosité et présente une grosseur de grains qui peut être introduite avec l'appareil de mélange sans problème dans les ouvertures du canal,
    e) les grains crus, le solide et le modérateur éventuel et le liquide de faible viscosité sont mélangés par rotation dans l'appareil de mélange fermé de manière étanche aux gaz pendant un laps de temps déterminé entre 5 minutes et 4 heures à une température dans la plage de 0°C à 90°C, le solide étant incorporé successivement dans les canaux du grain sous l'effet d'une pression de la masse de poudre exercée par le mélange,
    f) et en ce que le liquide de basse viscosité est ensuite éliminé du grain en continuant la transformation par l'appareil de mélange par évaporation ou par réduction de la pression ou au moyen d'un flux gazeux chaud,
    g) et le grain cru ainsi traité est séché à température élevée,
    h) de manière telle qu'une partie compactée et ancrée du solide non volatil est réalisée dans le canal, qui forme un bouchon principalement constitué par le solide utilisé et le modérateur éventuel, présentant une mobilité dépendant de la température, en ce que le bouchon peut résister de manière contrôlée à une onde de choc d'allumage, un effectif du bouchon étant réglée par la durée de traitement dans l'appareil de mélange en ce sens qu'une durée de traitement plus longue conduit à un bouchon plus fort,
    i) de manière telle qu'à une basse température d'utilisation, la mobilité est plus grande qu'à une température d'utilisation augmentée, de manière telle que le bouchon permet une combustion dans le trou plus forte à basse température d'utilisation qu'à une température d'utilisation augmentée, de manière telle qu'on obtient une indépendance réduite de la température d'une combustion de la poudre propulsive.
  2. Procédé selon la revendication 1, caractérisé en ce que le modérateur est insoluble dans le grain cru.
  3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que le modérateur est réticulable par voie radicalaire à l'aide d'un agent de formation de radicaux et en ce que le solide est de ce fait compacté et ancré.
  4. Procédé selon la revendication 3, caractérisé en ce que l'agent de formation de radicaux est utilisé en une quantité de 0,1% en mole à 5% en mole par rapport à la quantité molaire du modérateur réticulable, l'agent de formation des radicaux présentant, à une température de traitement de surface une stabilité élevée à la décomposition, en particulier un temps de décomposition pour la moitié de l'agent de formation de radicaux supérieur à 10 heures, mais se décomposant par contre rapidement en radicaux à la température de polymérisation, en particulier un temps de décomposition pour la moitié de l'agent de formation de radicaux inférieur à 1 heure.
  5. Procédé selon l'une quelconque des revendications 3 à 4, caractérisé en ce que la poudre propulsive est libérée par rinçage avec un gaz inerte ou par une mise sous vide/rinçage avec un gaz inerte à température ambiante de l'oxygène de l'air après qu'elle a été traitée avec le modérateur réticulable et avec un initiateur.
  6. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que la réticulation du modérateur est réalisée sous gaz inerte, à pression normale, à une température inférieure à 90°C et pendant une durée de moins de six fois la durée de demi-vie de décomposition de l'agent de formation de radicaux à cette température.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le modérateur est de bas poids moléculaire et soit liquide, soit, lorsqu'il est soluble dans le liquide de basse viscosité, un solide, le modérateur appartenant de préférence à une des classes de substances formées par les éthers, les esters, les uréthanes, les urées et les cétones et comprend en particulier le camphre, le phtalate de dibutyle, le phtalate de diamyle, le centralite, l'adipate de dipropyle, l'adipate de di(2-éthylhexyle), le diphényluréthane, le méthylphényluréthane, le diacrylate d'hexanediol, le diméthacrylate d'éthylèneglycol.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on utilise, comme modérateur, une ou plusieurs des substances formées par le polytétrahydrofuranne, le poly(alcool vinylique), le poly(alcool vinylique-co-acétate de vinyle), le poly(alcool vinylique-co-éthylène), le polybutadiènediol, le poly(diméthacrylate de butadiènediol), le poly(α-méthylstyrène), le polybutadiène ou le poly(diacrylate de butadiènediol).
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on utilise comme liquide de basse viscosité, de l'eau, de l'éthanol, de l'hexane, du cyclohexane ou un mélange eau/éthanol, eau/méthanol ou eau/acétone.
  10. Procédé selon l'une quelconque des revendications 3 à 9, caractérisé en ce qu'on utilise comme modérateurs réticulables une ou plusieurs des substances diacrylate d'hexanediol, diacrylate de dipropylèneglycol, diméthacrylate d'éthylèneglycol, diacrylate de tétraéthylèneglycol, triacrylate de triméthylolpropane, diacrylate de triéthylèneglycol, triacrylate propoxylé de glycérol, tétraacrylate de pentaérythritol, diacrylate éthoxylé de bisphénol A, diacrylate propoxylé de néopentylglycol, diacrylate éthoxylé de néopentylglycol, poly(diacrylate d'éthylèneglycol), poly(diacrylate de butadiènediol), poly(diméthacrylate de butadiènediol), poly(diméthacrylate d'éthylèneglycol), poly(diacrylate d'oxyde de propylène).
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'on utilise comme modérateur un polyéther avec des poids moléculaires de 500 à 3000 Daltons, en particulier le polytétrahydrofuranne.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'appareil de mélange pour l'évaporation du liquide est ouvert pendant un laps de temps déterminé dans la plage de 5 minutes à 4 heures.
  13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le solide est d'abord appliqué et réparti de manière homogène sur une surface totale du grain cru, puis une solution du liquide de faible viscosité et du modérateur est ajoutée.
  14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le solide comprend les substances suivantes : graphite, talc, oxyde de titane, suie, sulfate de potassium, cryolithe de potassium, carbonate de calcium, trioxyde de tungstène, trioxyde de molybdène, oxyde de magnésium, nitrure de bore, acardite, centralite, carbonate de calcium, oxalamide, carbamate d'ammonium, oxalate d'ammonium, ou des polymères ou des copolymères avec ou sans groupes fonctionnels, linéaires, ramifiés ou réticulés.
  15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que le solide présente une grosseur de grain dans la plage de 0,01 à 100 micromètres, de manière particulièrement préférée dans la plage de 0,1 à 50 micromètres, la grosseur des grains n'étant pas supérieure à 1/10 des ouvertures du canal.
  16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'on sèche pendant plusieurs jours à température augmentée.
  17. Poudre propulsive pouvant être obtenue par le procédé selon la revendication 1, dont le grain présente au moins un canal continu dans un sens axial avec des ouvertures qui débouchent en une surface extérieure du grain, où les ouvertures sont fermées par un solide inerte non volatil, caractérisée en ce que
    a) une partie compactée et ancrée en un solide du solide non volatil est réalisée dans le canal, qui forme un bouchon principalement constitué par le solide utilisé et le modérateur éventuel, présentant une mobilité dépendant de la température,
    b) le bouchon présentant une température de fusion qui est supérieure à une température de fabrication, d'entreposage et d'utilisation, en particulier supérieure à 90°C,
    c) et le bouchon peut résister de manière contrôlée à une onde de choc d'allumage,
    d) de manière telle qu'à une basse température d'utilisation, la mobilité est plus grande qu'à une température d'utilisation augmentée, de manière telle que le bouchon permet une combustion dans le trou plus forte à une basse température d'utilisation qu'à une température d'utilisation augmentée.
  18. Poudre propulsive selon la revendication 17, caractérisée en ce que le bouchon est constitué par une substance qui n'est pas soluble dans le grain cru à la base du grain traité.
  19. Poudre propulsive selon la revendication 17 ou 18, caractérisée en ce que le bouchon est essentiellement constitué par un solide inerte, présentant en particulier une grosseur de grain dans la plage de 0,01 à 100 micromètres, de manière particulièrement préférée dans la plage de 0,1 à 50 micromètres et en ce que la grosseur des grains n'est pas supérieure à 1/10 des ouvertures du canal.
  20. Poudre propulsive selon l'une quelconque des revendications 17 à 19, caractérisée en ce que le bouchon présente une faible proportion de solide énergétique, en particulier la nitrocellulose, l'hexogène, l'octogène, la nitroguanidine, le nitrotriazole, l'éthylènedinitramine, l'éthyltétryle, le picrate d'ammonium, le trinitrotoluène, le trinitrobenzène, la tétranitroaniline, le nitrate d'ammonium, le nitrate de potassium, le perchlorate d'ammonium, le perchlorate de potassium.
  21. Poudre propulsive selon l'une quelconque des revendications 17 à 20, caractérisée en ce que le grain présente plusieurs, en particulier 7 à 19, canaux axiaux continus et en ce que l'espace creux d'un canal fermé par les bouchons présente un volume d'espace creux qui représente un multiple d'un volume d'un bouchon.
  22. Poudre propulsive selon la revendication 21, caractérisée en ce que le grain est cylindrique et présente un diamètre en particulier de 1 à 20 mm, de manière particulièrement préférée de 3 à 15 mm, et en ce que les canaux présentent un diamètre de 0,03 à 0,5 mm, en particulier de 0,1 à 0,3 mm.
  23. Poudre propulsive selon l'une quelconque des revendications 17 à 22, caractérisée en ce qu'un polyéther avec des poids moléculaires de 500 à 3000 Daltons, en particulier le polytétrahydrofuranne, est présent comme modérateur.
EP20020405191 2001-03-13 2002-03-12 Poudre propulsive insensible à la température Expired - Lifetime EP1241152B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20020405191 EP1241152B1 (fr) 2001-03-13 2002-03-12 Poudre propulsive insensible à la température

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01810255 2001-03-13
EP01810255A EP1241151A1 (fr) 2001-03-13 2001-03-13 Poudre propulsive insensible à la température
EP20020405191 EP1241152B1 (fr) 2001-03-13 2002-03-12 Poudre propulsive insensible à la température

Publications (2)

Publication Number Publication Date
EP1241152A1 EP1241152A1 (fr) 2002-09-18
EP1241152B1 true EP1241152B1 (fr) 2010-10-06

Family

ID=26077354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020405191 Expired - Lifetime EP1241152B1 (fr) 2001-03-13 2002-03-12 Poudre propulsive insensible à la température

Country Status (1)

Country Link
EP (1) EP1241152B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132537A (ja) * 2008-10-31 2010-06-17 Nof Corp コーティング発射薬
WO2012174669A3 (fr) * 2011-06-21 2013-03-21 Nitrochemie Aschau Gmbh Utilisation d'une matière solide pour la fabrication d'une poudre de charge propulsive

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420657C (zh) * 2006-10-12 2008-09-24 新泰市安泰化工有限责任公司 连续自动混药机、生产粉状硝铵炸药的方法及生产线
DE102007025981A1 (de) * 2007-06-04 2008-12-11 Rheinmetall Waffe Munition Gmbh Patronenmunition, insbesondere Übungsmunition
DE102011118547B4 (de) 2011-11-16 2013-06-27 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zur Vorhersage des Abbrandverhaltens eines Treibladungspulvers
EP3495338A1 (fr) 2017-12-08 2019-06-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Charge propulsive

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB508914A (en) * 1938-07-27 1939-07-07 Hercules Powder Co Ltd Improvements in or relating to the preparation of smokeless powder
FR1205433A (fr) * 1957-04-18 1960-02-02 Rech S Chimiques S A Procédé de fabrication de poudre propulsive à faible coefficient de température
US3506505A (en) * 1967-12-01 1970-04-14 Herzog Johanna Nitrocellulose base propellant coated with graphite,plasticizer,and inorganic pigment
DE2520882C1 (de) * 1975-05-10 1986-07-17 Dynamit Nobel Ag, 5210 Troisdorf Ein- oder mehrbasige Pulverk¦rper für Treibladungen und Verfahren zu ihrer Herstellung
DE3008196A1 (de) * 1980-03-04 1981-09-17 Wilhelm Dipl.-Chem. Dr. 5400 Koblenz Oversohl Ein- oder mehrbasiges treibladungspulver und verfahren zu seiner herstellung
SE451716B (sv) * 1983-07-13 1987-10-26 Nobel Kemi Ab Sett att tillfora inhiberingssubstans till krut i en fluidiserad bedd samt ett for behandlingen av krutet avpassat medel
DE3715585A1 (de) * 1987-05-09 1988-11-24 Rheinmetall Gmbh Mehrloch-treibladungsschuettpulverkorn mit variabler progressivitaet des abbrandes
DE19907809C2 (de) * 1999-02-24 2002-10-10 Nitrochemie Gmbh Verfahren zur Herstellung von ein-, zwei- oder dreibasigen Triebladungspulvern für Rohrwaffenmunition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132537A (ja) * 2008-10-31 2010-06-17 Nof Corp コーティング発射薬
WO2012174669A3 (fr) * 2011-06-21 2013-03-21 Nitrochemie Aschau Gmbh Utilisation d'une matière solide pour la fabrication d'une poudre de charge propulsive
AU2012272500B2 (en) * 2011-06-21 2016-11-24 Nitrochemie Aschau Gmbh Use of a solid for the production of a propellant powder

Also Published As

Publication number Publication date
EP1241152A1 (fr) 2002-09-18

Similar Documents

Publication Publication Date Title
DE3820443C2 (de) Poröses Treibmittelkorn und Verfahren zu seiner Herstellung
DE3031369C2 (de) Pyrotechnische Ladung aus Nebelsatz und Anzündsatz und Verfahren zur Herstellung der Nebelmischung und des Anzündsatzes
DE69010180T2 (de) Verbesserte Zusammensetzung für Initialladung.
EP2723700B1 (fr) Utilisation d&#39;une matière solide pour la fabrication d&#39;une poudre de charge propulsive, procédé pour la fabrication d&#39;une poudre de charge propulsive et poudre de charge propulsive
DE60026180T2 (de) Infrarotstrahlung emittierende Täuschungsfackel
EP0712767A1 (fr) Générateur de gaz pour un coussin gonflable
EP1857429B1 (fr) Propulseur pour l&#39;accélération de projectiles
EP1031548B1 (fr) Procédé de production de poudres à simple, double ou triple base pour munition pour armes à canon
EP1241152B1 (fr) Poudre propulsive insensible à la température
DE2733700C2 (de) Übungsgefechtskopf für Artillerieraketen
DE4446976A1 (de) Feste pyrotechnische Zusammensetzungen mit thermoplastischem Bindemittel und Weichmacher auf der Basis von Silylferrocen-Polybutadien
US20060266451A1 (en) Method for producing a propellant
DE2753555C1 (de) Verwendung von polymeren Polynitroaromaten in Treibsaetzen
DE4307731C2 (de) Treibladungspulver für Waffen
EP1164116B1 (fr) Procédé de production de matière à haute énergie fonctionelle
DE3243425A1 (de) Anzuendmittel fuer treibladungen
DE10027413B4 (de) Verfahren zum Herstellen einer Treibmittelzusammensetzung unter Anwendung eines Trockenmischverfahrens
DE1050257B (fr)
DE2809279C3 (de) Treibladungsmassen für Rohrwaffen
DE2756259B2 (de) Einstückige Pulver-Treiblandung, ihre Herstellung und Verwendung
DE3242106C1 (de) Treibladungsmassen für Rohrwaffen
CH685940A5 (de) Perkussionszundsatz fur Handfeuerwaffen, Verfahren zu seiner Herstellung sowie dessen Verwendung.
CA3085162A1 (fr) Charge propulsive
US4844845A (en) Dry mixture for production of pre-formed propellant charge
DE2436743C3 (de) Thermoplastische Zusammensetzung auf Polyvinylnitratbasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021104

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NITROCHEMIE WIMMIS AG

Owner name: NITROCHEMIE ASCHAU GMBH

17Q First examination report despatched

Effective date: 20030212

AKX Designation fees paid

Designated state(s): AT BE CH CY LI

RBV Designated contracting states (corrected)

Designated state(s): ES FI FR SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FI FR SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20200320

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200402

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210224

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210215

Year of fee payment: 20

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313