EP1154219A1 - Verfahren und Vorrichtung zur Korrektur von dynamischen Geschützfehlern - Google Patents

Verfahren und Vorrichtung zur Korrektur von dynamischen Geschützfehlern Download PDF

Info

Publication number
EP1154219A1
EP1154219A1 EP00126917A EP00126917A EP1154219A1 EP 1154219 A1 EP1154219 A1 EP 1154219A1 EP 00126917 A EP00126917 A EP 00126917A EP 00126917 A EP00126917 A EP 00126917A EP 1154219 A1 EP1154219 A1 EP 1154219A1
Authority
EP
European Patent Office
Prior art keywords
weapon barrel
gun
movement
azimuth
elevation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00126917A
Other languages
English (en)
French (fr)
Inventor
Michael Gerber
Gabriel Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP1154219A1 publication Critical patent/EP1154219A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A27/00Gun mountings permitting traversing or elevating movement, e.g. gun carriages
    • F41A27/28Electrically-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/06Elevating or traversing control systems for guns using electric means for remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/14Elevating or traversing control systems for guns for vehicle-borne guns
    • F41G5/16Elevating or traversing control systems for guns for vehicle-borne guns gyroscopically influenced

Definitions

  • the invention relates to a method and a device for correcting dynamic gun errors according to the preamble of claims 1 and 4, respectively.
  • the gun structure and the Gun barrel when dynamically firing series fire due to high forces.
  • the weapon barrel Before the start of a series fire, the weapon barrel is aimed at a target or at one Place where the projectiles to be fired meet with the aim, but directed
  • the forces that act during the series fire result in an uncontrolled one, among other things spatial movement of the weapon barrel muzzle area, through which firing errors and a decrease in the probability of being hit.
  • Such Errors are considered dynamic gun errors within the scope of the present description or muzzle direction error.
  • the object of the invention is seen in proposing a precise, efficient method and an economically advantageous and field-compatible device for carrying out the method, by means of which the errors mentioned are avoided or at least greatly reduced and a higher probability of being hit.
  • a measurement is made during a series fire the movement of the muzzle region of the weapon barrel, in short the weapon barrel muzzle region, instead of.
  • the measurement signals obtained in this way are used for a correction to carry out the original direction of the weapon barrel, or to the position of the Gun barrel, that is, its elevation and azimuth, to change the movement the weapon barrel muzzle area is compensated. That way you can Mistakes in firing can be avoided.
  • an angle measuring device is arranged, which has two measuring elements in one The plane is offset by 90 ° to one another transversely to the longitudinal axis of the weapon barrel.
  • the angle measuring device is in particular in a particularly advantageous embodiment of the invention formed by two measuring elements, each of which has a fiber gyroscope. Shortly before the series fire is triggered, the fiber gyro angles become with the encoder angles of the gun. The movement is measured during the series fire the weapon barrel muzzle area by the deviations of the measured fiber gyro angles be continuously determined from the encoder angles. So be measured Deviations in the direction of the weapon barrel muzzle from the originally determined and set target direction. The measurement signals obtained in this way are after they have been converted have been used to control the drives used for straightening the weapon barrel are provided.
  • a gun 1 which is particularly suitable for rapid series fire.
  • a measuring device comprising a first measuring member 4 and a second measuring member 5 , which are offset by 90 ° to one another in a plane perpendicular to the longitudinal axis of the gun barrel 2 of the gun 1 .
  • An offset of 90 ° is particularly advantageous, but an offset of less than 90 ° is also possible.
  • the first measuring element 4 is assigned to a drive for pivoting the weapon barrel 2 for adjusting the elevation and the second measuring element 5 is assigned to a drive for pivoting the weapon barrel 2 for adjusting the azimuth; these are the drives which are already present on such guns for aiming the weapon barrel in elevation ⁇ and azimuth ⁇ and which are therefore not shown and described in more detail.
  • the measuring elements 4 and 5 have the purpose of detecting the movement of the muzzle of the weapon barrel 2 during a series fire and converting it into electrical measuring signals or output signals.
  • Each of the measuring elements 4, 5 has a fiber gyroscope that works according to the gyro measurement principle.
  • a fiber gyro essentially consists of a ring interferometer, in which one The laser generated rays circulate in opposite directions and interfere with each other, whereby the Ring for the beam path from a number of turns of an optical fiber arrangement is formed, into which the beam generated by the laser is coupled. If such Ring interferometer arranged around an axis perpendicular to the plane of the beam path If, as is known from the Sagnac experiment, there is a path difference from the opposite beams emitted by the laser and thus a shift in the interference fringes generated by them or a change in the interference pattern. These changes of Interference patterns are detected by a detector and output signals in the form of Turning rates or changes in angle given. In other designs of fiber gyros the Doppler effect between the opposing beams is used to determine who uses angle changes.
  • the measuring device is connected to a control device. 2 , the measuring element 4 is connected to a first input e1 of a first control unit 10 .
  • the control unit 10 is connected on the output side via lines R, S, T to a motor 11 of the one drive, namely that for pivoting the weapon barrel 2 in the vertical direction or for adjusting the elevation.
  • the motor 11 is directly connected to a resolver 12 , further via a planetary gear 13 with a load 14 , which corresponds to the parts of the gun 1 to be moved, and further via a measuring gear 15 with an encoder 16 .
  • the resolver 12 is connected to a second input e2 of the control unit 10 , and the encoder 16 is connected to a third input e3 of the control unit 10 .
  • a reference speed or a reference position are fed to the control unit 10 via a fourth input e4 and a fifth input e5 .
  • the further drive which is provided for pivoting the weapon barrel 2 to adjust the azimuth, is controlled by means of a further control device, not shown, which is similar to the control unit 10 described with reference to FIG. 2 .
  • the gyro angles of the measuring elements 4 and 5 are compared with the encoder angles of the gun 1 .
  • the deviations of the fiber gyro angles from the encoder angles are evaluated in the control unit 10 and used to control the drives for the pivoting of the weapon barrel 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Gyroscopes (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Verfahren und Vorrichtung zur Korrektur von dynamischen Geschützfehlern. Dynamische Geschützfehler werden von einer Bewegung eines Waffenrohr-Mündungsbereiches (3) eines Geschützes (1) während eines Seriefeuers verursacht. Um diese Fehler zu korrigieren, wird während des Seriefeuers eine Messung der Bewegung des Waffenrohr-Mündungsbereiches (3) des Geschützes (1) zur Gewinnung von Messsignalen durchgeführt. Die Messsignale werden zur Korrektur von Azimut und Elevation des Waffenrohres (2) verwertet, um die Bewegung des Waffenrohr-Mündungsbereiches (3) zu kompensieren. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Korrektur von dynamischen Geschützfehlern nach dem Oberbegriff des Anspruchs 1 bzw. 4.
Bei Geschützen, insbesondere solchen hoher Kadenz, werden die Geschützstruktur und das Waffenrohr beim Schiessen von Seriefeuer durch grosse Kräfte dynamisch stark beansprucht. Vor Beginn eines Seriefeuers wird das Waffenrohr zwar auf ein Ziel bzw. auf einen Ort, in welchem die abzufeuernden Projektile mit dem Ziel zusammentreffen, gerichtet, aber aus den während des Seriefeuers wirkenden Kräften resultiert unter anderem eine unkontrollierte räumliche Bewegung des Waffenrohr-Mündungsbereiches, durch welche Schussabgangsfehler und eine Verminderung der Trefferwahrscheinlichkeit verursacht werden. Solche Fehler werden im Rahmen der vorliegenden Beschreibung als dynamische Geschützfehler oder Mündungsrichtungsfehler bezeichnet.
Da für dieses Problem bis anhin keine brauchbare Lösung zur Kenntnis gebracht wurde, wird die Aufgabe der Erfindung darin gesehen, ein präzises, effizientes Verfahren und eine wirtschaftlich vorteilhafte und feldtaugliche Vorrichtung zur Durchführung des Verfahrens vorzuschlagen, mittels welchen die genannten Fehler vermieden oder mindestens stark reduziert werden und eine grössere Treffwahrscheinlichkeit erreicht wird.
Diese Lösung dieser Aufgabe erfolgt durch die in den Patentansprüchen 1 und 4 angegebene Erfindung.
Vorteilhafte Weiterbildungen des erfindungsgemässen Verfahrens bzw. der erfindungsgemässen Vorrichtung sind durch die Patentansprüche 2 bis 3 bzw. 5 bis 6 definiert.
Nach dem erfindungsgemässen Verfahren findet während eines Seriefeuers eine Messung der Bewegung des Mündungsbereichs des Waffenrohres, kurz des Waffenrohr-Mündungsbereiches, statt. Die hierbei gewonnenen Messsignale werden verwertet, um eine Korrektur der ursprünglichen Richtung des Waffenrohres durchzuführen, bzw. um die Stellung des Waffenrohres, das heisst seine Elevation und sein Azimut, so zu verändern, dass die Bewegung des Waffenrohr-Mündungsbereiches kompensiert wird. Auf diese Weise können Schussabgangsfehler vermieden werden.
Zur Durchführung dieses Verfahrens ist am Waffenrohr im Waffenrohr-Mündungsbereich eine Winkelmesseinrichtung angeordnet, welche zwei Messglieder aufweist, die in einer Ebene quer zur Längsachse des Waffenrohres um 90° zueinander versetzt sind.
Mit der Erfindung werden dynamische Geschützfehler bzw. dynamische Mündungsrichtungsfehler aktiv kompensiert, so dass eine kleinere Ablage und damit eine grössere Treffwahrscheinlichkeit erreicht werden.
Insbesondere in einer besonders vorteilhaften Ausbildung der Erfindung ist die Winkelmesseinrichtung durch zwei Messglieder gebildet, von denen jedes einen Faserkreisel aufweist. Kurz vor der Auslösung des Seriefeuers werden die Faserkreiselwinkel mit den Coderwinkeln des Geschützes abgeglichen. Während des Seriefeuers erfolgt die Messung der Bewegung des Waffenrohr-Mündungsbereiches, indem die Abweichungen der gemessenen Faserkreiselwinkel von den Coderwinkeln laufend festgestellt werden. Gemessen werden somit Abweichungen der Richtung der Waffenrohr-Mündung von der ursprünglich bestimmten und eingestellten Soll-Richtung. Die so gewonnenen Messsignale werden, nachdem sie Umrechnungen unterzogen wurden, zur Regelung der Antriebe verwendet, welche zum Richten des Waffenrohres vorgesehen sind.
Als besondere Vorteile der Lösung mit Hilfe von Faserkreiseln sollen die folgenden genannt sein:
  • Das Messprinzip ist vorteilhaft, da durch die Messung die tatsächlichen Raumwinkelfehler des Waffenrohr-Mündungsbereiches ermittelt werden.
  • Die Messung ist unabhängig von äusseren Einflüssen.
  • Die verwendeten Messglieder sind verhältnismässig preisgünstig und robust; sie weisen keine beweglichen Teile auf, verschmutzen nicht und unterliegen keinen äusseren Einflüssen.
  • Vor der eigentlichen Messung durchzuführende Eich- oder Ausrichtvorgänge sind problemlos durchführbar.
  • Die angestrebte Korrektur der dynamischen Geschützfehler bzw. Mündungsrichtungsfehler kann laufend von Schuss zu Schuss erfolgen.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Zeichnung erläutert. Es zeigen:
Fig. 1
ein Geschütz mit einem Teil der erfindungsgemässen Vorrichtung in vereinfachter perspektivischer Darstellung und
Fig. 2
ein Blockschema der erfindungsgemässen Vorrichtung in vereinfachter Darstellung.
In der Fig. 1 ist ein insbesondere für schnelles Seriefeuer geeignetes Geschütz 1 dargestellt. Im Bereich einer Waffenrohr-Mündung 3 eines Waffenrohres 2 des Geschützes 1 ist eine Messvorrichtung, umfassend ein erstes Messglied 4 und ein zweites Messglied 5, angeordnet, welche in einer Ebene senkrecht zur Längsachse des Waffenrohres 2 des Geschützes 1 um 90° zueinander versetzt sind. Eine Versetzung von 90° ist besonders vorteilhaft, aber es sind auch Versetzungen um kleinere Winkel als 90° möglich. Im weiteren ist es zwar besonders vorteilhaft aber nicht zwingend, die Messglieder 4, 5 in Richtung der Längsachse des Waffenrohres 2 nicht gegen einander zu versetzen.
Das erste Messglied 4 ist einem Antrieb für die Schwenkung des Waffenrohres 2 zur Einstellung der Elevation und das zweite Messglied 5 einem Antrieb für die Schwenkung des Waffenrohres 2 zur Einstellung des Azimuts zugeordnet; hierbei handelt es sich um die Antriebe, die ohnehin an solchen Geschützen zum Richten des Waffenrohres in Elevation λ und Azimut α vorhanden sind und die daher nicht näher dargestellt und beschrieben sind.
Die Messglieder 4 und 5 haben den Zweck, die Bewegung der Mündung des Waffenrohres 2 während eines Seriefeuers zu erfassen und in elektrische Messsignale bzw. Ausgangssignale umzuwandeln. Jedes der Messglieder 4, 5 weist einen Faserkreisel auf, der nach dem Messprinzip der Kreiselmessung arbeitet.
Ein Faserkreisel besteht im Wesentlichen aus einem Ring-Interferometer, in dem von einem Laser erzeugte Strahlen entgegengesetzt umlaufen und miteinander interferieren, wobei der Ring für den Strahlenverlauf aus einer Anzahl von Windungen einer Glasfaseranordnung gebildet wird, in welche der vom Laser erzeugte Strahl eingekoppelt wird. Wenn ein solches Ring-Interferometer um eine Achse rechtwinklig zur Ebene des Strahlenganges angeordnet wird, so tritt, wie vom Sagnac-Versuch her bekannt, ein Wegunterschied der gegenläufigen vom Laser emittierten Strahlen und damit eine Verschiebung der von diesen erzeugten Interferenzstreifen bzw. eine Änderung des Interferenzmusters ein. Diese Änderungen des Interferenzmusters werden von einem Detektor erfasst und als Ausgangssignale in Form von Drehraten bzw. Winkeländerungen abgegeben. In anderen Ausbildungen von Faserkreiseln wird der sich zwischen den gegenläufigen Strahlen einstellende Doppler-Effekt zur Ermittlung der Winkeländerungen benutzt.
Die Messeinrichtung ist mit einer Regelungseinrichtung verbunden. Gemäss Fig. 2 ist das Messglied 4 mit einem ersten Eingang e1 einer ersten Regelungseinheit 10 verbunden. Die Regelungseinheit 10 ist ausgangsseitig über Leitungen R, S, T mit einem Motor 11 des einen Antriebs, nämlich desjenigen für die Schwenkung des Waffenrohres 2 in vertikaler Richtung bzw. zur Einstellung der Elevation in Verbindung. Der Motor 11 ist direkt verbunden mit einem Resolver 12, weiter über ein Planetengetriebe 13 mit einer Last 14, welche den zu bewegenden Teile des Geschützes 1 entspricht, und weiter über ein Messgetriebe 15 mit einem Encoder 16. Der Resolver 12 ist an einem zweiten Eingang e2 der Regelungseinheit 10 angeschlossen, und der Encoder 16 ist an einem dritten Eingang e3 der Regelungseinheit 10 angeschlossen. Über einen vierten Eingang e4 und einen fünften Eingang e5 werden der Regelungseinheit 10 eine Referenz-Geschwindigkeit bzw. eine Referenz-Position zugeführt.
Im Schiessbetrieb werden die Drehraten des Messgliedes 4, vom Resolver 12 erzeugte Informationen über die aktuelle Position des Rotors des Motors 11, vom Encoder 16 erzeugte Informationen über die aktuelle Position einer Wiege bzw. Laffette des Geschützes 1, die Referenz-Geschwindigkeit sowie die Referenz-Position in der Regelungseinheit 10 derart verarbeitet, dass die Drehzahl des Motors 11 entsprechend der via die Leitungen R, S, T eingegebenen Informationen geändert und so die Stellung des Waffenrohres 2 beeinflusst und damit die Bewegung der Waffenrohr-Mündung 2 kompensiert werden kann.
Der weitere Antrieb, der für die Schwenkung des Waffenrohres 2 zur Einstellung des Azimuts vorgesehen ist, wird mittels einer weiteren, nicht dargestellten Regelungseinrichtung gesteuert, die der mit Bezug auf Fig. 2 beschriebenen Regelungseinheit 10 ähnlich ist.
Kurz vor Auslösung des Seriefeuers des Geschützes 1 werden Faserkreiselwinkel der Messglieder 4 und 5 mit den Coderwinkeln des Geschützes 1 abgeglichen. Während des Seriefeuers werden die Abweichungen der Faserkreiselwinkel von den Coderwinkeln in der Regelungseinheit 10 ausgewertet und zur Regelung der Antriebe für die Schwenkungen des Waffenrohres 2 verwendet.

Claims (6)

  1. Verfahren zur Korrektur von dynamischen Geschützfehlern, die während eines Seriefeuers von einer Bewegung eines Waffenrohr-Mündungsbereiches (3) eines in Elevation (λ) und Azimut (α) gerichteten Waffenrohres (2) eines Geschützes (1) verursacht werden,
    dadurch gekennzeichnet,
    dass während des Seriefeuers eine Messung der Bewegung des Waffenrohr-Mündungsbereiches (3) zur Gewinnung von Messsignalen durchgeführt wird, und
    dass die Messsignale zur Korrektur der Elevation (λ) und des Azimuts (α) des Waffenrohres (2) verwertet werden, um die Bewegung des Waffenrohr-Mündungsbereiches (3) zu kompensieren.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Bewegung des Waffenrohr-Mündungsbereiches (3) mit Hilfe von zwei Winkel messenden, vorzugsweise je einen Faserkreisel aufweisenden, Messgliedern (4, 5) gemessen wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    dass kurz vor Auslösung des Seriefeuers eine Abgleichung von Faserkreiselwinkeln der Faserkreisel mit Coderwinkeln des Geschützes (1) durchgeführt wird,
    dass die während des Seriefeuers durchgeführte Messung eine laufende Messung mittels der Faserkreiselwinkel umfasst,
    dass die Messignale, welche Abweichungen der Faserkreiselwinkel von den Coderwinkeln entsprechen, ausgewertet und zur Regelung von, der Einstellung von Elevation (λ) und Azimut (α) des Waffenrohres (2) dienenden, Antrieben verwertet werden.
  4. Vorrichtung zur Korrektur von dynamischen Geschützfehlern, die während eines Seriefeuers von einer Bewegung eines Waffenrohr-Mündungsbereiches (3) eines in Elevation (λ) und Azimut (α) gerichteten Waffenrohres (2) eines Geschützes (1) verursacht werden,
    dadurch gekennzeichnet,
    dass am Waffenrohr (2) im Waffenrohr-Mündungsbereich (3) eine Messeinrichtung (4, 5) angeordnet ist, um die Bewegung des Waffenrohr-Mündungsbereiches (3) zu messen und entsprechende Messsignale abzugeben,
    dass eine Regelungseinrichtung (10) zur Verwertung der Messsignale vorgesehen ist, über welche die Messeinrichtung (4, 5) mit einer der Einstellung von Elevation (λ) und Azimut (α) des Waffenrohres (2) dienenden Antriebsvorrichtung (11) verbunden ist, um die Elevation (λ) und das Azimut (α) des Waffenrohres (2) in Abhängigkeit von den Messsignalen zu verändern und dabei die Bewegung des Waffenrohr-Mündungsbereiches (3) zu kompensieren.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Messeinrichtung zwei Faserkreisel aufweisende Messglieder (4, 5) umfasst, die am Waffenrohr (2) im Waffenrohr-Mündungsbereich (3) angeordnet sind, wobei die Messglieder (4, 5) quer zur Längsachse des Waffenrohres um einen Winkel, der vorzugsweise 90° beträgt, gegeneinander versetzt sind, und
    dass die Regelungseinrichtung zwei Regelungseinheiten (10) umfasst, von denen jede mit einem der Messglieder (4, 5) verbunden ist,
    wobei das eine Messglied (4) über die ihm angeschlossene Regelungseinheit (10) mit dem Antrieb für die Einstellung der Elevation (λ) und das andere Messglied (5) über die ihm angeschlossenen Regelungseinheit mit dem Antrieb für die Einstellung des Azimuts (α) des Waffenrohres (2) verbunden ist.
  6. Vorrichtung nach Anspruch 5, wobei jede Regelungseinheit (10) ausgangsseitig mit einem Motor (11) verbunden ist,
    dadurch gekennzeichnet
    dass der Motor (11) mindestens mit einem Resolver (12) und einem Encoder (16) drehverbunden ist,
    dass der Resolver (12) und der Encoder (16) über Eingänge (e2,e3) an der Regelungseinheit (10) angeschlossen sind, wobei der Regelungseinheit (10) vom Resolver (12) eine Information über die aktuelle Rotorposition des Motors (11) und vom Encoder (16) eine Information über die aktuelle Position einer Wiege des Geschützes (1) zugeführt wird und,
    dass die Regelungseinheit (10) zwei zusätzliche Eingänge (e4,e5) aufweist, über welche eine Referenz-Geschwindigkeit und eine Referenz-Position zugeführt werden.
EP00126917A 2000-05-11 2000-12-08 Verfahren und Vorrichtung zur Korrektur von dynamischen Geschützfehlern Withdrawn EP1154219A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH9182000 2000-05-11
CH9182000 2000-05-11

Publications (1)

Publication Number Publication Date
EP1154219A1 true EP1154219A1 (de) 2001-11-14

Family

ID=4547983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00126917A Withdrawn EP1154219A1 (de) 2000-05-11 2000-12-08 Verfahren und Vorrichtung zur Korrektur von dynamischen Geschützfehlern

Country Status (8)

Country Link
US (1) US6497171B2 (de)
EP (1) EP1154219A1 (de)
JP (1) JP2002031498A (de)
CZ (1) CZ2001152A3 (de)
NO (1) NO20006670L (de)
PL (1) PL195838B1 (de)
SG (1) SG99330A1 (de)
ZA (1) ZA200100041B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063216A2 (de) 2007-11-24 2009-05-27 Krauss-Maffei Wegmann GmbH & Co. KG Rohrwaffe
DE102011101404B3 (de) * 2011-05-13 2012-01-05 Rheinmetall Waffe Munition Gmbh Rohrhaube
DE102011106199B3 (de) * 2011-06-07 2012-08-30 Rheinmetall Air Defence Ag Vorrichtung und Verfahren zur Thermalkompensation eines Waffenrohres
EP2610574B1 (de) 2007-10-26 2016-11-30 Krauss-Maffei Wegmann GmbH & Co. KG Klein- oder mittelkalibrige Maschinenkanone

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1371931E (pt) * 2002-06-14 2006-12-29 Contraves Ag Processo e dispositivo para a determinação de um erro de ângulo e utilização do dispositivo
US7549367B2 (en) * 2004-01-20 2009-06-23 Utah State University Research Foundation Control system for a weapon mount
US7563097B2 (en) * 2004-09-03 2009-07-21 Techno-Sciences, Inc. Stabilizing hand grip system
SE533248C2 (sv) * 2008-11-04 2010-07-27 Tommy Andersson Metod att gyrostabilisera siktriktningen på gevär och enhandsvapen
US8141473B2 (en) 2009-03-18 2012-03-27 Alliant Techsystems Inc. Apparatus for synthetic weapon stabilization and firing
DE102009042517B4 (de) * 2009-09-16 2024-07-25 Vincorion Advanced Systems Gmbh Verfahren und Vorrichtung zur Waffenstabilisierung
US10782097B2 (en) 2012-04-11 2020-09-22 Christopher J. Hall Automated fire control device
CN103115525A (zh) * 2013-02-22 2013-05-22 南京理工大学 基于半主动平衡的集成控制系统
KR101932544B1 (ko) 2014-04-16 2018-12-27 한화지상방산 주식회사 원격무장 장치 및 제어방법
US9768301B2 (en) * 2014-12-23 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Short channel effect suppression
US9593913B1 (en) * 2015-05-14 2017-03-14 The United States Of America As Represented By The Secretary Of The Army Digital positioning system and associated method for optically and automatically stabilizing and realigning a portable weapon through and after a firing shock
FR3038377B1 (fr) * 2015-07-03 2018-06-15 Safran Electronics & Defense Procede et dispositif motorise de pointage
JP2024500919A (ja) * 2020-12-23 2024-01-10 ジェンザイム・コーポレーション 重水素化コロニー刺激因子-1受容体(csf-1r)阻害剤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480524A (en) * 1980-10-27 1984-11-06 Aktiebolaget Bofors Means for reducing gun firing dispersion
US5520085A (en) * 1993-11-12 1996-05-28 Cadillac Gage Textron Inc. Weapon stabilization system
US5631437A (en) * 1996-06-28 1997-05-20 Techno-Sciences, Inc. Gun muzzle control system using barrel mounted actuator assembly
EP0878686A2 (de) * 1997-05-14 1998-11-18 Kollmorgen Corporation Waffensteuerungssystem mit Waffenstabilisierung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1698003A1 (de) * 1967-01-30 1971-06-16 Varian Associates Elektrographische Mehrfarben-Farbgabe- und Druckvorrichtung
US4606256A (en) * 1977-11-01 1986-08-19 The Marconi Company Limited Sight system for a stabilized gun
US4570530A (en) * 1983-12-14 1986-02-18 Rca Corporation Workpiece alignment system
IL81192A0 (en) * 1987-01-07 1987-08-31 Israel State Stabilized line-of-sight aiming system for use with fire control systems
US5012081A (en) * 1989-06-22 1991-04-30 Northrop Corporation Strapdown stellar sensor and holographic lens therefor
US5897223A (en) * 1997-11-17 1999-04-27 Wescam Inc. Stabilized platform system for camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480524A (en) * 1980-10-27 1984-11-06 Aktiebolaget Bofors Means for reducing gun firing dispersion
US5520085A (en) * 1993-11-12 1996-05-28 Cadillac Gage Textron Inc. Weapon stabilization system
US5631437A (en) * 1996-06-28 1997-05-20 Techno-Sciences, Inc. Gun muzzle control system using barrel mounted actuator assembly
EP0878686A2 (de) * 1997-05-14 1998-11-18 Kollmorgen Corporation Waffensteuerungssystem mit Waffenstabilisierung

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610574B1 (de) 2007-10-26 2016-11-30 Krauss-Maffei Wegmann GmbH & Co. KG Klein- oder mittelkalibrige Maschinenkanone
EP2063216A2 (de) 2007-11-24 2009-05-27 Krauss-Maffei Wegmann GmbH & Co. KG Rohrwaffe
DE102007056633A1 (de) * 2007-11-24 2009-05-28 Krauss-Maffei Wegmann Gmbh & Co. Kg Rohrwaffe
EP2063216A3 (de) * 2007-11-24 2011-11-02 Krauss-Maffei Wegmann GmbH & Co. KG Rohrwaffe
DE102007056633B4 (de) * 2007-11-24 2013-01-17 Krauss-Maffei Wegmann Gmbh & Co. Kg Rohrwaffe
DE102011101404B3 (de) * 2011-05-13 2012-01-05 Rheinmetall Waffe Munition Gmbh Rohrhaube
DE102011101404B9 (de) * 2011-05-13 2012-06-28 Rheinmetall Waffe Munition Gmbh Rohrhaube
WO2012156214A1 (de) 2011-05-13 2012-11-22 Rheinmetall Waffe Munition Gmbh Rohrhaube
DE102011106199B3 (de) * 2011-06-07 2012-08-30 Rheinmetall Air Defence Ag Vorrichtung und Verfahren zur Thermalkompensation eines Waffenrohres
WO2012168200A1 (de) 2011-06-07 2012-12-13 Rheinmetall Air Defence Ag Vorrichtung und verfahren zur thermalkompensation eines waffenrohres

Also Published As

Publication number Publication date
ZA200100041B (en) 2001-07-19
CZ2001152A3 (cs) 2001-12-12
NO20006670L (no) 2001-11-12
JP2002031498A (ja) 2002-01-31
US6497171B2 (en) 2002-12-24
SG99330A1 (en) 2003-10-27
NO20006670D0 (no) 2000-12-28
US20010039874A1 (en) 2001-11-15
PL195838B1 (pl) 2007-10-31
PL344887A1 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
EP1154219A1 (de) Verfahren und Vorrichtung zur Korrektur von dynamischen Geschützfehlern
EP0314721B1 (de) Ausrichtverfahren für eine feuerleiteinrichtung und feuerleiteinrichtung zur durchführung des verfahrens
DE2746518C3 (de) Verfahren zum Korrigieren der Ausrichtung einer optischen Strahlungsquelle auf einen mittels einer Visier- oder Zieleinrichtung beobachteten Zielgegenstand und Vorrichtung zum Durchführen des Verfahrens
DE1965559A1 (de) Verfahren und Vorrichtung zum Erzeugen eines korrekten Vorhaltes einer visiergesteuerten Waffe beim Feuern auf ein bewegtes Ziel
DE4416211A1 (de) Verfahren und Vorrichtung zur Flugbahnkorrektur von Geschossen
EP3182193B1 (de) Optisches system
EP1329683B1 (de) Verfahren und Vorrichtung zum Kompensieren von Schiessfehlern und Systemrechner für Waffensystem
DE2651732A1 (de) Schiess-leitvorrichtung
DE3325755C2 (de) Nachtkampf-Zielhilfe für Panzerabwehr-Handwaffen
DE3888132T2 (de) Stabilisierendes Trägheitssystem für den Neigungswinkel von orientierbaren Bauteilen und mit diesem System verbundener Teleskopspiegel.
DE2650139C2 (de) Verfahren und Vorrichtung zur Korrektur der Flugbahn eines Geschosses
EP1217324A1 (de) Verfahren und Vorrichtung zum Korrigieren von Schiessfehlern
CH654405A5 (de) Einrichtung zur verringerung der schuss-streuung bei einem geschuetz.
DE2602767C2 (de) Feuerleitanlage
EP0179387A2 (de) Einrichtung zur Durchführung dynamischer Vergleichsmessungen an Feuerleitsystemen für gerichtete Waffen
DE3217980A1 (de) System mit gleichlaufkopplung
DE2252301C2 (de) Vorrichtung für die Stabilisierung des Zielens und Richtens eines beweglichen Organs
DE69200849T2 (de) Vorrichtung zur ausrichtung auf ein bewegliches ziel und zur führung einer flugabwehrkanone oder ähnlichem auf besagtes ziel.
DE2744819C2 (de) Verfahren und Vorrichtung zur gegenseitigen Justierung eines Sichtgerätes und einer mit diesem verbundenen, insbesondere servogesteuerten Einrichtung
DE2216734C3 (de) Verfahren und Anordnung zum Steuern einer Zieloptik für ein Geschütz
DE69419170T2 (de) Flugabwehrkanone mit kamera
DE2360498C2 (de) Einrichtsystem für Batterien schwerer auf Lafetten fahrender Waffen, insbesondere Raketenwerfer
EP0368299B1 (de) Vorrichtung zum Überprüfen der Achslage zweier optischer Achsen
CH648117A5 (de) Automatische zielvorrichtung fuer ein geschuetz, insbesondere fuer ein feldartillerie-geschuetz.
DE69314832T2 (de) Infrarotverfolger für einen tragbaren Flugkörperwerfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020107

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040616