EP1148762B1 - Dispositif de chauffage par induction à flux transverse à circuit magnétique de largeur variable - Google Patents

Dispositif de chauffage par induction à flux transverse à circuit magnétique de largeur variable Download PDF

Info

Publication number
EP1148762B1
EP1148762B1 EP01400868A EP01400868A EP1148762B1 EP 1148762 B1 EP1148762 B1 EP 1148762B1 EP 01400868 A EP01400868 A EP 01400868A EP 01400868 A EP01400868 A EP 01400868A EP 1148762 B1 EP1148762 B1 EP 1148762B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
plate
heating device
strip
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400868A
Other languages
German (de)
English (en)
Other versions
EP1148762A1 (fr
EP1148762B8 (fr
Inventor
Marc Anderhuber
Jean-Philippe Chaignot
Claude Couffet
Jean Hellegouarc'h
Bernard Paya
René Pierret
Yves Neau
Jean-Camille Uring
Olivier Pateau
Gérard Griffay
Alain Daubigny
Philippe Roehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Celes En Arcelormittal France En Electricite
Original Assignee
Electricite de France SA
Arcelor France SA
Fives Celes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, Arcelor France SA, Fives Celes filed Critical Electricite de France SA
Publication of EP1148762A1 publication Critical patent/EP1148762A1/fr
Application granted granted Critical
Publication of EP1148762B1 publication Critical patent/EP1148762B1/fr
Publication of EP1148762B8 publication Critical patent/EP1148762B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • H05B6/104Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces

Definitions

  • the present invention relates to a heating device with the parade, by electromagnetic induction, magnetic or nonmagnetic strips of low and medium thicknesses (of the order of 0.05 to 50 millimeters). It is more particularly a transverse flux induction heating device.
  • the heating by electromagnetic induction of a metal strip is achieved by means of coils which are arranged to surround the strip to be heated by creating a magnetic field parallel to the outer surface of this strip according to the scrolling direction (longitudinal flow, cf. figure 1a ).
  • the main disadvantage of this type of installation lies in the fact that the loop distribution of the currents induced by the magnetic flux through does not generally make it possible to achieve satisfactory temperature homogeneity, especially the ends in the direction of the width of the the band (the banks) are too much or too little heated according to the relative dimensions of the coils and the magnetic circuit used with respect to the bandwidth.
  • transverse flux electromagnetic induction heating in which the inductors comprise magnetic circuits. These are intended to guide the magnetic flux generated by the coils to act on the distribution of induced currents.
  • an electromagnetic induction heating device described in US Pat. No. 4,678,883, for example, is known in which the inductors consist of a plurality of magnetic strips coupled together (by "coupled” means). means mutually reinforcing bars so that the magnetic flux generated by the inductors can pass from one bar to the other bar), arranged parallel to the direction of movement of the strip to be heated and can be individually moved perpendicular to the surface of said strip so as to adapt the flow distribution to the width of the strip, according to the dimensions of the latter.
  • EP-A-0 667 731 which discloses a transverse flux electromagnetic induction heating device in which the length of the coils is varied in order to adapt the flux distribution to the bandwidths.
  • this document proposes to make these windings by assembling two opposing J-shaped inductors which can freely translate in a direction parallel to the bandwidth.
  • this device does not provide a very satisfactory transverse temperature homogeneity.
  • EP-A-0 308 182 discloses a transverse induction heating device in which the total width of the magnetic coil-core assemblies can be varied according to the width of the part to be heated.
  • the magnetic circuits constituted by magnetic plates or bars are not independent of the electrical windings which are thus displaced with the magnetic cores, which complicates the installation, in particular for the power supply of the windings to be moved.
  • the mass to be moved is increased by that of the coils.
  • US 4,587,392A also relates to an induction heating device in which the electric winding is to be moved with the magnetic strips for a width adjustment.
  • US 4,258,241A relates to a slit induction heating device in which elongated parts, such as shafts, arranged parallel to each other are introduced and moved in a direction orthogonal to the large dimension of the parts. Axially spaced areas of the parts are heated passing between conductors parallel to the direction of movement of the parts.
  • the electrical conductors can be moved in a direction parallel to the large dimension of the parts and orthogonal to the direction of advance of these parts to change the position of the heated areas of the rooms. Again, the electrical conductors are moved.
  • the present invention proposes to provide an original solution by providing a transverse flux electromagnetic induction heating device whose magnetic circuit, made by a plurality of independent magnetic strips, adapted to the width of the strip to be heated. This device thus makes it possible to improve the thermal homogeneity in the direction of the width of the strip to be heated.
  • the invention provides a device for heating by electromagnetic induction of a metal strip moving in a determined direction comprising at least one electric coil arranged facing at least one of the large faces of said strip in order to heat the latter.
  • each winding being associated with at least one magnetic circuit, each circuit being divided into a plurality of magnetic strips not coupled together and arranged parallel to the running direction of the strip, said device being characterized in that said magnetic circuit, consisting of said plurality of strips, independent of each other, adapts to the width of the strip to be heated by spacing or bringing said strips closer to each other, so as to continuously adapt the distribution of said magnetic flux to the characteristic dimensions of said strip.
  • the volume and therefore the weight of the magnetic circuit remains invariable.
  • the electromagnetic induction heating device also includes screens of good electrical conductivity material placed in the air gap on both sides of the strip and at the edges of the latter, so as to optimize the homogeneity of the transverse temperature.
  • the surface of the magnetic circuit facing one of the large faces of the strip to be heated is given a suitable "polar" profile (for example bisinusoidal) by cutting the magnetic sheets. constituting this circuit so as to obtain a better distribution of the magnetic flux, and more particularly at the edges of said strip.
  • polar profile is meant a surface of the magnetic circuit which is curved in the three directions of space.
  • the transverse flow electromagnetic induction heating device comprises in particular two magnetic armatures respectively 1 and 1 'provided with at least one electric winding 2 and arranged face-to-face on either side a band 4 to heat.
  • the latter may for example be guided in the gap defined between the magnetic circuits using rollers (not shown) and thus be transferred into the heating zone. Its displacement is generally continuous during the heating process according to the invention.
  • this heating device it is possible to have at least one magnetic armature 1 provided with at least one electric coil 2 facing only one of the large faces of the band 4 to be heated.
  • the magnetic flux generated by the electric windings 2 crosses the heating strip 4 and induces in it a current flowing in the plane of said strip and which closes in a loop at the banks .
  • the winding or coils 2 are powered using a medium frequency alternating current (for example, of the order of 50 to 20000 Hz approximately).
  • This circuit 6 consists of a plurality of magnetic strips 8 arranged parallel to the direction of travel of the strip 4 to be heated.
  • the strips 8 constituting the magnetic circuit 6 are not coupled together and are arranged parallel to one another. These strips are therefore independent of each other and they are also independent of the electric windings. In addition, they can slide by means 10 at the level of the electric windings 2 so as to deviate or come closer to each other, the electric windings remaining fixed. Thus, the spacing between two adjacent strips can be enlarged or shrunk, continuously, under the action of said means 10. As a result, the magnetic flux distribution can be adapted to the dimensions of the strip 4, and in particular to its width (cf. figure 2b ).
  • This essential characteristic of the present invention makes it possible not only to obtain an induction heating device adaptable to different widths of the strip to be heated, but above all the thermal homogeneity obtained in the width direction of said strip remains optimal regardless of the width of it.
  • the spatial positioning of the magnetic strips associated with a suitable polar profile makes it possible to act on the circulation of the induced currents and thus to control the transverse temperature distribution.
  • the means 10 making it possible to slide, continuously, the magnetic strips 8 at the level of the electric windings 2, but without moving the latter, are constituted in particular by at least two rails 11 and 11 'parallel disposed on each side of the surface of the strip 4 and perpendicular to the direction of movement thereof.
  • These rails support a plurality of reinforcements 12, each of these armatures being fixed to at least one bar 8.
  • the support of the reinforcements of two adjacent bars is alternated on the two rails 11 and 11 'so as to reduce the congestion when the width of the magnetic circuit 6 is minimal (where the spacing between the bars is minimal).
  • the armatures slide on the rails using rollers 13 or the like independently of each other, which enables a very precise, optimal and continuous adjustment of the width of the magnetic circuit and therefore of the flux distribution.
  • a width of the magnetic circuit varying from 800 to 1500 millimeters.
  • the spacing between two adjacent magnetic strips 8 can be adjusted manually or automatically in order to obtain the desired magnetic distribution.
  • screens 14 are placed in the gap on either side of said strip and at the edges thereof.
  • Such screens are made of a material having good electrical conductivity, for example of the copper, aluminum or silver type. Their function is to adjust the magnetic flux at the edges of the strip in order to control the temperature of the banks of said strip.
  • these screens are also fixed on frames 15 supported by rails by means of rollers or the like so as to be able to be driven by a translation movement along the width of the band used.
  • magnetic pads 16 on the plates 15 supporting the screens 14 so as to refine the distribution of the magnetic flux over the width of the strip, in particular such pads make it possible to fill possible temperature heterogeneities.
  • These magnetic pads 16 may be coupled to screens 15 of good electrical conductivity and / or magnetic strips 8 or be arranged without screens.
  • the surface of the magnetic circuit 6 of each armature (1, 1 ') which is opposite one of the large faces of the strip 4 is given a "polar" profile, adapted to obtain a controlled distribution of the magnetic flux generated by the electric windings 2, in particular at the edges of said strip.
  • a short-circuit winding (not shown) is added on either side of the heating device, perpendicularly to the bars of the magnetic circuit and embracing the band in displacement in order to reduce the magnetic fields of leakage at the ends of the inductor.
  • the figure 5 is a schematic and partial view of a bright annealing installation, for example stainless steel.
  • a bright annealing installation for example stainless steel.
  • Such annealing line is disposed on a single vertical strand whose total height must not exceed 50 meters.
  • the strip 18 to be heated which is guided by rollers 19, passes through this height, first a heating zone 20 and then a cooling zone 21.
  • the latter between in the heating zone at room temperature (approximately 20 ° C)
  • the electromagnetic induction heating device according to the invention applied to such an installation has the advantage of being able to reduce the overall height of the heating zone to about 10 meters, which provides much more room for cooling and Thus, it is possible to reach a line speed of 120 meters per minute for stainless steel having a thickness of approximately 0.5 millimeters.
  • the present invention as described above thus offers multiple advantages. It allows from an electromagnetic induction heating device using variable width magnetic circuits to create a high intensity magnetic flux for medium frequencies. This magnetic flux density makes it possible to achieve a power density transmitted to the strip to be heated, which is greater than that of the known heating means. Thanks to the characteristics of the invention, there is no magnetic material in inter-bar spaces, unlike systems according to the prior art. In addition, the electrical efficiency of this device is greater than that of known technologies. In addition, such a device makes it possible to obtain a satisfactory thermal homogeneity in the direction of the width of the strip.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • La présente invention est relative à un dispositif de chauffage au défilé, par induction électromagnétique, de bandes magnétiques ou amagnétiques de faible et moyenne épaisseurs (de l'ordre de 0,05 à 50 millimètres). Elle vise plus particulièrement un dispositif de chauffage par induction à flux transverse.
  • De façon connue, le chauffage au défilé par induction électromagnétique d'une bande métallique est réalisé à l'aide de bobinages qui sont disposés de manière à entourer la bande à chauffer en créant un champ magnétique parallèle à la surface extérieure de cette bande selon la direction de défilement (flux longitudinal, cf. figure 1a). On obtient ainsi une distribution en anneau des courants induits qui parcourent la bande en déplacement continu au niveau de sa surface périphérique, ce qui se traduit par un échauffement dont l'homogénéité de température transversale est généralement considérée comme satisfaisante.
  • Lorsqu'il s'agit de chauffer des bandes magnétiques de faible épaisseur, le rendement de ce type de chauffage à flux longitudinal est élevé. Cependant, il chute fortement, + pour ces matériaux, dès que l'on dépasse la température du point de Curie (environ 750°C). Ceci est notamment dû au fait que la perméabilité relative du matériau à chauffer décroît rapidement au cours du procédé de chauffage jusqu'à atteindre la valeur de 1 à cette même température. Le rendement est également limité pour les matériaux amagnétiques (acier inoxydable, aluminium ...), quelle que soit la température du produit.
  • Selon une autre solution connue pour le chauffage au défilé par induction de produits métalliques plats, on dispose deux bobinages de part et d'autre du produit à réchauffer, en regard de chacune des grandes faces de ce dernier de façon à créer un champ magnétique perpendiculaire aux grandes faces du produit selon la technique dite du flux transverse (cf. figure 1b).
  • L'inconvénient principal de ce type d'installation réside dans le fait que la distribution en boucle des courants induits par le flux magnétique traversant ne permet généralement pas d'atteindre une homogénéité en température satisfaisante, notamment les extrémités dans le sens de la largeur de la bande (les rives) sont trop ou pas assez chauffées suivant les dimensions relatives des bobinages et du circuit magnétique utilisés par rapport à la largeur de bande.
  • Pour résoudre ce problème, on a déjà proposé d'utiliser un chauffage par induction électromagnétique à flux transverse dans lequel les inducteurs comportent des circuits magnétiques. Ces derniers ont pour but de guider le flux magnétique générés par les bobinages afin d'agir sur la distribution des courants induits.
  • Cependant, de tels dispositifs ont pour désavantage de ne pas être facilement modifiables afin de s'adapter aux largeurs de bande à chauffer. Pour pallier un tel inconvénient, on connaît par exemple un dispositif de chauffage par induction électromagnétique décrit dans le brevet américain n° 4, 678, 883 dans lequel les inducteurs sont constitués d'une pluralité de barrettes magnétiques couplées entre elles (par "couplées", on entend des barrettes qui coopèrent entre elles de façon à ce que le flux magnétique engendré par les inducteurs puisse passer d'une barrette à l'autre barrette), disposées parallèlement à la direction de déplacement de la bande à chauffer et pouvant être individuellement déplacées perpendiculairement à la surface de ladite bande de manière à adapter la distribution de flux à la largeur de la bande, suivant les dimensions de cette dernière.
  • Or, même ce type de chauffage par induction électromagnétique ne permet pas de correctement contrôler les fluctuations de température au niveau des rives de la bande à chauffer. En effet, les barrettes magnétiques en retrait par rapport à ladite bande continuent d'exercer une influence, certes plus faible, sur la distribution de flux magnétique et donc sur la température et il en résulte que la courbe de distribution de température montre une concentration des courants induits sur les rives.
  • Par ailleurs, on connaît également EP-A-0 667 731 qui divulgue un dispositif de chauffage par induction électromagnétique à flux transverse dans lequel on fait varier la longueur des bobinages afin d'adapter la distribution de flux aux largeurs de bande. Pour ce faire, ce document propose de réaliser ces bobinages en assemblant deux inducteurs opposés en forme de J qui peuvent translater librement dans une direction parallèle à la largeur de bande. Comme pour le brevet américain mentionné ci-dessus, ce dispositif ne permet pas d'obtenir une homogénéité transversale en température très satisfaisante.
  • EP-A-0 308 182 décrit un dispositif de chauffage par induction transverse dans lequel la largeur totale des ensembles bobinages-noyau magnétique peut être modifiée selon la largeur de la pièce à chauffer. Les circuits magnétiques constitués par des armatures ou barrettes magnétiques ne sont pas indépendants des bobinages électriques qui sont donc déplacés avec les noyaux magnétiques, ce qui complique l'installation, notamment pour l'alimentation électrique des bobinages à déplacer. En outre, la masse à déplacer est augmentée de celle des bobinages.
  • US 4 587 392A concerne également un dispositif de chauffage par induction dans lequel le bobinage électrique doit être déplacé avec les barrettes magnétiques pour un réglage de largeur.
  • US 4 258 241A concerne un dispositif de chauffage par induction à fente dans lequel des pièces allongées, tels que des arbres, disposées parallèlement les unes aux autres sont introduites et déplacées suivant une direction orthogonale à la grande dimension des pièces. Des zones espacées axialement des pièces sont chauffées en passant entre des conducteurs parallèles à la direction de déplacement des pièces. Les conducteurs électriques peuvent être déplacés suivant une direction parallèle à la grande dimension des pièces et orthogonale à la direction d'avance de ces pièces pour modifier la position des zones chauffées des pièces. Là encore, les conducteurs électriques sont déplacés.
  • Compte-tenu des inconvénients des solutions de l'état antérieur de la technique rappelée ci-dessus, la présente invention se propose d'apporter une solution originale en réalisant un dispositif de chauffage par induction électromagnétique à flux transverse dont le circuit magnétique, réalisé par une pluralité de barrettes magnétiques indépendantes, s'adapte à la largeur de la bande à chauffer. Ce dispositif permet ainsi d'améliorer l'homogénéité thermique dans le sens de la largeur de la bande à chauffer.
  • A cet effet, l'invention apporte un dispositif de chauffage par induction électromagnétique d'une bande métallique défilant dans une direction déterminée comprenant au moins un bobinage électrique disposé en regard d'au moins une des grandes faces de ladite bande afin de chauffer cette dernière par induction à flux magnétique cransverse, chaque bobinage étant associé à au moins un circuit magnétique, chaque circuit étant divisé en une pluralité de barrettes magnétiques non couplées entre elles et disposées parallèlement à la direction de défilement de la bande, ledit dispositif étant caractérisé en ce que ledit circuit magnétique, constitué de ladite pluralité de barrettes, indépendantes les unes des autres, s'adapte à la largeur de la bande à chauffer en écartant ou en rapprochant lesdites barrettes les unes des autres, de manière à adapter en continu la distribution dudit flux magnétique aux dimensions caractéristiques de ladite bande.
  • Ainsi, grâce à la présente invention, quelle que soit la largeur de la bande à chauffer, le volume donc le poids du circuit magnétique reste invariable.
  • Selon une caractéristique avantageuse de l'invention, le dispositif de chauffage par induction électromagnétique comporte également des écrans en matériaux de bonne conductibilité électrique placés dans l'entrefer de part et d'autre de la bande et au niveau des rives de cette dernière, de manière à optimiser l'homogénéité de la température transversale.
  • Selon une autre caractéristique avantageuse de l'invention, on donne à la surface du circuit magnétique qui est en regard de l'une des grandes faces de la bande à chauffer un profil "polaire" adapté (bisinusoidal par exemple) par découpage des tôles magnétiques constituant ce circuit de façon à obtenir une meilleure distribution du flux magnétique, et plus particulièrement au niveau des rives de ladite bande. Par profil "polaire", on entend une surface du circuit magnétique qui est courbe dans les trois directions de l'espace.
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-après, en référence aux dessins annexés qui en illustrent des exemples de réalisation et d'application dépourvus de tout caractère limitatif. Sur les dessins :
    • les figures 1a et 1b illustrent des dispositifs de chauffage par induction électromagnétique connus de l'art antérieur, respectivement à flux longitudinal et flux transverse ;
    • les figures 2a et 2b sont des vues partielles, en perspective du dispositif de chauffage par induction selon l'invention dans deux positions ;
    • les figures 3a et 3b sont des vues partielles, en perspective du dispositif de la figure 1 muni d'écrans en matériaux de bonne conductibilité électrique couplés à des plots magnétiques ;
    • la figure 4 est une vue schématique et partielle d'un exemple de profil polaire (surface du circuit magnétique en regard de la bande à chauffer) ;
    • la figure 5 est une vue schématique et partielle d'une installation classique de recuit brillant d'acier inoxydable.
  • Si on se réfère aux dessins, ec plus particulièrement aux figures 2a et 2b, on voit que le dispositif de chauffage par induction électromagnétique à flux transverse selon la présente invention comprend notamment deux armatures magnétiques respectivement 1 et 1' pourvues d'au moins un bobinage électrique 2 et disposées face-à-face de part et d'autre d'une bande 4 à chauffer. Cette dernière peut être par exemple guidée dans l'entrefer défini entre les circuits magnétiques à l'aide de rouleaux (non représentés) et ainsi être transférée dans la zone de chauffage. Son déplacement est généralement continu lors du procédé de chauffage selon l'invention.
  • En variante, et selon l'application désirée de ce dispositif de chauffage, on peut disposer au moins une armature magnétique 1 pourvue d'au moins un bobinage électrique 2 en regard de seulement l'une des grandes faces de la bande 4 à chauffer.
  • Selon la technique connue dite du flux transverse, le flux magnétique engendré par les bobinages électriques 2 traverse la bande à chauffer 4 et induit dans celle-ci un courant qui circule dans le plan de ladite bande et qui se ferme en boucle au niveau des rives. Pour ce faire, le ou les bobinages 2 sont alimentées à l'aide d'un courant alternatif à fréquence moyenne (par exemple, de l'ordre de 50 à 20000 Hz environ).
  • Pour assurer le guidage du flux magnétique engendré par les bobinages 2 notamment au niveau des rives de ladite bande, on dispose un circuit magnétique 6 sur toute ou une partie de la longueur desdits bobinages. Ce circuit est constitué d'une pluralité de barrettes magnétiques 8 disposées parallèlement à la direction de défilement de la bande 4 à chauffer.
  • Selon l'invention, les barrettes 8 composant le circuit magnétique 6 ne sont pas couplées entre elles et sont disposées parallèles les unes par rapport aux autres. Ces barrettes sont donc indépendantes les unes des autres et elles sont aussi indépendantes des bobinages électriques. En outre, elles peuvent coulisser à l'aide de moyens 10 au niveau des bobinages électriques 2 de manière à s'écarter ou se rapprocher les unes des autres, les bobinages électriques restant fixes. Ainsi, l'espacement entre deux barrettes adjacentes peut être agrandi ou rétréci, en continu, sous l'action desdits moyens 10. Il en résulte que la distribution de flux magnétique peut être adaptée aux dimensions de la bande 4, et notamment à sa largeur (cf. figure 2b).
  • Cette caractéristique essentielle de la présente invention permet d'obtenir, non seulement un dispositif de chauffage à induction adaptable à différentes largeurs de la bande à chauffer, mais surtout l'homogénéité thermique obtenue dans le sens de la largeur de ladite bande reste optimale quelque soit la largeur de celle-ci.
  • En effet, le positionnement spatial des barrettes magnétiques associé à un profil polaire adapté, permettent d'agir sur la circulation des courants induits et donc de maîtriser la distribution de température transversale.
  • Les moyens 10 permettant de faire coulisser, en continu, les barrettes magnétiques 8 au niveau des bobinages électriques 2, mais sans déplacer ces derniers, sont constitués notamment par au moins deux rails 11 et 11' parallèles disposés de chaque côté de la surface de la bande 4 et perpendiculairement à la direction de déplacement de celle-ci. Ces rails supportent une pluralité d'armatures 12, chacune de ces armatures étant fixée à au moins une barrette 8. De préférence, on alterne le support des armatures de deux barrettes adjacentes sur les deux rails 11 et 11' de manière à réduire l'encombrement lorsque la largeur du circuit magnétique 6 est minimale (cas où l'espacement entre les barrettes est minimal). Les armatures viennent coulisser sur les rails à l'aide de galets 13 ou analogues de façon indépendante entre elles ce qui permet un ajustement très précis, optimal et en continu de la largeur du circuit magnétique et donc de la distribution de flux. Ainsi, on peut réaliser par exemple une largeur du circuit magnétique variant de 800 à 1500 millimètres.
  • Selon une caractéristique avantageuse de l'invention, l'espacement entre deux barrettes magnétiques 8 adjacentes peut être ajusté manuellement ou automatiquement afin d'obtenir la distribution magnétique souhaitée.
  • Selon une autre caractéristique avantageuse de l'invention (cf. figures 3a et 3b), afin d'optimiser l'homogénéité de la température transversale de la bande à chauffer, on dispose des écrans 14 dans l'entrefer de part et d'autre de ladite bande et au niveau des rives de cette dernière. De tels écrans sont réalisés en matériau possédant une bonne conductibilité électrique par exemple du type cuivre, aluminium ou argent. Ils ont pour fonction d'ajuster le flux magnétique au niveau des rives de la bande afin de maîtriser la température des rives de ladite bande.
  • De plus, ces écrans sont également fixés sur des armatures 15 supportées par des rails par l'intermédiaire de galets ou analogues de manière à pouvoir être animés d'un mouvement de translation suivant la largeur de la bande utilisée. En variante, on peut également fixer ces écrans directement sur les barrettes magnétiques d'extrémité qui sont en regard des rives de la bande à chauffer.
  • Selon encore une autre caractéristique avantageuse de l'invention, on peut également disposer des plots magnétiques 16 sur les armatures 15 supportant les écrans 14 de manière à affiner la distribution du flux magnétique sur la largeur de la bande, notamment de tels plots permettent de combler d'éventuelles hétérogénéités de température. Ces plots magnétiques 16 peuvent être couplés aux écrans 15 de bonne conductibilité électrique et/ou aux barrettes magnétiques 8 ou bien être disposés sans écrans.
  • Selon encore une autre caractéristique avantageuse de l'invention (cf. figure 4), on donne à la surface du circuit magnétique 6 de chaque armature (1, 1') qui est en regard de l'une des grandes faces de la bande 4 un profil "polaire", adapté de façon à obtenir une distribution maîtrisée du flux magnétique généré par les bobinages électriques 2, en particulier au niveau des rives de ladite bande.
  • Selon encore une autre caractéristique avantageuse de l'invention, on ajoute une spire en court-circuit (non représentée) de part et d'autre du dispositif de chauffage, perpendiculairement aux barrettes du circuit magnétique et enlaçant la bande en déplacement afin de réduire les champs magnétiques de fuite aux extrémités de l'inducteur.
  • On décrira maintenant un exemple d'application avantageuse du dispositif de chauffage à induction électromagnétique selon l'invention.
  • La figure 5 représente une vue schématique et partielle d'une installation de recuit brillant, par exemple d'acier inoxydable. Une telle ligne de recuit est disposée sur un seul brin vertical dont la hauteur totale ne doit pas excéder 50 mètres environ. La bande à chauffer 18 qui est guidée par des rouleaux 19, traverse sur cette hauteur, d'abord une zone de chauffage 20 puis une zone de refroidissement 21. De façon connue pou r une bande d'acier non magnétique, celle-ci entre dans la zone de chauffage à température ambiante (20°C environ), doit en ressortir à une température de 1150°C et être ensuite refroidie pour atteindre une température de 100°C en fin de ligne.
  • On connaît des dispositifs de chauffage à gaz ou à résistances électriques dont la hauteur sur une telle ligne est de 30 mètres environ ce qui laisse peu de place pour le refroidissement de la bande. En conséquence, de tels dispositifs fonctionnent avec une vitesse de déplacement de la bande à chauffer typiquement de l'ordre de 60 mètres par minute.
  • Le dispositif de chauffage par induction électromagnétique selon l'invention appliqué à une telle installation a pour avantage de pouvoir réduire la hauteur d'encombrement de la zone de chauffage jusqu'à 10 mètres environ, ce qui ménage beaucoup plus de place pour le refroidissement et permet ainsi d'atteindre une vitesse de ligne de 120 mètres par minute pour de l'acier inoxydable ayant une épaisseur de 0,5 millimètre environ.
  • La présente invention telle que décrite précédemment offre donc de multiples avantages. Elle permet à partir d'un dispositif de chauffage par induction électromagnétique utilisant des circuits magnétiques à largeur variable de créer un flux magnétique de forte intensité pour des fréquences moyennes. Cette densité de flux magnétique permet d'atteindre une densité de puissance transmise à la bande à chauffer, supérieure à celle des moyens de chauffage connus. Grâce aux caractéristiques de l'invention, il n'existe pas de matière magnétique dans les espaces inter-barrettes, contrairement aux systèmes selon l'état antérieur de la technique. De plus, le rendement électrique de ce dispositif est supérieur à celui des technologies connues. En outre, un tel dispositif permet d'obtenir une homogénéité thermique satisfaisante dans le sens de la largeur de la bande.

Claims (6)

  1. Dispositif de chauffage par induction électromagnétique d'une bande (4) métallique défilant dans une direction déterminée comprenant au moins un bobinage électrique (2) disposé en regard d'au moins une des grandes faces de ladite bande afin de chauffer cette dernière par induction à flux magnétique transverse, chaque bobinage étant associé à au moins un circuit magnétique (6), comportant une pluralité de barrettes magnétiques (8) disposées parallèlement à la direction de défilement de la bande, ledit dispositif étant caractérisé en ce que :
    - les barrettes magnétiques (8) sont non couplées entre elles, sont indépendantes les unes des autres, et sont indépendantes des bobinages électriques (2) ;
    - les barrettes (8) sont montées de manière à pouvoir coulisser à l'aide de moyens (10) au niveau des bobinages électriques (2) de manière à s'écarter ou se rapprocher les unes des autres, les bobinages électriques (2) restant fixes, ce qui permet d'adapter en continu la distribution de flux magnétique à la largeur de la bande.
  2. Dispositif de chauffage selon la revendication 1, caractérisé en ce qu'il comporte des écrans (14) de bonne conductibilité électrique disposés dans l'entrefer défini par lesdits circuits magnétiques, de part et d'autre de la bande et au niveau des rives de ladite bande de manière à ajuster le flux magnétique aux extrémités de ladite bande dans le sens de sa largeur.
  3. Dispositif de chauffage selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comporte des plots (16) magnétiques disposés dans l'entrefer défini par lesdits circuits magnétiques, de part et d'autre de la bande et au niveau des rives de ladite bande, de manière à optimiser la distribution du flux magnétique.
  4. Dispositif de chauffage selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (10) comportent au moins un rail (11, 11') de chaque côté de la bande (4) et perpendiculaire à la direction de défilement de cette dernière, ledit rail supportant à l'aide de galets (13) ou analogues une pluralité d'armatures (12), chacune desdites armatures étant fixée à au moins une barrette magnétique (8) de manière à permettre aux armatures (12) supportant lesdites barrettes d'être écartées ou rapprochées les unes des autres, par coulissement sur lesdits rails (11, 11').
  5. Dispositif de chauffage selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface du circuit magnétique (6) de chaque armature (1,1') qui est en regard de l'une des grandes faces de ladite bande, possède un profil "polaire" adapté afin d'obtenir une distribution maîtrisée du flux magnétique.
  6. Dispositif de chauffage selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte au moins une spire en court-circuit disposée de part et d'autre de ladite armature (1,1') de façon à enlacer la bande (4) pour réduire les champs magnétiques de fuite aux extrémités de l'inducteur.
EP01400868A 2000-04-19 2001-04-04 Dispositif de chauffage par induction à flux transverse à circuit magnétique de largeur variable Expired - Lifetime EP1148762B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0005062A FR2808163B1 (fr) 2000-04-19 2000-04-19 Dispositif de chauffage par induction a flux transverse a circuit magnetique de largeur variable
FR0005062 2000-04-19

Publications (3)

Publication Number Publication Date
EP1148762A1 EP1148762A1 (fr) 2001-10-24
EP1148762B1 true EP1148762B1 (fr) 2008-10-08
EP1148762B8 EP1148762B8 (fr) 2008-11-26

Family

ID=8849429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400868A Expired - Lifetime EP1148762B8 (fr) 2000-04-19 2001-04-04 Dispositif de chauffage par induction à flux transverse à circuit magnétique de largeur variable

Country Status (15)

Country Link
US (1) US6498328B2 (fr)
EP (1) EP1148762B8 (fr)
JP (2) JP2002008838A (fr)
KR (1) KR100838092B1 (fr)
CN (1) CN1172560C (fr)
AT (1) ATE410907T1 (fr)
AU (1) AU778739B2 (fr)
BR (1) BR0101516A (fr)
CA (1) CA2343677C (fr)
DE (2) DE60136027D1 (fr)
ES (1) ES2173828T3 (fr)
FR (1) FR2808163B1 (fr)
RU (1) RU2236770C2 (fr)
TR (1) TR200201159T3 (fr)
ZA (1) ZA200102921B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941157A1 (fr) 2020-07-15 2022-01-19 ABP Induction Systems GmbH Procédé et installation de chauffage inductif des matières plates

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859125B2 (en) * 2003-02-14 2005-02-22 Inductoheat, Inc. Induction heat treatment of complex-shaped workpieces
FR2852187A1 (fr) * 2003-03-07 2004-09-10 Celes Dispositif de chauffage par induction d'une bande metallique
US20050061804A1 (en) * 2003-09-22 2005-03-24 Norman Golm Induction flux concentrator utilized for forming heat exchangers
US7323666B2 (en) * 2003-12-08 2008-01-29 Saint-Gobain Performance Plastics Corporation Inductively heatable components
US7528143B2 (en) * 2005-11-01 2009-05-05 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
EP2045340A1 (fr) * 2007-09-25 2009-04-08 ArcelorMittal France Culasse feuiletee refendue en peigne pour inducteur a champ magnetique traversant de rechauffage de bandes metalliques
WO2009067226A2 (fr) * 2007-11-20 2009-05-28 Fluxtrol Inc. Inducteur passif pour une commande améliorée dans le chauffage localisé de corps minces
JP5038962B2 (ja) * 2008-04-09 2012-10-03 新日本製鐵株式会社 誘導加熱装置及び誘導加熱方法
CN101560598B (zh) * 2008-04-17 2011-05-11 天津天高感应加热有限公司 适用于薄金属窄带热处理的感应加热装置
RU2497314C2 (ru) * 2008-07-25 2013-10-27 Индактотерм Корп. Электроиндукционный нагрев краев электропроводящего сляба
KR101464419B1 (ko) * 2009-12-14 2014-11-21 신닛테츠스미킨 카부시키카이샤 유도 가열 시스템 및 유도 가열 장치의 제어 방법
CA2789978C (fr) * 2010-02-19 2015-11-24 Nippon Steel Corporation Dispositif de chauffage par induction a flux transversal
RU2518175C2 (ru) * 2010-02-19 2014-06-10 Ниппон Стил Корпорейшн Устройство индукционного нагрева поперечным потоком
DE102010017905B4 (de) * 2010-04-21 2014-08-21 TRUMPF Hüttinger GmbH + Co. KG Verfahren und Induktionserwärmungsvorrichtung zur Warmblechumformung
CN103229592B (zh) * 2010-09-23 2016-03-02 康讯公司 连续纵向工件的电感应加热处理
CN102538034A (zh) * 2010-12-24 2012-07-04 博西华电器(江苏)有限公司 电磁灶及其使用的磁条
RU2608257C2 (ru) * 2011-07-15 2017-01-17 Тата Стил Эймейден Бв Устройство для производства отожженных сортов стали и способ для производства упомянутых сортов стали
KR101294918B1 (ko) * 2011-12-28 2013-08-08 주식회사 포스코 가열 장치, 압연 라인 및 가열 방법
KR101428178B1 (ko) * 2012-07-30 2014-08-07 주식회사 포스코 가열장치 및, 이를 포함하는 연속 금속판 가열 시스템
JP6037552B2 (ja) * 2012-10-01 2016-12-07 トクデン株式会社 紡糸用パック加熱装置及び溶融紡糸装置
WO2015078907A1 (fr) * 2013-11-29 2015-06-04 Tetra Laval Holdings & Finance S.A. Dispositif de chauffage par induction
FR3014449B1 (fr) 2013-12-06 2020-12-04 Fives Celes Section de recuit apres galvanisation comportant un appareil de chauffage a inducteur a flux transverse
WO2015094482A1 (fr) 2013-12-20 2015-06-25 Ajax Tocco Magnethermic Corporation Saturation périphérique cc de bande chauffante à flux transversal
CN103821053A (zh) * 2014-01-03 2014-05-28 北京燕雅鼎信工控技术有限公司 正火设备的线圈随动对位系统以及包含该系统的正火设备
WO2015177892A1 (fr) * 2014-05-21 2015-11-26 日産自動車株式会社 Procédé de fabrication de pile à combustible et appareil de fabrication de pile à combustible
KR101957069B1 (ko) * 2014-09-03 2019-03-11 신닛테츠스미킨 카부시키카이샤 금속 띠판의 유도 가열 장치
EP3190860B1 (fr) * 2014-09-05 2019-08-21 Nippon Steel Corporation Dispositif de chauffage à induction pour bande métallique
BR112017027680B1 (pt) 2015-06-24 2022-01-25 Novelis Inc Sistema e método para tratamento de metal
CN105861791B (zh) * 2016-05-18 2017-10-20 燕山大学 一种风电内齿圈纵向磁通感应热处理装置
CN108235479B (zh) * 2016-12-14 2021-01-12 宝山钢铁股份有限公司 提高横向磁通感应加热带钢横向温度均匀性装置及方法
CN111788319B (zh) 2018-03-23 2022-07-26 日本制铁株式会社 金属带板的感应加热方法及其感应加热设备
FR3086671B1 (fr) 2018-09-27 2021-05-28 Psa Automobiles Sa Procede de traitement thermique de recuit ou de revenu de points de soudure par chauffage par induction
IT201900006433A1 (it) * 2019-04-29 2020-10-29 Rotelec Sa Apparato di riscaldamento di prodotti metallici
JP7255370B2 (ja) * 2019-06-07 2023-04-11 富士電機株式会社 誘導加熱装置
DE102019008622A1 (de) * 2019-12-13 2021-06-17 ABP lnduction Systems GmbH Querfeldinduktionsheizeinrichtung
CN113924173B (zh) * 2020-05-11 2023-11-28 东芝三菱电机产业系统株式会社 感应加热方法及感应加热系统
CN113752918A (zh) * 2021-07-30 2021-12-07 东风汽车集团股份有限公司 电池系统、车辆和车辆的控制方法
JPWO2023033115A1 (fr) 2021-09-01 2023-03-09
WO2023033114A1 (fr) 2021-09-01 2023-03-09 日本製鉄株式会社 Dispositif de chauffage par induction de type transversal

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321444A (en) * 1975-03-04 1982-03-23 Davies Evan J Induction heating apparatus
US4258241A (en) * 1979-03-28 1981-03-24 Park-Ohio Industries, Inc. Slot furnace for inductively heating axially spaced areas of a workpiece
FR2509562A1 (fr) * 1981-07-10 1983-01-14 Cem Comp Electro Mec Procede et dispositif de chauffage homogene par induction electromagnetique a flux transversal de produits plats, conducteurs et amagnetiques
GB2144609B (en) * 1983-08-03 1987-02-18 Davy Mckee Variable width inductor for induction heating
FR2558941B1 (fr) * 1984-01-26 1986-05-02 Cem Comp Electro Mec Dispositif de chauffage de produits plats au defile par induction electromagnetique
JPS6235490A (ja) * 1985-08-09 1987-02-16 住友重機械工業株式会社 電磁誘導加熱装置
US4778971A (en) * 1986-05-23 1988-10-18 Kabushiki Kaisha Meidensha Induction heating apparatus
JPS63310592A (ja) * 1987-06-11 1988-12-19 Kawasaki Steel Corp 横断磁束式誘導加熱装置
GB8721663D0 (en) * 1987-09-15 1987-10-21 Electricity Council Induction heating apparatus
JPH0280990U (fr) * 1988-12-09 1990-06-21
GB8902090D0 (en) * 1989-01-31 1989-03-22 Metal Box Plc Electro-magnetic induction heating apparatus
JPH02270287A (ja) * 1989-04-10 1990-11-05 Sumitomo Special Metals Co Ltd 誘導加熱装置における薄板の加熱方法
JPH0388295U (fr) * 1989-12-27 1991-09-10
JPH0757861A (ja) * 1993-08-10 1995-03-03 Kyowa Kogyosho:Kk 電磁誘導加熱装置
ATE173875T1 (de) * 1994-06-15 1998-12-15 Junker Gmbh O Vorrichtung zur induktiven querfelderwärmung von flachem metallischem gut
JP3045007B2 (ja) * 1994-06-17 2000-05-22 日本鋼管株式会社 金属板の誘導加熱方法及び装置
JP3112617B2 (ja) * 1994-06-21 2000-11-27 北芝電機株式会社 圧延材の誘導加熱方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941157A1 (fr) 2020-07-15 2022-01-19 ABP Induction Systems GmbH Procédé et installation de chauffage inductif des matières plates
WO2022013066A1 (fr) 2020-07-15 2022-01-20 Primetals Technologies Austria GmbH Procédé et installation pour chauffer des objets plats par induction

Also Published As

Publication number Publication date
AU778739B2 (en) 2004-12-16
TR200201159T3 (tr) 2002-06-21
JP2002008838A (ja) 2002-01-11
RU2236770C2 (ru) 2004-09-20
US6498328B2 (en) 2002-12-24
JP2012099490A (ja) 2012-05-24
KR20010098646A (ko) 2001-11-08
FR2808163A1 (fr) 2001-10-26
CN1172560C (zh) 2004-10-20
ATE410907T1 (de) 2008-10-15
AU3341701A (en) 2001-10-25
EP1148762A1 (fr) 2001-10-24
CA2343677A1 (fr) 2001-10-19
KR100838092B1 (ko) 2008-06-13
ZA200102921B (en) 2001-10-11
FR2808163B1 (fr) 2002-11-08
US20020011486A1 (en) 2002-01-31
BR0101516A (pt) 2001-11-20
JP5280510B2 (ja) 2013-09-04
EP1148762B8 (fr) 2008-11-26
ES2173828T1 (es) 2002-11-01
CA2343677C (fr) 2011-03-08
ES2173828T3 (es) 2009-04-01
DE60136027D1 (de) 2008-11-20
DE1148762T1 (de) 2002-10-02
CN1326309A (zh) 2001-12-12

Similar Documents

Publication Publication Date Title
EP1148762B1 (fr) Dispositif de chauffage par induction à flux transverse à circuit magnétique de largeur variable
EP0170556B1 (fr) Dispositif à induction électromagnétique pour le chauffage d'éléments métalliques
EP0527937B1 (fr) Procede et dispositifs de rechauffage par induction au defile d'un produit metallurgique de forme allongee
EP0206963B1 (fr) Inducteur à entrefer variable de réchauffage inductif de rives d'un produit métallurgique
FR2693071A1 (fr) Dispositif de chauffage inductif homogène de produits plats métalliques au défilé.
EP0081400B1 (fr) Dispositif de chauffage par induction magnétique de produits métalliques rectangulaires plats défilant dans le sens de leur longueur
FR2558085A1 (fr) Procede et dispositif pour l'elaboration de rubans metalliques et semi-metalliques de faible epaisseur
FR3014449A1 (fr) Appareil et procede de chauffage par induction pour section de recuit apres galvanisation.
EP0274673A1 (fr) Procédé de frittage par induction
EP0150793A2 (fr) Dispositif de chauffage de produits plats au défilé par induction électromagnétique
EP0080921A1 (fr) Procédé et dispositif pour obtenir une homogénéité transversale de chauffage par induction électromagnétique de produits longs et minces en défilement continu
EP0053060B1 (fr) Inducteur à champ glissant et à flux orienté pour rouleau-brasseur de coulée continue de brames
FR2556625A1 (fr) Systeme de coulee de metaux liquides comportant une pompe electromagnetique concue pour l'obtention d'une solidification rapide de ces metaux
EP0266470B1 (fr) Inducteur et dispositif de réchauffage inductif de rives d'un produit métallurgique
EP0476311A1 (fr) Dispositif pour le chauffage de fluides par effet joule
EP0129160B1 (fr) Dispositif de chauffage de produits métalliques au défilé par induction
FR2556624A1 (fr) Systeme de coulee de fines bandes metalliques muni d'une pompe electromagnetique a pas progressif
BE726847A (fr) Rouleau transporteur pour produits métalliques allongés
FR2780846A1 (fr) Procede et dispositif de chauffage de bande d'acier par flux d'induction transverse
FR2555353A1 (fr) Electro-aimant a courant variable, notamment pour chauffage inductif
FR3107635A1 (fr) Dispositif de chauffage d’un produit par induction a flux transverse
FR2519025A2 (fr) Perfectionnement au procede et a l'appareillage de recuit continu de fils metalliques
FR2473244A1 (fr) Procede et dispositif de chauffage electrique par induction de produits metalliques, utilisant des champs magnetiques pulses
BE412422A (fr)
WO2015132352A1 (fr) Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17P Request for examination filed

Effective date: 20020323

TCNL Nl: translation of patent claims filed
TCAT At: translation of patent claims filed
AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GR

Ref legal event code: PP

Ref document number: 20020300017

Country of ref document: GR

DET De: translation of patent claims
REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2173828

Country of ref document: ES

Kind code of ref document: T1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELECTRICITE DE FRANCE

Owner name: ARCELOR FRANCE

Owner name: CELES

17Q First examination report despatched

Effective date: 20070529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELOR FRANCE

Owner name: ELECTRICITE DE FRANCE

Owner name: FIVES CELES

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ELECTRICITE DE FRANCE

Owner name: FIVES CELES

Owner name: ARCELORMITTAL FRANCE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60136027

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: FIVES CELES EN ARCELORMITTAL FRANCE EN ELECTRICITE

Effective date: 20081105

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2173828

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200319

Year of fee payment: 20

Ref country code: GB

Payment date: 20200323

Year of fee payment: 20

Ref country code: SE

Payment date: 20200320

Year of fee payment: 20

Ref country code: FI

Payment date: 20200318

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200323

Year of fee payment: 20

Ref country code: FR

Payment date: 20200319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200319

Year of fee payment: 20

Ref country code: ES

Payment date: 20200504

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200318

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200317

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60136027

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210403

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210403

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 410907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20210404

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404