Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique
L' invention concerne le domaine des alternateurs pour la production d'une tension électrique dans une bobine d'une partie induite.
ARRIERE PLAN DE L'INVENTION
Plus précisément, l'invention concerne un alternateur comprenant une partie d' induction et une partie induite mobiles l'une par rapport à l'autre selon au moins un sens de déplacement. La partie d'induction comporte des première et seconde séries d'aimants, chacun des aimants de ces séries d' aimants comportant un pôle nord et un pôle sud, les aimants de la première série d'aimants ayant leurs pôles nord orientés selon un même premier sens d'orientation, les aimants de la seconde série d' aimants ayant leurs pôles nord orientés selon un même second sens d' orientation opposé par rapport audit premier sens d'orientation, les aimants des première et seconde séries d'aimants étant disposés de manière à former une alternance d' aimants de la première série d'aimants et d'aimants de la seconde séries d'aimants. La partie induite comporte un noyau et une bobine entourant ce noyau.
On a constaté qu'à faible vitesse de déplacement relative entre les parties d'induction et induite, la tension électrique générée dans la bobine est faible et il serait utile d'augmenter cette tension électrique.
OBJET DE L'INVENTION
L'invention a pour objet de fournir un alternateur particulièrement adapté pour générer des tensions électriques lorsque la vitesse de déplacement relative entre parties d'induction et induite est faible.
RESUME DE L'INVENTION
En vue de la réalisation de cet objet,
l'invention concerne principalement un alternateur comprenant une partie d' induction et une partie induite mobiles l'une par rapport à l'autre selon au moins un sens de déplacement;
- la partie d' induction comportant des première et seconde séries d'aimants, chacun des aimants de ces séries d' aimants comportant un pôle nord N et un pôle sud S, les aimants de la première série d'aimants ayant leurs pôles nord N orientés selon un même premier sens d'orientation, les aimants de la seconde série d'aimants ayant leurs pôles nord N orientés selon un même second sens d' orientation opposé par rapport audit premier sens d'orientation, les aimants des première et seconde séries d'aimants étant disposés de manière à former une alternance d'aimants de la première série d'aimants et d' aimants de la seconde séries d' aimants ;
- la partie induite comportant un noyau et une bobine entourant ledit noyau.
L'alternateur selon l'invention est essentiellement caractérisé en ce que la partie induite présente un premier collecteur s' étendant depuis le noyau entre un plan dans lequel s'étend une première face polaire de la bobine et certains au moins des aimants des première et seconde séries d'aimants, ce premier collecteur comportant des dents espacées entre elles de manière que lors du déplacement relatif de la partie induite par rapport à la partie d' induction selon ledit au moins un sens de déplacement, l'alternateur adopte alternativement des première et seconde configurations distinctes l'une de l'autre, dans la première configuration, les dents du premier collecteur étant respectivement en vis-à-vis d'aimants appartenant exclusivement à la première série d'aimants et dans la seconde configuration, ces dents du premier collecteur étant respectivement en vis-à-vis d'aimants appartenant
exclusivement à la seconde série d'aimants.
Pour la compréhension de l'invention, ledit sens d'orientation d'un pôle nord d'un aimant est déterminé par un vecteur (axe orienté) passant par les pôles nord et sud de cet aimant et dont le sens va du pôle sud vers le pôle nord.
Pour la compréhension de l'invention, l'expression une alternance d'aimants de la première série d' aimants et d' aimant de la seconde séries d'aimants signifie que l'on a une succession d'aimants des première et seconde séries d' aimants et que sur cette succession d'aimants :
- chaque aimant d'une majorité des aimants de la première série d' aimants est intercalé entre deux aimants voisins de la seconde série d'aimants ; et
- chaque aimant d'une majorité des aimants de la seconde série d' aimants est intercalé entre deux aimants voisins de la première série d'aimants.
En d'autres termes l'alternance d'aimants est une répétition d'un motif principal constitué d'un aimant de la première série d'aimants disposé à côté d'un aimant de la seconde série d'aimants.
Dans la première configuration, comme les dents du premier collecteur sont respectivement en vis-à-vis d'aimants appartenant exclusivement à la première série d'aimants, ces dents du premier collecteur sont alors écartées des aimants de la seconde série d'aimants, et donc pas en vis-à-vis des aimants de la seconde série d' aimants .
De même, dans la seconde configuration, comme les dents du premier collecteur sont respectivement en vis-à- vis d'aimants appartenant exclusivement à la seconde série d'aimants, ces dents du premier collecteur sont alors écartées des aimants de la première série d' aimants et donc pas en vis-à-vis des aimants de la première série
d' aimants .
L'alternateur selon l'invention fonctionne de la manière suivante :
lorsque l'alternateur est en première configuration, les dents du premier collecteur sont alors exclusivement en face d'aimants de la première série d' aimants et sont alors écartées des aimants de la seconde série d'aimants (en première configuration, la distance moyenne entre les dents du premier collecteur et les aimants de la première série d'aimants est inférieure à la distance moyenne entre ces dents et les aimants de la seconde série d'aimants), dans cette première configuration les flux magnétiques des aimants de la première série d' aimants en face de dents du premier collecteur sont collectés par ces dents pour passer au travers du noyau et y former un flux magnétique principal présentant une première orientation ;
lorsque l'alternateur est en seconde configuration, les dents du premier collecteur sont alors exclusivement en face d'aimants de la seconde série d' aimants et sont écartées des aimants de la première série d'aimants (en seconde configuration, la distance moyenne entre les dents du second collecteur et les aimants de la seconde série d'aimants est inférieure à la distance moyenne entre ces dents et les aimants de la première série d'aimants), dans cette seconde configuration les flux magnétiques des aimants de la seconde série d' aimants en face de dents du premier collecteur sont collectés par ces dents pour passer au travers du noyau et y former un flux magnétique principal présentant une seconde orientation qui est de sens contraire à ladite première orientation.
Par conséquent, lorsque l'on déplace la partie d' induction par rapport à la partie induite ou vice versa, l'alternateur passe alternativement entre ses
première et seconde configurations ce qui entraine une variation d'intensité et de sens d'orientation du flux magnétique dans le noyau de la partie induite. Ainsi, pour des vitesses significatives de déplacement relatif entre les parties induites et d' induction, on constate que l'alternance de changement de configuration de l'alternateur provoque l'apparition d'une tension alternative aux bornes de la bobine. Cette tension électrique aux bornes de la bobine dépend de la quantité de flux magnétique et de la vitesse de la variation de ce flux magnétique dans le noyau. Grâce au collecteur de l'alternateur selon l'invention qui comporte plusieurs dents polaires, on augmente la quantité de flux passant par le noyau et pour une vitesse donnée de déplacement relatif entre parties induite et d'induction, on augmente la vitesse de variation de ce flux.
Le fait que les dents du premier collecteur soient espacées entre elles pour pouvoir être placées entre la bobine et l'alternance d'aimants et exclusivement en vis-à-vis des aimants de la première série d'aimants (lorsque l'alternateur est en première configuration) ou exclusivement en vis-à-vis des aimants de la seconde série d'aimants (lorsque l'alternateur est en seconde configuration) permet de collecter plusieurs flux magnétiques des aimants d'une même série d'aimants pour les acheminer vers un même noyau à l'intérieur de la bobine électrique. Il n'est pas nécessaire d'avoir autant de bobines que de dents ce qui est important pour limiter la longueur de fil de bobines et ainsi limiter la résistance électrique des bobines. A basse vitesse de déplacement entre les parties induite et d' induction, la tension aux bornes de la bobine est faible. En limitant la résistance de la bobine, on favorise le passage du courant ce qui fait que l'alternateur est mieux adapté aux basses vitesses car il limite les pertes par effet
Joule et augmente ainsi le rendement. Par vitesse déplacement relative entre parties d' induction et induite est faible, on entend une vitesse de déplacement générant moins de 10 alternances entre première et seconde configurations par minute.
Comme le flux magnétique passant à l'intérieur de la bobine est supérieur aux flux magnétiques individuellement induits par chaque aimant d'une même série d'aimants. L'alternateur selon l'invention permet aussi d'obtenir une quantité de flux magnétique supérieure à la quantité de flux individuellement produite par l'un quelconque des aimants.
Par ailleurs étant donné que le flux provient de plusieurs aimants et est collecté via plusieurs dents du collecteur, l'alternateur selon l'invention permet de réduire le pas polaire entre deux aimants successifs d'une même série d'aimants tout en amplifiant le flux magnétique passant au travers du noyau grâce à la collecte de flux de plusieurs aimants.
Grâce au collecteur, il n'est pas nécessaire d'avoir une bobine par dent, mais on peut avoir une seule bobine entourant un seul noyau. Par rapport au cas où l'on aurait une bobine par dent, l'invention permet une réduction du nombre de bobines nécessaires et par conséquent une réduction de la longueur de conducteur électrique nécessaire à la production de bobine de l'alternateur.
On note que pour une vitesse de déplacement donnée de la partie induite par rapport à la partie d'induction, la fréquence de la tension électrique FEM (Force Electromotrice) aux bornes de la bobine dépend du nombre d' alternances entre aimants des première et seconde séries, c'est-à-dire du nombre d'alternances entre première et seconde configurations. Cette tension électrique, Force Electromotrice FEM, s'exprime selon la
loi :
FEM = N*d0/dt ;
où N est le nombre de spires de la bobine et 30/3t est la variation de flux magnétique dans le noyau dans le temps t.
Par ailleurs, la fréquence f de variation de flux magnétique au travers de la bobine pour un déplacement à vitesse constante de la partie d' induction par rapport à la partie induite est déterminée par la formule :
f = /P ; où
^ est la fréquence de variation du flux ; ^ est la vitesse du déplacement relatif entre la partie d' induction et la partie induite ; et
P est le pas polaire, c'est-à-dire la distance entre deux axes polaires d'aimants successifs de la même série d'aimants (un axe polaire est l'axe de symétrie de l'aimant le long duquel se trouvent les pôles nord et sud de l'aimant, cet axe polaire passant par les pôles nord et sud de l'aimant) .
Comme l'usage du collecteur permet une réduction du pas polaire p associée à une augmentation de flux magnétique collecté, on constate que pour une vitesse constante de déplacement de la partie induite par rapport à la partie d'induction, l'invention permet d'augmenter cette fréquence ^ sans être obligé de réduire l'amplitude de variation de flux magnétique dans le noyau. Cet avantage est constaté avec des collecteurs présentant un nombre de dents compris entre deux et une valeur optimale de nombre de dent à partir de laquelle les fuites de flux résultant d'une augmentation du nombre de dents dégraderaient la performance de l'alternateur. Ce nombre optimum dépend des matériaux et formes choisies pour réaliser l'alternateur. Ainsi, à vitesse de déplacement constante , l'invention permet une augmentation de la fréquence f de variation de la tension électrique FEM aux
bornes de la bobine et une augmentation de l'amplitude de cette tension.
Dans un mode de réalisation préférentiel de l'invention, le noyau est disposé à l'intérieur de la bobine, le premier collecteur s'étend à l'extérieur de la bobine, une portion centrale du premier collecteur étant située entre le noyau et certains des aimants des première et seconde séries d' aimants et deux portions latérales du premier collecteurs étant respectivement disposées de part et d'autre de la portion centrale du premier collecteur, ces portions latérales étant en vis- à-vis de la première face polaire de la bobine, entre cette bobine et des aimants des première et seconde séries d'aimants, chaque portion centrale ou latérale du premier collecteur portant au moins une des dents de ce premier collecteur.
Grâce à aux portions latérales du premier collecteur, on augmente la surface du collecteur se trouvant en vis-à-vis d'aimants d'une même série d'aimants, ce qui permet d'augmenter le flux magnétique collecté et transféré vers le noyau. Les portions latérales du collecteur sont respectivement placées de part et d' autre de la portion centrale du premier collecteur et s'étendent en dehors de la bobine de manière que lorsque l'alternateur se trouve dans sa première configuration :
- au moins une dent appartenant à une portion latérale du premier collecteur s'étend longitudinalement entre la première face polaire de la bobine et un des aimants de la première série d'aimants ; et
- au moins une dent appartenant à l'autre portion latérale du premier collecteur s'étend longitudinalement entre la première face polaire de la bobine et un autre des aimants de la première série d'aimants.
Les dents des portions latérales du premier
collecteur sont telles que lorsque l'alternateur se trouve dans l'une quelconque de ses première ou seconde configurations, chaque dent d'une portion latérale du premier collecteur présente une majeure portion de sa profondeur P2 qui s'étend entre un des aimants et la bobine .
Les dents des portions latérales du premier collecteur permettent de collecter des flux magnétiques en avant et en arrière de la portion centrale du premier collecteur lors de son déplacement selon son au moins un sens de déplacement.
Cette caractéristique de l'invention permet de collecter un flux magnétique en avant et en arrière de la portion centrale du premier collecteur et de conduire ces flux vers la portion centrale du collecteur puis vers le noyau à l'intérieur de la bobine. Pour augmenter le flux magnétique collecté, il n'est pas nécessaire d'augmenter la taille de la bobine, seule la longueur du collecteur est augmentée par ces portions latérales qui comportent des dents.
Dans un mode de réalisation de l'invention, la bobine comporte une seconde face polaire, les première et seconde faces polaires de la bobine étant situées de part et d'autre de la bobine, l'alternateur comportant en outre un second collecteur s' étendant autour de la bobine, depuis un côté du noyau situé du côté de cette seconde face polaire de la bobine, une portion de ce second collecteur comportant des dents espacées entre elles de manière que lorsque l'alternateur est dans l'une desdites première ou seconde configurations les dents du second collecteur soient alors respectivement en vis-à- vis d'aimants appartenant exclusivement à l'une desdites séries d'aimants. Par ailleurs, dans ce mode de réalisation, les dents des premier et second collecteurs sont conformées de manière que lorsque les dents du
premier collecteur sont exclusivement en vis-à-vis de pôles nord des aimants alors les dents du second collecteur sont exclusivement en vis-à-vis de pôles sud des aimants et inversement.
En d' autres termes lorsque les dents du premier collecteur sont exclusivement en vis-à-vis de pôles nord alors les dents du second collecteur sont exclusivement en face de pôles sud et inversement et lorsque les dents du premier collecteur sont exclusivement en vis-à-vis de pôles sud alors les dents du second collecteur sont exclusivement en vis-à-vis de pôles nord.
Par ces caractéristiques les premier et second collecteurs forment une boucle magnétique permettant une circulation de flux entre plusieurs pôles nord d'aimants et plusieurs pôles sud d'aimants, le flux de ces aimants étant collecté par les dents des premier et second collecteurs et étant conduit par ces collecteurs vers le noyau de la bobine.
Idéalement, les dents du second collecteur s'étendent entre la première face polaire et une face de l'alternance d'aimants des première et seconde séries d'aimants, les dents du second collecteur étant espacées des dents du premier collecteur et ces dents du second collecteur s' étendant entre les dents du premier collecteur de manière que lorsque l'alternateur est placé dans l'une quelconque de ses première ou seconde configurations, les dents du premier collecteur sont en vis-à-vis d'aimants appartenant à l'une desdites première ou seconde séries d'aimants, les dents du second collecteur étant alors en vis-à-vis d'aimants appartenant à l'autre desdites première ou seconde séries d'aimants.
En ayant les dents des premier et second collecteurs entre la première face polaire de la bobine et une des faces de l'alternance d'aimants on obtient un alternateur compact et pouvant fonctionner avec une seule
face de l'alternance d'aimants.
Idéalement, les premier et second collecteurs comportent le même nombre de dents. Idéalement chaque dent des premier et second collecteurs présente une surface d'échange de flux magnétique, cette surface d'échange étant la surface de la dent en vis-à-vis de l'aimant lorsque l'alternateur est dans l'une de ses première ou seconde configurations.
Idéalement toutes les surfaces d'échange de flux sont égales entre elles et la somme des surfaces d'échange des dents du premier collecteur est égale à la somme des surfaces d'échange des dents du second collecteur. Cette caractéristique permet de limiter la perte magnétique liée à une insuffisance de surface d'échange de l'un des collecteurs constituant la bouche magnétique .
Dans un mode réalisation particulier de réalisation de l'alternateur selon l'invention, les aimants des première et seconde séries d' aimants sont respectivement disposés sur une pièce magnétiquement perméable, les pôles nord des aimants de la première série d' aimants et les pôles sud des aimants de la seconde série d'aimants étant en vis-à-vis de cette pièce magnétiquement perméable, les dents du second collecteur étant espacées des dents du premier collecteur et ces dents du second collecteur s' étendant entre les dents du premier collecteur de manière que lorsque l'alternateur est placé dans l'une quelconque de ses première ou seconde configurations, les dents du premier collecteur sont en vis-à-vis d'aimants appartenant à l'une desdites première ou seconde séries d'aimants, les dents du second collecteur étant alors en vis-à-vis d'aimants appartenant à l'autre desdites première ou seconde séries d'aimants.
Dans ce mode de réalisation, les dents des premier et second collecteurs sont disposées en vis-à-vis
d'une même face de l'alternance des aimants des première et seconde séries d'aimants, l'autre face de cette alternance étant en vis-à-vis de la pièce magnétiquement perméable qui supporte ces aimants de l'alternance d'aimants. Ce mode de réalisation est intéressant si l'on cherche à minimiser la hauteur d'encombrement de la partie induite.
Les matériaux utilisables pour produire la pièce magnétiquement perméable 16 de la figure 2a ou de la figure 11c sont du fer doux à basse teneur en carbone, un alliage fer/silicium et/ou fer/cobalt.
Alternativement au précédent mode de réalisation de l'alternateur, on peut faire en sorte que les aimants des première et seconde séries d' aimants forment une piste d'aimants présentant des première et seconde faces opposées de la piste d'aimants, les dents du premier collecteur étant situées en vis-à-vis de la première face de la piste d'aimants et les dents du second collecteur étant disposée en vis-à-vis de la seconde face de la piste d'aimants et les dents des premier et second collecteur étant conformées de manière que lorsque l'alternateur est dans l'une de ses première ou seconde configurations, les dents des premier et second collecteurs sont alors en vis-à-vis d'aimants appartenant à la même desdites première ou seconde séries d'aimant.
Dans ce mode de réalisation, le premier collecteur est en vis-à-vis de la première face de la piste d'aimants alors que le second collecteur s'étend autour de cette piste d'aimants pour venir en vis-à-vis de la seconde face de la piste d'aimants. Comme les dents des premier et second collecteurs ne sont plus intercalées, ce mode de réalisation permet de réduire l'espace entre deux dents successives d'un même collecteur et par conséquent il permet de réduire le pas polaire de l'alternateur. La réduction du pas polaire
peut être recherchée lorsque l'on souhaite avoir un alternateur capable de fonctionner à très basse vitesse de déplacement relatif entre parties d' induction et partie induite (plus le pas polaire est faible et plus augmente la fréquence de l'alternance entre première et seconde configurations) .
Dans un mode de réalisation préférentiel, la bobine est enroulée autour d'un noyau et est de forme rectangulaire lorsque vue en section dans un plan perpendiculaire à une direction de flux magnétique passant dans le noyau lorsque l'alternateur est dans l'une de ses première ou seconde configurations.
Pour une section intérieur de bobine donnée, la longueur de fil de bobine la plus faible est obtenue avec une bobine carré lorsque vue en coupe selon un plan de coupe perpendiculaire au flux traversant le noyau. Cette forme idéale carrée est préférentielle par rapport à une forme traditionnellement circulaire car elle permet de réduire la longueur de fil de bobine et par conséquent la résistance électrique de la bobine. Ce mode de réalisation et particulièrement intéressant à basse vitesse de déplacement relatif entre les parties induite et d'induction.
Selon ce mode de réalisation, le noyau peut être de forme rectangulaire, préférentiellement carré, lorsque vue en section dans le plan perpendiculaire à la direction de flux magnétique passant dans le noyau lorsque l'alternateur est dans l'une de ses première ou seconde configurations. Le fait que la bobine rectangulaire, préférentiellement carré, soit formée / enroulée autour du noyau rectangulaire, préférentiellement carré, permet de limiter les vides entre bobine et noyau ce qui facilite l'atteinte de l'objectif de réduction de la longueur de fil de bobine.
Enfin, l'invention concerne une hydrolienne
comportant un support de membrane et une membrane portée par ce support de membrane, cette membrane étant agencée pour onduler lorsqu'elle est plongée dans un écoulement de fluide. Cette hydrolienne est essentiellement caractérisée en ce que la membrane est reliée à au moins un alternateur selon l'invention, cette liaison entre la membrane et l'alternateur étant telle que lorsque la membrane ondule, elle génère un déplacement relatif entre les parties d'induction et induite de l'au moins un alternateur.
Plus généralement, l'alternateur peut être utilisé en combinaison avec tout type d' hydrolienne .
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
la figure 1 présente une vue en perspective d'un premier mode de réalisation d'alternateur 1 selon 1' invention;
- la figure la représente le second collecteur 15 de l'alternateur de la figure 1, ce second collecteur étant réalisé par un empilement de tôles permettant le passage de flux magnétique entre les tôles, certaines de ces tôles formant un cadre dont un côté forme une dent 10b du second collecteur 15 et d'autres tôles forment un cadre ouvert sur un de ses côtés, ces dernières tôles étant conformées pour réaliser un calage inter dentaire;
- la figure lb représente le noyau 9 de l'alternateur et le premier collecteur 10 de l'alternateur de la figure 1 avec ses dents 10a espacées d'un pas constant d'espacement Pxl;
- la figure le représente la partie induite 3 de l'alternateur 1 de la figure 1 sans son second collecteur
15 ;
la figure 2a est une vue en coupe de l'alternateur 1 de la figure 1, cette coupe étant dans un plan de déplacement Pc relatif des parties induite 3 et d'induction 2 l'une par rapport à l'autre, alors que l'alternateur est en seconde configuration ;
la figure 2b est une vue en coupe de l'alternateur 1 de la figure 1, dans un plan de coupe dans lequel s'étend une dent 10a du premier collecteur 10, l'alternateur étant en seconde configuration ;
la figure 2c est une vue en coupe de l'alternateur de la figure 1, dans un plan de coupe parallèle à celui de la figure 2b et dans lequel s'étend une dent 10b du second collecteur 15, l'alternateur 1 étant toujours en seconde configuration ;
la figure 3a est une vue en coupe de l'alternateur de la figure 1, dans le plan de déplacement Pc alors que l'alternateur est en première configuration avec les dents 10a en vis-à-vis d'aimants de la première série 5a et les dents 10b en vis-à-vis d'aimants de la seconde série 5b ;
- la figure 3b est identique à la figure 2b, mais ici l'alternateur est passé en première configuration ;
- la figure 3c est identique à la figure 2c, mais ici l'alternateur est passé en première configuration ;
- la figure 4 présente un alternateur 1 selon un mode de réalisation où l'on a deux parties induites 3, 3' respectivement placées en vis-à-vis de faces opposées de la piste d'aimants 8 de la partie d'induction 2 ;
- la figure 5a présente une vue en coupe de l'alternateur de la figure 4, dans le plan de déplacement Pc, la première partie induite 3 de cet alternateur 1 étant placée en première configuration;
- la figure 5b présente une vue identique à celle de la figure 5a, alors que la seconde partie induite 3'
de l'alternateur est placée dans sa première configuration, c'est-à-dire que ses dents 10a de son premier collecteur sont en vis-à-vis d'amants de la première série 5a;
- la figure 5c présente une vue identique à celle de la figure 5a, alors que la première partie induite de l'alternateur est placée dans sa seconde configuration;
- la figure 5d présente une vue identique à celle de la figure 5a, alors que la seconde partie induite 3' de l'alternateur est placée dans sa seconde configuration, ces figures 5a, 5b, 5c, 5d illustrent respectivement les configurations successivement adoptées par l'alternateur lors d'un cycle complet de l'alternateur, le cycle inverse se produisant en inversant le sens de déplacement 4;
la figure 6a est une vue éclatée d'un alternateur selon l'invention où l'on voit les dents 10a, 10b des premier et second collecteurs 10, 15 d'une des parties induites 3 qui sont intercalées entre elles et en vis-à-vis d'une même face de la partie d'induction 2, ici les dents des collecteurs sont individuellement détachables pour faciliter l'assemblage de l'alternateur 1;
la figure 6b illustre une vue en coupe partielle dans un plan A-A de déplacement de l'alternateur de la figure 6a;
- la figure 6c présente des parties des premier et second collecteurs 10, 15 destinées à être respectivement mises en vis-à-vis des dents des collecteurs présentées aux figures 6a et 6b ;
la figure 6d présente l'alternateur de la figure 6a complet, avec les collecteurs de ses deux parties induites 3, 3' assemblés ;
- la figure 7a est une vue en perspective d'un alternateur selon l'invention réalisé selon un autre mode
de réalisation particulier dans lequel l'alternateur 1 comporte deux parties induites 3, 3' placées de part et d'autre d'une piste d'aimants 17 de la partie d'induction 2, les premiers collecteurs des parties induites 3, 3' sont formés d'une seule pièce comportant collecteurs 10, 15 et noyau 9 de bobine 11;
la figure 7b est une vue de côté de l'alternateur de la figure 7a où l'on voit le décalage des dents 10a des premiers collecteurs par rapport aux dents 10b des seconds collecteurs 15 ;
la figure 7c est une vue en coupe C-C longitudinale de l'alternateur des figures 7a et 7b alors que sa première partie induite 3 est en seconde configuration (le flux magnétique allant du noyau vers les dents du premier collecteur) ;
la figure 7d est une vue en coupe D-D transversale de l'alternateur des figures 7a, 7b et 7c, alors que sa première partie induite 3 est toujours en seconde configuration, on voit que la boucle magnétique passe du noyau 9 vers les dents 10a du premier collecteur 10 puis passe au travers d'aimants adjacents de la piste d' aimants de la partie d' induction avant de remonter vers le second collecteur 15 de la première partie induite 3 et enfin revenir vers le noyau 9 de cette première partie induite 3 ;
- la figure 7e est une vue en coupe dans un plan parallèle au plan de coupe transversale D-D de l'alternateur, ici on comprend que, dans le mode de réalisation de l'alternateur selon les figures 7a à 7e, les dents 10a du premier collecteur d'une partie induite 3 donnée s'étendent dans des plans différents des plans dans lesquels s'étendent les dents du second collecteur 15 de cette même partie induite donnée 3, une partie de la boucle magnétique passant via des aimants adjacents de la piste d'aimants 17 visibles à la figure 7c ;
- la figure 8a est une vue en perspective d'une portion d'alternateur selon l'invention, cet alternateur étant réalisé selon un autre mode de réalisation particulier, dans lequel l'alternateur 1 comporte d'une part deux parties induites 3, 3' placées de part et d'autre d'une piste d'aimants 17 d'une première partie d' induction 2 et d' autre part deux autres parties induites 3'', 3''' placées de part et d'autre d'une piste d'aimants 17' d'une seconde partie d'induction 2';
- la figure 8b présente une coupe longitudinale
B-B de deux des parties induites 3, 3' placées de part et d'autre d'une des deux parties d'induction 2 de l'alternateur de la figure 8a ;
la figure 8c est une vue de dessus de l'alternateur de la figure 8a où l'on voit les deux pistes d'aimants 17, 17' parallèles entre elles et s' étendant dans un même plan ;
la figure 8d est une vue en perspective de l'intégralité de l'alternateur partiellement représenté aux figures 8a, 8b, 8c, ici deux des parties induites 3, 3'' respectivement en vis-à-vis des deux pistes d'aimants 17, 17' parallèles entre elles sont reliées par une pièce en forme de plaque 35 pour permettre une continuité magnétique entre ces deux premières parties induites 3, 3' ' , on voit aussi que deux autres 3' , 3' ' ' des quatre parties induites respectivement en vis-à-vis des deux pistes d'aimants parallèles 17, 17' sont reliées par une autre pièce 35' en forme de plaque pour permettre une continuité magnétique entre ces deux dernières parties induites 3' , 3' ' ' , une boucle magnétique pouvant ainsi passer par ces quatre parties induites 3, 3' , 3' ' , 3' ' ' en traversant les deux pistes d'aimants 17, 17' ;
la figure 8e présente une vue en coupe longitudinale E-E de l'alternateur de la figure 8d dans laquelle on voit que chaque dents des premiers
collecteurs des parties induites 3, 3', 3'', 3''' respectivement placées en vis-à-vis d'une même piste d'aimants sont toutes en vis-à-vis d'une même première ou seconde série d'aimants de cette piste d'aimants ;
- la figure 8f est une vue en coupe transversale
F-F de l'alternateur des figures 8d, 8e, ce plan de coupe F-F étant perpendiculaire au plan de coupe E-E, dans ce plan de coupe F-F, on comprend que la boucle magnétique formée à un instant donné dans l'alternateur 1 passe par ses quatre parties induites 3, 3' , 3' ' , 3' ' ' et par les deux pistes d'aimants 17, 17' des parties d'induction dont les séries d'aimants sont décalées entre elles pour permettre ce bouclage magnétique changeant alternativement de sens lors du déplacement simultané des parties induites par rapport aux parties d'induction;
la figure 9 illustre un mode de réalisation particulier d'alternateur 1 selon l'invention où la partie d'induction 2 est formée d'un empilement d'aimants 6 chacun en forme de disque évidé en son centre et dont les polarités N-S sont orientées radialement (les aimants de la première série 5a ayant leurs pôles nord orientés vers l'extérieur de la partie d'induction, les aimants de la seconde série 5b ayant leurs pôles nord orientés vers l'intérieur de la partie d'induction), ici, les parties induites 3 identiques entre elles sont disposées en étoile autour de la partie d'induction 2, les aimants 6 de l'alternance d'aimants 8 empilés sont séparés / espacés entre eux par des entretoises 14, chaque aimant 6 en vis-à-vis d'une dent 10a d'un premier collecteur 10 est distant des dents 10b du second collecteur 15 et inversement, chaque aimant 6 en vis-à-vis d'une dent 10b du second collecteur 15 est distant des dents 10a du premier collecteur 15, ici la génération de tension aux bornes des bobines 11 se fait lors du déplacement relatif des parties induites 3 par rapport à l'unique partie
d'induction 2 selon un axe longitudinal de l'empilement d'aimants, la rotation de cet empilement étant libre et n'entraînant aucun changement de configuration de l'alternateur 1, seule sa translation entraînant les changement de configuration ;
la figure 10 est un mode de réalisation de l'alternateur selon l'invention qui est sensiblement similaire à celui de la figure 9, mais dans ce mode chaque second collecteur 3 est relié au noyau qui lui correspond via une portion courbe 20 parallèle à l'empilement d'aimants 6 en formes de disques, ce mode permet d'optimiser la forme du collecteur pour augmenter le ratio poids / puissance de l'alternateur par rapport à l'alternateur de la figure 9 dont les second collecteurs 3 sont prismatiques;
la figure 10a est une vue en coupe longitudinale de l'alternateur 1 de la figure 10 dans un plan de coupe où s'étend l'axe de révolution de l'empilement d'aimants 6, on voit ici que quelle que soit la configuration adoptée par l'alternateur 1, pour chaque partie induite donnée 3, lorsque les dents 10a du premier collecteur 10 sont exclusivement en vis-à-vis d'aimants 6 d'une des séries d'aimants 5b de la partie d'induction 2, alors les dents 10b du second collecteur 3 sont exclusivement en vis-à-vis d'aimants 5a de l'autre série d'aimants, le flux magnétique F passant entre les dents 10a et 10b en traversant au moins deux entretoises 14 et au moins trois aimants adjacents ;
la figure 10b illustre une vue en coupe transversale de l'alternateur 1 des figures 10 et 10a selon un plan de coupe dans lequel on voit les trois parties induites 3 réparties autour de la partie d'induction 2, on voit ici que les dents 10a des premier collecteur 10 et les dents 10b des seconds collecteurs 15 s'étendent toutes dans des plans perpendiculaires à l'axe
de révolution de l'alternateur, mais pour toute partie induite 3 donnée, on constate que la dent 10a du premier collecteur 10 s'étend dans un plan distant du plan dans lequel s'étendent les dents 10b du second collecteur 15, une distance séparant ces plans entre eux de manière que lorsque les dents 10a sont exclusivement en vis-à-vis d'aimants d'une des première ou seconde séries alors les dents 10b du second collecteur sont forcément exclusivement en vis-à-vis d'aimants de l'autre des première ou seconde séries et chaque dent 10a du premier collecteur voisine d'une dent 10b du second collecteur 15 étant forcément en vis-à-vis d'aimants voisins de l'alternance d'aimants 6 ;
la figure 10c illustre une vue en coupe transversale de l'alternateur des figures 10, 10a, et 10b selon un plan de coupe parallèle à celui de la figure 10c mais dans lequel s'étendent les dents 10b des seconds collecteurs 15, encore une fois on voit que les dents 10a et 10b sont décalées dans le sens de l'empilement d'aimants pour qu'elles soient respectivement en vis-à- vis d'aimants appartenant à des séries 5a, 5b d'aimants 6 différentes, on comprend ici comment se forme la continuité de la boucle magnétique visible aux figures 10a, 10b, chaque boucle magnétique s' étendant entre la partie d'induction 2 et une partie induite 3 présentant une portion s' étendant axialement dans la partie d'induction 2 et le long de l'empilement d'aimants 6;
la figure 11 présente un alternateur selon l'invention dont une partie d'induction 2 de forme cylindrique est montée à rotation par rapport à la partie induite 3 selon un axe de rotation X-X confondu avec l'axe de révolution de partie d'induction 2 ; Ici les aimants 6 ont des formes de barreaux et sont disposés à la périphérie de la partie d'induction 2, parallèlement à l'axe X-X, les aimants des première et seconde séries
d'aimants sont disposés en alternance avec leurs axes polaires radiaux par rapport à l'axe X-X, les aimants de la première série 5a ayant leurs pôles sud orientés vers l'intérieur de la partie d'induction, c'est à dire vers l'axe X-X et leurs pôles nord orientés vers l'extérieur de la partie d' induction, les aimants de la seconde série 5b ayant leurs pôles nord orientés vers l'intérieur de la partie d' induction et leurs pôles sud orientés vers 1 ' extérieur ;
- la figure lia est une vue éclatée en perspective d'une des deux parties induites 3 (ces deux parties induites sont identiques entre elles) de l'alternateur 1 de la figure 11, cette partie induite 3 est prévue pour être disposée face à la courbure de la partie d'induction 2 de forme cylindrique, pour cela cette partie induite présente ses dents 10a et 10b des premier et second collecteurs respectifs parallèles à l'axe X-X pour pouvoir échanger des flux magnétiques F entre les dents de la partie induite et les aimants 6 ;
- la figure 11b est une vue en coupe de l'alternateur de la figure 11, où une seule des deux parties induites 3 est représentée ; Ici on voit que le second collecteur 15 forme des boucles métalliques (une boucle est un cadre) autour de la bobine 11, chacune de ces boucles étant d'un côté formée par des dents 10b de second collecteur et d'un autre côté opposé formée par une portion de plaque 35 reliée au noyau 9 qui est lui- même placé à l'intérieur de la bobine 11 ;
- la figure 11c est une vue en coupe transversale de l'alternateur de la figure 11b selon un plan de coupe K-K ; Ici on voit l'alternance des aimants 6 des première et seconde séries d'aimants 5a, 5b et les dents 10a du premier collecteur 10 qui collectent le flux F sortant des pôles nord des aimants de la première série 5a et le ramène vers le noyau 9 et les dents 10b du second
collecteur 15 qui répartissent ce flux F sortant du noyau 9 vers les pôles sud d' aimants de la seconde série d' aimants 5b ;
la figure lld illustre une vue en coupe transversale de l'alternateur de la figure 11b selon un plan de coupe J-J qui passe par une extrémité axiale du second collecteur 15, on voit ici que le flux F sortant du noyau transite vers les dents 10b du second collecteur pour revenir vers les pôles sud des aimants de la seconde série d'aimants 5b ;
- la figure lie est identique à la figure 11b mais ici l'alternateur n'est pas en première configuration comme sur les figures 11b, 11c, lld, mais en seconde configuration, en effet sur cette figure 11b, la partie d'induction 2 a pivoté par rapport à la partie induite 3 selon le sens de déplacement 4 (ici ce sens de déplacement est un sens antihoraire) , les dents 10a du premier collecteur 10 sont maintenant en face d'aimants 6 de la seconde série d'aimants 5b et les dents 10b du second collecteur 15 sont en face d'aimants 6 de la première série d'aimants 5a, l'alternateur 1 a donc changé de configuration et le sens du flux magnétique F s'est inversé par rapport au flux F des figures 11b, 11c, lld ;
- la figure llf est une vue en coupe K-K de l'alternateur des figures 11b et lie alors qu'il est en seconde configuration, le flux F étant inversé par rapport au flux F visible à la figure lie;
la figure 11g est une vue en coupe J-J de l'alternateur des figures 11b et lie alors qu'il est en seconde configuration, le flux F étant inversé par rapport au flux F visible à la figure lld ;
la figure 12 représente un autre mode de réalisation d'alternateur 1 selon l'invention, ici le mouvement relatif entre parties induite 3 et d' induction
2 est un mouvement de translation selon un sens de translation 4, dans ce mode de réalisation la partie induite comporte toujours un premier collecteur 10 situé entre le noyau 9 et l'alternance d'aimants 6, ce premier collecteur 10 présentant toujours des dents 10a orientées en vis-à-vis de l'alternance d'aimants 6 pour être sélectivement placées en vis-à-vis d'une seule des séries d'aimants, cette partie induite 3 présente un second collecteur 15 qui s'étend depuis l'autre extrémité du noyau 9 et passe de part et d'autre de la bobine 11 périphérique du noyau 9 jusqu'à venir en vis-à-vis des aimants de l'alternance d'aimants 8, les dents 10b de ce second collecteur 15 étant en vis-à-vis des mêmes aimants que ceux en vis-à-vis desquels sont les dents 10a du premier collecteur ; Chacun de ces aimants 6 en vis-à-vis d'une dent 10a et d'une dent 10b est placé entre ces dents 10a 10b ; Le flux magnétique F est réparti entre les dents 10a et 10b et traverse la piste d'aimants 17 en ne passant que par des aimants d'une même série d'aimants ; Les aimants 6 de l'alternance sont ici séparés entre eux par des entretoises 14 ;
la figure 12a est une vue en coupe longitudinale de l'alternateur de la figure 12 selon un plan de coupe transversal des aimants 6 de l'alternance qui ont des formes de barreaux parallèles entre eux et s' étendant dans un plan, on voit ici que chaque aimants placé en vis-à-vis d'une des dents 10a est aussi en vis- à-vis d'une des dents 10b, ces dents 10a et 10b étant face à des pôles opposés Nord Sud de cet aimant permettant ainsi un bouclage magnétique au travers de l'aimant et une collecte de flux F vers le noyau 9 ;
- la figure 12b est une vue en coupe transversale de l'alternateur de la figure 12 dans un plan de coupe perpendiculaire au sens de déplacement 4 et dans lequel s'étend, selon sa longueur, un des aimants 6 de
l'alternance d'aimants parallèles entre eux ;
- la figure 12c est une vue identique à celle de la figure 12a mais ici les parties induite 3 et d'induction 2 ont été déplacées l'une par rapport à l'autre par déplacement selon le sens 4 ; Contrairement aux figures 12a et 12b qui présentent l'alternateur en première configuration avec les dents des premier et second collecteurs 10, 15 exclusivement en face d'aimants de la première série d'aimants 5a, ici l'alternateur 1 se trouve en seconde configuration avec les dents des premier et second collecteur 10, 15 exclusivement en face d'aimants 6 appartenant exclusivement à la seconde série 5b d'aimants 6 ; On voit qu'ici, le flux magnétique F est de sens contraire à ce qu' il est à la figure 12a ;
- la figure 12d est une vue en coupe transversale de l'alternateur de la figure 12, identique à la coupe de la figure 12b à la différence que l'alternateur est ici dans sa seconde configuration, l'aimant en coupe appartenant ici à la seconde série 5b d' aimants ;
- la figure 13 représente une vue en perspective d'une hydrolienne selon l'invention comportant plusieurs alternateurs 1 selon l'invention implantés le long d'une membrane 31 portée par un support de membrane 30 pour permettre à cette membrane d' onduler dans un écoulement de fluide 32, chaque alternateur 1 est relié mécaniquement par des moyens de liaison 33 avec la membrane pour que lors de l'ondulation, les parties induite 3 et d'induction 2 de l'alternateur se déplacent l'une par rapport à l'autre selon le sens de déplacement pour ainsi générer une tension électrique aux bornes de la bobine de l'alternateur ; Pour chaque alternateur ses parties induite et d' induction sont liées mécaniquement entre elles via des moyens de guidage linéaire de ces parties l'une par rapport à l'autre ;
- la figure 14 illustre une vue de côté de
1 ' hydrolienne de la figure 13.
DESCRIPTION DETAILLEE DE L'INVENTION Comme indiqué précédemment, l'invention concerne essentiellement un alternateur 1 comprenant une partie d'induction 2 et une partie induite 3 mobiles l'une par rapport à l'autre selon au moins un sens de déplacement 4.
Selon le cas, ce sens de déplacement est soit :
- soit selon une direction rectiligne de déplacement, comme sur les figures 1 à 10c et 12 à 14 ;
- soit selon une orientation horaire ou antihoraire comme sur les figures 11 à 11g.
Les parties induite et d' induction sont reliées entre elles par des moyens de guidage de ces parties l'une par rapport à l'autre.
Dans le cas d'un sens de déplacement 4 selon une direction rectiligne de déplacement, ces moyens de guidage sont des moyens de guidage linéaire.
Dans le cas d'un sens de déplacement 4 horaire ou antihoraire, ces moyens de guidage sont des moyens de guidage en rotation.
Dans tous les modes de réalisation de l'invention, on constate que la partie d'induction 2 comporte des première et seconde séries d'aimants 5a, 5b, chacun des aimants 6 de ces séries d'aimants 5a, 5b comportant un pôle nord N et un pôle sud S.
Les aimants 6 de la première série d'aimants 5a ont leurs pôles nord N orientés selon un premier sens d'orientation 7a qui est soit parallèle pour tous ces aimants lorsque le mouvement relatif entre parties d'induction et induite est linéaire (comme sur les figures 1 à 8f et 12 à 14), soit radial centrifuge
lorsque le mouvement relatif comporte une rotation (comme sur les figures 9 à 11g) .
Les aimants de la seconde série d' aimants 5b ont leurs pôles nord N orientés selon un même second sens d' orientation 7b opposé par rapport audit premier sens d'orientation 7a. En l'occurrence, les aimants 6 de la seconde série d' aimants 5b ont leurs pôles nord N orientés selon un second sens d' orientation 7b qui est :
- soit parallèle pour tous ces aimants lorsque le mouvement relatif entre parties d'induction et induite est linéaire (comme sur les figures 1 à 8f et 12 à 14) ;
soit radial centripète lorsque le mouvement relatif comporte une possible rotation (comme sur les figures 9 à 11g) .
Les aimants 6 des première et seconde séries d'aimants 5a, 5b sont disposés de manière à former une alternance d' aimants 8 de la première série d' aimants 5a et d'aimants de la seconde séries d'aimants 5b.
Dans tous les modes de réalisation de l'invention, on constate que l'alternateur comporte au moins une partie induite 3 comportant un noyau 9 et une bobine électrique 11 entourant ce noyau 9. Cette au moins une partie induite 3 comporte un premier collecteur 10 qui s'étend depuis le noyau 9 entre un plan dans lequel s'étend une première face polaire lia de la bobine 11 et certains au moins des aimants 6 des première et seconde séries d'aimants 5a, 5b.
Ce premier collecteur 10 comporte des dents 10a espacées entre elles de manière que lors du déplacement relatif de la partie induite 3 par rapport à la partie d' induction 2 selon ledit au moins un sens de déplacement 4, l'alternateur 1 adopte alternativement des première et seconde configurations distinctes l'une de l'autre. On note que plusieurs tôles peuvent être empilées pour former dents et noyau. Alternativement, on peut former
l'ensemble collecteur ( s ) et noyau par moulage d'une seule et même pièce.
Dans la première configuration, les dents 10a du premier collecteur 10 sont respectivement en vis-à-vis d'aimants 6 appartenant exclusivement à la première série d' aimants 5a .
Dans la seconde configuration, ces dents 10a du premier collecteur 10 sont respectivement en vis-à-vis d'aimants appartenant exclusivement à la seconde série d'aimants 5b.
Le premier collecteur 10 et le noyau 9 appartiennent à un même ensemble magnétique, c'est-à-dire en ensemble dans lequel peut circuler un flux magnétique formant une boucle magnétique. Comme on le voit sur les figures 1, lb 2a, à 5d, 7a à 12d, ce collecteur 10 peut être constitué par au moins une excroissance du noyau 9 s' étendant d'un côté de la bobine 11.
Alternativement, comme on le voit sur les figures 6a à 6d, ce premier collecteur 10 peut être constitué par une pièce magnétique distincte du noyau 9 et en contact contre ce noyau 9.
Comme on le voit dans tous les modes de réalisation décrits :
- les dents 10a du premier collecteur 10 sont espacées entre elles d'un pas d'espacement constant des dents, dit premier pas d'espacement Pxl ;
- les aimants de la première série d' aimants 5a sont espacés entre eux d'un pas d'espacement constant des aimants de la première série d'aimants, dit second pas d'espacement Px2; et
- les aimants de la seconde série d' aimants 5b sont espacés entre eux d'un pas d'espacement constant des aimants de la seconde série d'aimants 5b, dit troisième pas d'espacement Px3.
On note que les second et troisième pas d'espacement Pxl, Px2 sont égaux entre eux et que le premier pas d'espacement Pxl est choisi de manière qu'à chaque instant lors du déplacement relatif des parties induite 3 et d'induction 2 l'une par rapport à l'autre, toute dent 10a du premier collecteur 5a présente une surface instantanée en vis-à-vis d'un aimant d'une des séries d'aimants 5a, 5b, ces surfaces instantanées des dents 10a étant identiques entre elles.
Dans le cas d'une mobilité relative linéaire entre parties induite et d'induction, ces pas Pxl, Px2, Px3 sont des distances.
Dans le cas d'une mobilité relative par rotation entre parties induite et d'induction, ces pas Pxl, Px2, Px3 sont des angles.
Par ces caractéristiques des pas Pxl, Px2, Px3, lors d'un déplacement à vitesse relative constante entre la partie induite 3 et la partie d'induction 2, on constate que la tension aux bornes de la bobine 11 varie selon une forme alternative de fréquence et d'amplitude sensiblement constantes. Cette forme alternative est proche d'un signal périodique triangulaire. Par ailleurs, par ces caractéristiques de l'alternateur 1, on constate que cette forme alternative de la tension ne dépend pas du sens de déplacement relatif entre la partie induite 3 et la partie d'induction 2, mais uniquement de la vitesse relative de ce déplacement.
L'alternateur 1 selon l'invention présente ainsi une symétrie de fonctionnement indépendante du sens de déplacement 4 relatif entre la partie d'induction et la partie induite. Ainsi, indépendamment du sens de déplacement 4, l'alternateur produit la même variation de tension aux bornes de la bobine 11. Par conséquent, l'alternateur peut être relié à un mécanisme d' actionnement mécanique de l'alternateur forçant une
inversion cyclique de son sens de déplacement.
Dans tous les modes de réalisation de l'alternateur 1, le premier collecteur 10 présente un nombre de dents 10a au moins égal à six dents et les aimants 6 de l'alternance d'aimants 8 sont espacés entre eux de telle manière que :
lorsque l'alternateur est dans sa première configuration (comme c'est le cas sur les figures 3a à 3c, 5a, 7c à 7e, 8e, 11b, 11c, lld, 12a, 12b) , chaque dent 10a du premier collecteur est en vis-à-vis d'un aimant correspondant de la première série d' aimants 5a ; et de manière que
lorsque l'alternateur 1 est dans sa seconde configuration (comme c'est le cas sur les figures 2a à 2c, 5c, 10a à 10c, lie à 11g, 12c à 12d) chaque dent 10a du premier collecteur 10 est en vis-à-vis d'un aimant correspondant 6 de la seconde série d'aimants 5b.
Ainsi, quelle que soit la position relative entre la partie induite 3 et la partie d'induction 2, dès lors que l'alternateur 1 se trouve dans une de ses première ou seconde configurations, on constate que le premier collecteur concentre toujours vers le noyau 9 un flux magnétique F provenant d'au moins six aimants 6 d'une même série ce qui améliore le rendement de l'alternateur.
Dans tous les modes de réalisation de l'invention, on constate que les dents 10a du premier collecteur 10 et les aimants 6 des première et seconde séries d'aimants 5a, 5b sont disposés de manière que lorsque l'alternateur 1 se trouve dans sa première configuration ou dans sa seconde configuration, chaque dent 10a du premier collecteur disposée en vis-à-vis d'un aimant qui lui correspond se trouve séparée de cet aimant d'un espace d'entre fer. Comme illustré en particulier sur les figures 2a et 6b, ces espaces d'entre fer ont tous une même forme et la distance d'entre fer Ea est
uniforme sur toute la profondeur d'entrefer. Idéalement, les dents du premier collecteur et les aimants sont conformés pour que toute dent du premier collecteur disposée en vis-à-vis d'un aimant donné s'étende parallèlement à cet aimant donné, l'espace d'entrefer étant ainsi constant sur toute la profondeur de la dent.
Dans les modes de réalisation décrits aux figures 1, 2a à 8f, 11 à 12d, les aimants desdites première et seconde séries d'aimants 5a, 5b présentent une même forme de barreau. Chaque aimant en forme de barreau présente une longueur de barreau, dite profondeur d'aimant PI, et une épaisseur de barreau dite épaisseur d'aimant El. Dans ces modes, chaque pôle nord N et sud S d'un même aimant 6 s'étend le long de la forme en barreau, c'est-à-dire selon la profondeur PI, ces pôles nord et sud étant séparés entre eux de l'épaisseur El du barreau.
Idéalement, chaque dent 10a du premier collecteur présente une même largeur de dent L2 et une profondeur de dent P2, seule sa hauteur pouvant varier. Chaque dent 10b du second collecteur présente une même largeur de dent L2' et une profondeur de dent P2', seule sa hauteur pouvant varier. Les largeurs de dents L2, L2' sont identiques entre elles et préférentiellement les longueurs de dents P2, P2' sont aussi identiques entre elles. Les profondeurs des dents P2 et P2' sont parallèles aux profondeurs PI des aimants en forme de barreaux. Chaque aimant présente une largeur Ll d'aimant mesurée perpendiculairement à son épaisseur El. Les dents 10a du premier collecteur sont uniformes entre elles en termes dimensionnels . Les dents 10b du second collecteur sont uniformes entre elles en termes dimensionnels. Les aimants des première et seconde séries d'aimants 5a, 5b sont uniformes entre eux en termes dimensionnels. La largeur 11 des aimants est supérieure aux largeurs L2, L2' des dents des premier et second
collecteurs respectifs.
L'alternateur 1 comporte des moyens de guidage de la partie induite par rapport à la partie d' induction agencés pour guider le déplacement 4 relatif entre la partie induite 3 et la partie d' induction 2. Ces moyens de guidage sont tels que lors du déplacement relatif entre la partie induite et la partie d' induction, toute dent du premier ou second collecteur placée en vis-à-vis d'un aimant présente sa profondeur de dent P2, P2' parallèle à la profondeur PI de l'aimant en vis-à-vis duquel elle est placée. Les profondeurs P2 des dents sont idéalement égales aux profondeurs PI des aimants de manière que le flux magnétique transite sur toute la longueur de la dent et sur toute la longueur de l'aimant.
Plus précisément, dans le cas modes des figures 1 à 8f et 9, 10, 10a, 10b, 10c, 12, 12a, 12b, 12c, 12d, 13, 14, le moyen de guidage est un moyen de guidage en translation linéaire (non représenté) agencé pour réaliser un guidage en translation rectiligne selon une direction de déplacement rectiligne des parties induite et d'induction l'une par rapport à l'autre, le sens de déplacement 4 est un sens parallèle à cette direction de déplacement rectiligne.
Dans ces figures, le premier sens d'orientation 7a, qui pour chaque aimant de la première série d'aimants va de son pôle sud S vers son pôle nord N, est orienté perpendiculairement au sens de déplacement rectiligne 4. Le second sens d' orientation 7b qui pour chaque aimant de la seconde série d' aimants va de son pôle sud S vers son pôle nord N est orienté perpendiculairement au sens de déplacement rectiligne 4 et il est contraire au premier sens 7a.
Dans le cas des modes des figures 11, lia, 11b, 11c, lld, lie, llf, 11g, le moyen de guidage est un moyen de guidage en rotation (non représenté) autour d'un axe
de rotation de l'alternateur X-X de l'alternateur. Le sens de déplacement 4 est ici un sens horaire ou antihoraire. Dans ces modes, les aimants des première et seconde séries d' aimants ont leurs pôles nord orientés radialement par rapport à l'axe de rotation X-X.
Pour chaque aimant de la première série d'aimants, le premier sens d'orientation 7a va du pôle sud S vers le pôle nord N et il est centrifuge.
Pour chaque aimant de la seconde série d'aimants, le second sens d'orientation 7b va de son pôle sud S vers son pôle nord N et il est centripète.
Dans des modes particuliers de réalisation de l'invention, illustrés aux figures 2a, 3a, 5a à 5d, 6b, 7a, 7c, 8b, 8e, 10a, 12a, 12c, on constate :
- que les dents 10a du premier collecteur 10 sont disposées pour s'étendre depuis le noyau 9, en direction de l'alternance d'aimants 8 des première et seconde séries d'aimants 5a, 5b ;
- que le premier collecteur 10 comporte des cales 12 disposées pour maintenir un écartement entre ces dents 10a, ces cales 12 et dents 10a du premier collecteur 10, lorsque observées dans un plan de coupe longitudinale Pc de l'alternateur 1 qui est parallèle audit sens de déplacement 4, forment un profil crénelé s' étendant face à l'alternance des aimants 8 ;
- que chaque créneau du profil crénelé du premier collecteur 10 présente une largeur de créneau L0 qui correspond à la distance séparant deux dents adjacentes du créneau et chaque dent 10a du premier collecteur 10 présente une largeur de dent L2 correspondant à une dimension de la dent 10a mesurée entre deux créneaux adjacents à cette dent 10a ; et
- que chaque aimant 6 de l'alternance 8 présente
une largeur d' aimant Ll correspondant à une dimension de l'aimant 6 mesurée dans le plan de coupe longitudinale Pc de l'alternateur 1 selon une direction perpendiculaire à un axe polaire Xp passant par les pôles N, S de l'aimant et chaque largeur de créneau LO est supérieure à l'une quelconque des largeurs des aimants Ll de l'alternance d'aimants 8.
En d'autres termes, comme illustré aux figures 2a, 3a, 5a à 5d, 6b, 7a, 7c, 8b, 8e, 10a, 12a, 12c, les dents 10a du premier collecteur 10, lorsque observées dans le plan de section longitudinale Pc de l'alternateur 1, forment un profil crénelé. Les aimants des première et seconde séries d'aimants 5a, 5b s' étendant perpendiculairement à ce plan Pc de manière que lors du déplacement relatif entre la partie d' induction 2 et la partie induite 3, les aimants 6 se déplacent le long du profil crénelé et passent en alternance devant les créneaux et les dents 10a. Comme la largeur L0 des créneaux est strictement supérieure à la largeur Ll des aimants, un aimant ne peut à aucun moment se trouver simultanément en vis-à-vis de deux dents 10a du premier collecteur 10.
Dans ce mode particulier, les aimants 6 des première et seconde séries 5a, 5b peuvent présenter tous une même largeur d'aimant Ll, les créneaux présentant tous une même largeur de créneau L0 et les dents 10a du premier collecteur 10 présentant toutes une même largeur de dent L2 et la largeur de dent L2 du premier collecteur 10 étant strictement inférieures à la largeur d'aimant Ll .
Pour une largeur de dents et un pas dentaire donné, cette caractéristique permet de maximiser le volume d'aimants et ainsi maximiser le flux F potentiellement collectable par ces dents.
Dans les modes de réalisation où l'alternateur présente plusieurs parties induites 3, 3' placées de part et d'autre de la piste d'aimants 17, comme sur les figures 4, 5a, 5b, 5c, 5d, ces parties induites 3, 3' sont préférentiellement décalées les unes des autres d'un quart de pas polaire p de manière que lorsqu'une des parties induites est en première ou seconde configuration, alors le flux magnétique F qui traverse son noyau 9 est bouclé grâce à la présence de dents de l'autre partie induite qui sont décalées d'un quart de pas polaire p. Ceci est visible aux figures 5a, 5b, 5c, 5d. Ce décalage peut aussi être appliqué aux variantes rotatives de l'alternateur présentées aux figures 11 à 11g. On note que dans le cas où l'on a trois parties induites liées entre elles et en vis-à-vis d'une même partie d'induction, comme sur la figure 10, le décalage entre les dents des parties induites peut être d'un tiers de pas polaire p pour permettre une génération de courant triphasé .
L'alternateur des figures 5a, 5b, 5c, 5d comporte plusieurs parties induites 3, 3' respectivement nommées première et seconde parties induites 3, 3' , ces parties induites étant liées mécaniquement entre elles de manière à se déplacer ensemble selon ledit sens de déplacement 4. Les premiers collecteurs 10a, 10a' de ces première et seconde parties induites 3, 3' étant tels que lorsque les dents de l'un de ces premier collecteur 10a, 10a' sont en vis-à-vis d'aimants 6 appartenant exclusivement à la première série d' aimants 5a ou à la seconde série d'aimants 5b, alors les dents de l'autre de ces premiers collecteurs 10a, 10a' sont décalées vis-à-vis des aimants des première ou seconde séries d'aimants d'une valeur de décalage :
- supérieure à un huitième de pas polaire p de l'alternance d'aimants ; et préférentiellement
- égale à d'un quart de pas polaire p de l'alternance d'aimants.
Ce décalage permet de limiter l'effort magnétique maximum s' opposant au déplacement de la partie d' induction 2 par rapport aux première et seconde parties induites 3, 3' .
Les aimants de l'alternance sont de forme homogène et le pas polaire p correspond à la distance entre deux axes polaires Xp d'aimants successifs de la même série d'aimants.
L'axe polaire Xp d'un aimant est l'axe passant par ses pôles sud S et nord N.
Dans le cas particulier des modes illustrés, où les aimants des séries ont une même forme homogène, on constate que le pas polaire p correspond aussi à deux fois la largeur d'un aimant Ll mesurée selon le sens de déplacement 4 à laquelle est ajoutée deux fois la distance séparant deux aimants adjacents de l'alternance d'aimants. La distance séparant deux aimants adjacents de l'alternance correspond généralement à l'épaisseur des entretoises 14 qui sont intercalées entre les aimants adjacents de l'alternance d'aimants. Ces entretoises 14 sont aussi de forme homogène entre elles.
On note que les collecteurs 10, 15 et le noyau peuvent être en un matériau permettant un bouclage magnétique tel que du fer, un alliage fer-silicium et/ou fer-cobalt. Préférentiellement , ces éléments sont en tranches de ce matériau coupées dans le plan de la boucle magnétique et ces tranches étant isolées entre elles, au moins à certains endroits, par exemple par un vernis électriquement résistant.
Typiquement, les aimants utilisés dans l'alternateur selon l'invention sont :
- en alliage néodyme/fer/bore ou en alliage samarium/cobalt ce qui permet d'avoir des aimants
à forte énergie ; ou
- en alliage ferrite ou aluminium/nickel/chrome ce qui permet d'avoir des aimants moins chers mais à plus faible énergie.
Les bobines sont en fil de cuivre ou cuivre avec une âme aluminium ou en matériau de type graphène, ou en fil cuivre recouvert d'argent.
De manière générale la section des dents vue dans des plans de sections parallèles au sens d'orientation 7a, 7b des polarités peut aller en augmentant en suivant le chemin du flux magnétique passant par la dent vers le noyau 9. En particulier, chacune des dents des premier et second collecteurs présente une section de dent vue dans des plans de sections de la dent parallèles auxdits premier et second sens d'orientation 7a, 7b qui va en augmentant en suivant le chemin du flux magnétique passant par la dent vers le noyau 9. Ceci est visible en particulier pour les dents 10a des figures le ou lia dont la hauteur augmente en se rapprochant du noyau 9. Ceci est aussi visible pour les dents 10b des figures 2c et 11b dont la hauteur augmente en suivant le chemin du flux magnétique vers le noyau 9. Cette augmentation de hauteur permet une augmentation de section qui permet d'optimiser la géométrie de dent pour minimiser son poids tout en limitant le risque de saturation magnétique et de fuite de champ magnétique.
Comme indiqué précédemment et illustré aux figures 13 et 14, l'invention concerne enfin une hydrolienne comportant un support de membrane 30 portant une membrane 31 agencée pour onduler lorsqu'elle est plongée dans un écoulement de fluide 32. La membrane 31 est reliée mécaniquement à au moins un alternateur 1 selon l'un au moins des modes de réalisation de l'invention. Cette liaison 33 entre la membrane 31 et ledit au moins un alternateur 1 est telle que lorsque la
membrane 31 ondule, elle génère alors un déplacement relatif entre les parties d' induction 2 et induite 3 de cet au moins un alternateur 1 pour ainsi générer une tension électrique aux bornes de la bobine 11 d'alternateur.
Sur la figure 14, on voit ici que les alternateurs 1 forment deux groupe d'alternateurs respectivement disposés en vis-à-vis de faces opposées de la membrane. Chaque alternateur est relié à la membrane d'une part via un premier levier 33 s' étendant depuis un endroit de la membrane 31 jusqu'à une articulation portée par la partie induite 3 de l'alternateur 1 et d'autre part via un second levier 33 s' étendant depuis un autre endroit de la membrane 31 jusqu'à une articulation portée par la partie induction 2 de l'alternateur 1. Chaque groupe d'alternateur est formé de plusieurs alternateurs alignés sensiblement parallèlement à la direction d'ondulation privilégiée de la membrane 31, ce qui fait qu'au fur et à mesure de la propagation de l'onde le long de la membrane, les leviers se déplacent avec la membrane et les extrémités de ces levier portant un même alternateur soit se rapprochent l'un de l'autre soit s'écartent l'un de l'autre. L'alternateur porté par un couple de leviers a ainsi tendance à générer un courant sous l'effet du déplacement relatif entre ses parties induite et d'induction. Lors de ce déplacement, l'alternateur passe alternativement de ses première à seconde configurations et génère une tension alternative aux bornes de sa bobine ; On constate que pour tout alternateur donné de l' hydrolienne, le sens de déplacement relatif 4 entre partie d' induction et partie induite s'inverse périodiquement ce qui permet à l'alternateur de produire une tension alternative dans chacun des sens de déplacement 4. On note que les groupes d'alternateurs peuvent être disposés de manière que les
alternateurs soient disposés symétriquement par rapport à la membrane de manière que lorsque la membrane est courbée, l'alternateur se trouvant du côté intérieur de la courbure soit alors raccourci alors que l'alternateur situé du côté externe soit allongé. Il est aussi possible que les groupes d'alternateurs situés en vis-à-vis des faces opposées de la membrane soient décalés de manière à ce que lors du déplacement de l'ondulation le long de la membrane, deux alternateurs placés en vis-à-vis et de côtés opposés de la membrane ne se trouvent jamais simultanément en fin de course. Par fin de course d'un alternateur, on entend la position adoptée par cet alternateur lorsque le sens de déplacement de ses parties induite et d'induction s'inverse, soit pour allonger soit pour raccourcir l'alternateur. Ceci est utile pour faciliter l'amorçage de la propagation de l'onde le long de la membrane.
Cette hydrolienne peut comporter un circuit convertisseur distant des alternateurs 1 et certaines au moins des bobines des alternateurs sont reliées électriquement au circuit convertisseur par l'intermédiaire de conducteurs d'électricité. Ce circuit convertisseur est alors agencé pour, à partir des tensions électriques générées par une partie au moins des bobines 11 qui lui sont reliées, générer un courant électrique de sortie au niveau de bornes de sortie de cet au moins un circuit convertisseur distant.
Un tel circuit convertisseur permet à 1 ' hydrolienne de continuer à fonctionner même si certaines des bobines qui sont reliées au convertisseur sont défectueuses. L' hydrolienne peut ainsi continuer à fonctionner en mode dégradé, sans pour autant nécessiter une opération de maintenance.
Un autre avantage de ce circuit convertisseur est qu'il permet de cumuler de l'énergie électrique provenant
de plusieurs bobines pour délivrer une puissance électrique supérieure et régulée aux puissances électriques individuellement produites par les bobines 5.
On note que ces alternateurs, peuvent être disposés sur une seule face ou sur les deux faces de la membrane .
Dans le cas où les convertisseurs 2 sont disposés sur des faces opposées de la membrane, ils seront préférentiellement alignés dans des plans parallèles au plan de section longitudinale de membrane et seront répartis symétriquement par rapport à ce plan s' étendant à équidistance de côtés de la membrane.
Il est également possible que les bobines des alternateurs 1 soient reliées au circuit convertisseur pour générer des courants multi-phases .