EP3114759A1 - Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique - Google Patents

Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique

Info

Publication number
EP3114759A1
EP3114759A1 EP15711065.1A EP15711065A EP3114759A1 EP 3114759 A1 EP3114759 A1 EP 3114759A1 EP 15711065 A EP15711065 A EP 15711065A EP 3114759 A1 EP3114759 A1 EP 3114759A1
Authority
EP
European Patent Office
Prior art keywords
magnets
collector
teeth
series
alternator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15711065.1A
Other languages
German (de)
English (en)
Inventor
Jean Baptiste Drevet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eel Energy
Original Assignee
Eel Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eel Energy filed Critical Eel Energy
Publication of EP3114759A1 publication Critical patent/EP3114759A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/188Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is flexible or deformable
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/08Salient poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7064Application in combination with an electrical generator of the alternating current (A.C.) type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the field of alternators for producing an electric voltage in a coil of an induced part.
  • the invention relates to an alternator comprising an induction part and an induced part that are movable relative to each other in at least one direction of movement.
  • the induction part comprises first and second series of magnets, each of the magnets of these series of magnets comprising a north pole and a south pole, the magnets of the first series of magnets having their north poles oriented according to the same first direction of orientation, the magnets of the second series of magnets having their north poles oriented along the same second direction of opposite orientation with respect to said first direction of orientation, the magnets of the first and second series of magnets being arranged in order to form an alternation of magnets of the first series of magnets and magnets of the second series of magnets.
  • the induced portion has a core and a coil surrounding this core.
  • the object of the invention is to provide an alternator which is particularly suitable for generating electrical voltages when the relative speed of displacement between induction and induced parts is low.
  • the invention mainly relates to an alternator comprising an induction part and an induced part that are movable relative to each other in at least one direction of movement;
  • the induction part comprising first and second series of magnets, each of the magnets of these series of magnets comprising a north pole N and a south pole S, the magnets of the first series of magnets having their north poles N Oriented according to the same first direction of orientation, the magnets of the second series of magnets having their north poles N oriented in a same second direction of opposite orientation with respect to said first direction of orientation, the magnets of the first and second series magnets being arranged to form an alternation of magnets of the first series of magnets and magnets of the second series of magnets;
  • the induced part comprising a core and a coil surrounding said core.
  • the alternator according to the invention is essentially characterized in that the induced portion has a first collector extending from the core between a plane in which extends a first polar face of the coil and some at least magnets of the first and second series of magnets, the first collector comprising teeth spaced apart so that during the relative displacement of the induced portion relative to the induction part according to the said at least one direction of movement, the alternator alternately adopts first and second and second configurations distinct from each other, in the first configuration, the teeth of the first collector being respectively vis-à-vis magnets belonging exclusively to the first set of magnets and in the second configuration, these teeth of the first collector being respectively vis-à-vis magnets belonging to exclusively to the second series of magnets.
  • said orientation direction of a north pole of a magnet is determined by a vector (oriented axis) passing through the north and south poles of the magnet and whose direction goes from the south pole to the North Pole.
  • an alternation of magnets of the first series of magnets and magnet of the second series of magnets means that there is a succession of magnets of the first and second series of magnets and that on this succession of magnets:
  • Each magnet of a majority of the magnets of the first series of magnets is interposed between two adjacent magnets of the second series of magnets;
  • Each magnet of a majority of the magnets of the second series of magnets is interposed between two magnets adjacent to the first series of magnets.
  • the alternation of magnets is a repetition of a main pattern consisting of a magnet of the first series of magnets disposed next to a magnet of the second series of magnets.
  • the alternator according to the invention operates as follows:
  • the teeth of the first collector are then exclusively opposite magnets of the first series of magnets and are then removed from the magnets of the second series of magnets (in first configuration, the average distance between the teeth of the first collector and the magnets of the first series of magnets is less than the average distance between these teeth and the magnets of the second series of magnets), in this first configuration the magnetic flux of the magnets of the first series magnets in front of teeth of the first collector are collected by these teeth to pass through the core and form a main magnetic flux having a first orientation;
  • the teeth of the first collector are then exclusively opposite magnets of the second series of magnets and are spaced apart from the magnets of the first series of magnets (in second configuration, the average distance between the teeth of the second collector and the magnets of the second series of magnets is smaller than the average distance between these teeth and the magnets of the first series of magnets), in this second configuration the magnetic flux of the magnets of the second series of magnets Teeth-facing magnets of the first collector are collected by these teeth to pass through the core and form a main magnetic flux having a second orientation which is opposite to said first orientation.
  • the alternator passes alternately between its first and second configurations which causes a variation of intensity and orientation direction of the magnetic flux in the core of the induced part.
  • the alternation of the configuration of the alternator causes the appearance of an alternating voltage across the coil. This electric voltage across the coil depends on the amount of magnetic flux and the speed of the variation of this magnetic flux in the core. Thanks to the collector of the alternator according to the invention which comprises several pole teeth, the quantity of flux passing through the core is increased and for a given speed of relative displacement between induced and induction parts, the speed of variation of this flow.
  • the teeth of the first manifold are spaced apart so as to be placed between the coil and the alternation of magnets and exclusively opposite the magnets of the first series of magnets (when the alternator is in first configuration) or exclusively opposite the magnets of the second series of magnets (when the alternator is in the second configuration) makes it possible to collect several magnetic fluxes of the magnets of the same series of magnets to route them to the same core inside the electric coil. It is not necessary to have as many coils as teeth which is important to limit the length of coil wire and thus limit the electrical resistance of the coils. At low speed of movement between induced and induction parts, the voltage across the coil is low.
  • the alternator according to the invention also makes it possible to obtain a quantity of magnetic flux greater than the quantity of flux individually produced by any one of the magnets.
  • the alternator according to the invention makes it possible to reduce the polar pitch between two successive magnets of the same series of magnets while amplifying the flux. magnetic through the core through the collection of flows of several magnets.
  • the collector it is not necessary to have one coil per tooth, but we can have a single coil surrounding a single core. Compared to the case where there would be one coil per tooth, the invention allows a reduction in the number of coils needed and therefore a reduction in the length of electrical conductor required for the coil production of the alternator.
  • N is the number of turns of the coil and 30 / 3t is the variation of magnetic flux in the nucleus in time t.
  • the frequency f of magnetic flux variation across the coil for a constant speed displacement of the induction part with respect to the induced part is determined by the formula:
  • is the frequency of variation of the flux
  • is the speed of the relative displacement between the induction part and the induced part
  • P is the polar pitch, that is to say the distance between two polar axes of successive magnets of the same series of magnets (a polar axis is the axis of symmetry of the magnet along which are the north and south poles of the magnet, this polar axis passing through the north and south poles of the magnet).
  • the invention makes it possible to increase this frequency without being obliged to reduce the amplitude of variation of magnetic flux in the nucleus.
  • This advantage is found with collectors having a number of teeth between two and an optimum number of teeth from which flow leakage resulting from an increase in the number of teeth would degrade the performance of the alternator. This optimum number depends on the materials and shapes chosen to achieve the alternator.
  • the invention makes it possible to increase the frequency f of variation of the electrical voltage coil terminals and an increase in the amplitude of this voltage.
  • the core is disposed within the coil
  • the first manifold extends outside the coil, a central portion of the first manifold being located between the core and some magnets of the first and second series of magnets and two lateral portions of the first collector respectively being disposed on either side of the central portion of the first collector, these lateral portions being opposite the first polar face of the first collector; the coil, between this coil and magnets of the first and second series of magnets, each central or lateral portion of the first collector carrying at least one of the teeth of this first collector.
  • the lateral portions of the first collector Thanks to the lateral portions of the first collector, the collector surface facing the magnets of the same series of magnets is increased, which makes it possible to increase the magnetic flux collected and transferred to the core.
  • the lateral portions of the collector are respectively placed on either side of the central portion of the first collector and extend outside the coil so that when the alternator is in its first configuration:
  • At least one tooth belonging to a lateral portion of the first collector extends longitudinally between the first polar face of the coil and one of the magnets of the first series of magnets;
  • At least one tooth belonging to the other lateral portion of the first collector extends longitudinally between the first polar face of the coil and another of the magnets of the first series of magnets.
  • each tooth of a lateral portion of the first collector has a greater portion of its depth P2 which extends between one of the magnets and the coil.
  • the teeth of the lateral portions of the first collector make it possible to collect magnetic fluxes in front of and behind the central portion of the first collector as it moves along its at least one direction of movement.
  • This characteristic of the invention makes it possible to collect a magnetic flux in front of and behind the central portion of the first collector and to drive these flows towards the central portion of the collector and then towards the core inside the coil.
  • To increase the collected magnetic flux it is not necessary to increase the size of the coil, only the length of the collector is increased by these lateral portions which have teeth.
  • the coil comprises a second polar face, the first and second pole faces of the coil being located on either side of the coil, the alternator further comprising a second collector extending around the coil, from a side of the core located on the side of this second pole face of the coil, a portion of the second collector having teeth spaced apart from each other so that when the alternator is in one of said first or second configurations the teeth of the second collector are then respectively vis-à-vis magnets belonging exclusively to one of said series of magnets.
  • the teeth of the first and second collectors are shaped so that when the teeth of the first collector are exclusively vis-à-vis the north poles magnets then the teeth of the second collector are exclusively vis-à-vis the south poles magnets and vice versa.
  • the first and second collectors form a magnetic loop allowing a circulation of flux between several north poles of magnets and several south poles of magnets, the flux of these magnets being collected by the teeth of the first and second collectors and being driven. through these collectors to the core of the coil.
  • the teeth of the second collector extend between the first polar face and one side of the alternation of magnets of the first and second series of magnets, the teeth of the second collector being spaced apart from the teeth of the first collector and these teeth of the first collector.
  • second manifold extending between the teeth of the first manifold so that when the alternator is placed in any one of its first or second configurations, the teeth of the first manifold are opposite magnets belonging to the first manifold; one of said first or second series of magnets, the teeth of the second collector then being opposite magnets belonging to the other of said first or second series of magnets.
  • first and second manifolds have the same number of teeth.
  • each tooth of the first and second collectors has a magnetic flux exchange surface, this exchange surface being the surface of the tooth facing the magnet when the alternator is in one of its first or second configurations.
  • all the flux exchange surfaces are equal to each other and the sum of the exchange surfaces of the teeth of the first collector is equal to the sum of the exchange surfaces of the teeth of the second collector. This characteristic makes it possible to limit the magnetic loss linked to a deficiency of the exchange surface of one of the collectors constituting the magnetic mouth.
  • the magnets of the first and second series of magnets are respectively disposed on a magnetically permeable part, the north poles of the magnets of the first series of magnets and the poles. south of the magnets of the second series of magnets being opposite this magnetically permeable piece, the teeth of the second collector being spaced apart from the teeth of the first collector and these teeth of the second collector extending between the teeth of the first collector so that when the alternator is placed in any of its first or second configurations, the teeth of the first collector are opposite magnets belonging to one of said first or second series of magnets, the teeth of the second collector then being opposite magnets belonging to the other of said first or second series of magnets.
  • the teeth of the first and second collectors are arranged vis-à-vis on the same side of the alternation of the magnets of the first and second series of magnets, the other face of this alternation being opposite the magnetically permeable part which supports these magnets of the alternation of magnets .
  • This embodiment is interesting if one seeks to minimize the overall height of the induced part.
  • the materials that can be used to produce the magnetically permeable part 16 of FIG. 2a or FIG. 11c are low carbon soft iron, an iron / silicon and / or iron / cobalt alloy.
  • the magnets of the first and second sets of magnets to form a magnet track having opposite first and second faces of the magnet track, the teeth of the magnet.
  • first collector being located vis-à-vis the first face of the magnet track and the teeth of the second collector being disposed opposite the second face of the magnet track and the teeth of the first and second collector being shaped so that when the alternator is in one of its first or second configurations, the teeth of the first and second collectors are then vis-à-vis magnets belonging to the same of said first or second series magnet.
  • the first collector is vis-à-vis the first face of the magnet track while the second collector extends around this magnet track to come vis-à-vis the second face of the magnet track.
  • this embodiment reduces the space between two successive teeth of the same collector and therefore it reduces the polar pitch of the alternator.
  • the reduction of the polar pitch can be sought when it is desired to have an alternator capable of operating at a very low speed of relative displacement between inductive and induced parts (the lower the polar pitch and the greater the frequency of the alternation between first and second configurations). ).
  • the coil is wound around a core and is of rectangular shape when seen in section in a plane perpendicular to a direction of magnetic flux passing through the core when the alternator is in one of its first or second configurations.
  • the shortest coil wire length is obtained with a square coil when viewed in section along a sectional plane perpendicular to the flux passing through the core.
  • This ideal square shape is preferred over a traditionally circular shape because it reduces the length of the coil wire and therefore the electrical resistance of the coil.
  • the core may be of rectangular shape, preferably square, when seen in section in the plane perpendicular to the magnetic flux direction passing through the core when the alternator is in one of its first or second configurations.
  • the invention relates to a tidal turbine having a membrane support and a membrane carried by said membrane support, said membrane being arranged to wave when immersed in a fluid flow.
  • This tidal turbine is essentially characterized in that the membrane is connected to at least one alternator according to the invention, this connection between the membrane and the alternator being such that when the membrane undulates, it generates a relative displacement between the induction parts and induced at least one alternator.
  • the alternator can be used in combination with any type of tidal turbine.
  • Figure 1 shows a perspective view of a first embodiment of alternator 1 according to the invention
  • FIG. 1a shows the second collector 15 of the alternator of FIG. 1, this second collector being formed by a stack of sheets allowing the passage of magnetic flux between the sheets, some of these sheets forming a frame of which one side forms a tooth 10b of the second collector 15 and other sheets form an open frame on one of its sides, the latter sheets being shaped to perform inter-dental wedging;
  • FIG. 1b shows the core 9 of the alternator and the first collector 10 of the alternator of FIG. 1 with its teeth 10a spaced apart by a constant spacing pitch Px1;
  • FIG. 1a shows the induced part 3 of the alternator 1 of FIG. 1 without its second collector 15;
  • FIG. 2a is a sectional view of the alternator 1 of FIG. 1, this section being in a relative plane of displacement Pc of the induced and induction parts 2 relative to each other, whereas the Alternator is in second configuration;
  • Figure 2b is a sectional view of the alternator 1 of Figure 1, in a sectional plane in which extends a tooth 10a of the first collector 10, the alternator being in second configuration;
  • FIG. 2c is a sectional view of the alternator of FIG. 1, in a sectional plane parallel to that of FIG. 2b and in which a tooth 10b of the second collector 15 extends, the alternator 1 being always in second configuration;
  • FIG. 3a is a sectional view of the alternator of FIG. 1, in the displacement plane Pc while the alternator is in first configuration with the teeth 10a facing the magnets of the first series 5a; and the teeth 10b vis-à-vis magnets of the second series 5b;
  • FIG. 4 shows an alternator 1 according to an embodiment where there are two induced portions 3, 3 'respectively placed facing opposite faces of the magnet track 8 of the induction part 2 ;
  • FIG. 5a shows a sectional view of the alternator of Figure 4, in the displacement plane Pc, the first induced portion 3 of the alternator 1 being placed in the first configuration;
  • Figure 5b shows a view identical to that of Figure 5a, while the second induced part 3 ' the alternator is placed in its first configuration, that is to say that its teeth 10a of its first collector are vis-à-vis lovers of the first series 5a;
  • Figure 5c shows a view identical to that of Figure 5a, while the first induced part of the alternator is placed in its second configuration;
  • FIG. 5d shows a view identical to that of FIG. 5a, whereas the second induced part 3 'of the alternator is placed in its second configuration, these FIGS. 5a, 5b, 5c, 5d respectively illustrate the configurations successively adopted by FIG. the alternator during a complete cycle of the alternator, the reverse cycle occurring by reversing the direction of movement 4;
  • FIG. 6a is an exploded view of an alternator according to the invention, in which the teeth 10a, 10b of the first and second collectors 10, 15 of one of the induced parts 3, which are interposed with each other and facing each other, are seen -vis the same face of the induction portion 2, here the collector teeth are individually detachable to facilitate the assembly of the alternator 1;
  • Figure 6b illustrates a partial sectional view in a plane A-A of displacement of the alternator of Figure 6a;
  • FIG. 6c shows portions of the first and second collectors 10, 15 intended to be respectively facing the teeth of the collectors shown in FIGS. 6a and 6b;
  • Figure 6d shows the alternator of Figure 6a complete, with the collectors of its two induced parts 3, 3 'assembled;
  • FIG. 7a is a perspective view of an alternator according to the invention made according to another embodiment particular embodiment in which the alternator 1 comprises two induced portions 3, 3 'placed on either side of a magnet track 17 of the induction part 2, the first collectors of the induced parts 3, 3' are formed of a single piece comprising collectors 10, 15 and coil core 9;
  • Figure 7b is a side view of the alternator of Figure 7a where we see the offset of the teeth 10a of the first collectors with respect to the teeth 10b of the second collectors 15;
  • Figure 7c is a longitudinal sectional view C-C of the alternator of Figures 7a and 7b while its first induced portion 3 is in second configuration (the magnetic flux from the core to the teeth of the first collector);
  • FIG. 7d is a cross sectional view DD of the alternator of FIGS. 7a, 7b and 7c, while its first induced part 3 is still in the second configuration, it can be seen that the magnetic loop passes from core 9 to teeth 10a of FIG. first collector 10 then passes through adjacent magnets of the magnet track of the induction part before going back to the second collector 15 of the first induced part 3 and finally back to the core 9 of this first induced part 3 ;
  • FIG. 7e is a sectional view in a plane parallel to the cross sectional plane DD of the alternator, here it is understood that, in the embodiment of the alternator according to Figures 7a to 7e, the teeth 10a of the first collector of a given induced part 3 extend in different planes of the planes in which the teeth of the second collector 15 of the same given induced portion 3 extend, a part of the magnetic loop passing via adjacent magnets of the track magnets 17 visible in Figure 7c; FIG.
  • alternator 8a is a perspective view of an alternator portion according to the invention, this alternator being produced according to another particular embodiment, in which the alternator 1 comprises on the one hand two induced parts 3, 3 placed on either side of a magnet track 17 of a first induction part 2 and on the other hand two other induced parts 3 '', 3 '''placed on either side of a magnet track 17 a magnet track 17 'of a second induction part 2';
  • Figure 8c is a top view of the alternator of Figure 8a where we see the two magnet tracks 17, 17 'parallel to each other and extending in the same plane;
  • FIG. 8d is a perspective view of the entirety of the alternator partially shown in FIGS. 8a, 8b, 8c, here two of the induced parts 3, 3 '' respectively vis-à-vis the two magnet tracks 17 , 17 'parallel to each other are connected by a plate-shaped part 35 to allow a magnetic continuity between these two first induced parts 3, 3' ', we also see that two other 3', 3 '' 'of the four induced parts respectively vis-à-vis the two parallel magnet tracks 17, 17 'are connected by another piece 35' plate-shaped to allow magnetic continuity between the latter two induced parts 3 ', 3' '', a magnetic loop can thus pass through these four induced portions 3, 3 ', 3' ', 3' '' through the two magnet tracks 17, 17 ';
  • FIG. 8e shows a view in longitudinal section EE of the alternator of FIG. 8d in which it is seen that each tooth of the first The collectors of the induced portions 3, 3 ', 3'',3''' respectively placed opposite one and the same magnet track are all facing the same first or second series of contacts. magnets of this magnet track;
  • FIG. 8f is a cross-sectional view
  • FIG. 9 illustrates a particular embodiment of alternator 1 according to the invention in which the induction part 2 is formed of a stack of magnets 6 each in the shape of a disc hollowed at its center and whose NS polarities are oriented radially (the magnets of the first series 5a having their north poles oriented towards the outside of the induction part, the magnets of the second series 5b having their north poles oriented towards the inside of the induction part), here the mutually identical induced parts 3 are arranged in a star around the induction part 2, the magnets 6 of the alternating stacked magnets 8 are separated / spaced apart by spacers 14, each magnet 6 facing each other.
  • each magnet 6 vis-à-vis a tooth 10b of the second collector 15 is distant from the teeth 10a of the first collector 15, here the generation of t at the terminals of the coils 11 is made during the relative displacement of the induced parts 3 with respect to the single part induction 2 along a longitudinal axis of the stack of magnets, the rotation of this stack being free and causing no change in configuration of the alternator 1, only its translation causing the configuration changes;
  • FIG. 10 is an embodiment of the alternator according to the invention which is substantially similar to that of FIG. 9, but in this embodiment each second collector 3 is connected to the corresponding core via a curved portion 20 parallel to the stack of magnets 6 disk-shaped, this mode optimizes the shape of the collector to increase the weight / power ratio of the alternator relative to the alternator of Figure 9, the second collectors 3 are prismatic;
  • FIG. 10a is a longitudinal sectional view of the alternator 1 of FIG. 10 in a sectional plane in which the axis of revolution of the stack of magnets 6 extends, it can be seen here that whatever the configuration adopted by the alternator 1, for each given induced part 3, when the teeth 10a of the first collector 10 are exclusively opposite magnets 6 of one of the series of magnets 5b of the induction part 2 , then the teeth 10b of the second collector 3 are exclusively opposite magnets 5a of the other series of magnets, the magnetic flux F passing between the teeth 10a and 10b passing through at least two spacers 14 and at the minus three adjacent magnets;
  • FIG. 10b illustrates a cross-sectional view of the alternator 1 of FIGS. 10 and 10a according to a sectional plane in which the three induced parts 3 are seen distributed around the induction part 2, we see here that the teeth 10a first collector 10 and the teeth 10b of the second collectors 15 all extend in planes perpendicular to the axis of revolution of the alternator, but for any induced part 3 given, it is found that the tooth 10a of the first collector 10 extends in a plane distant from the plane in which the teeth 10b of the second collector 15 extend, a distance separating these planes between them so that when the teeth 10a are exclusively vis-à-vis magnets of a first or second series then the teeth 10b of the second collector are necessarily exclusively vis-à-vis magnets the other of the first or second series and each tooth 10a of the first collector adjacent a tooth 10b of the second collector 15 necessarily facing magnets adjacent to the alternation of magnets 6;
  • FIG. 10c illustrates a cross-sectional view of the alternator of FIGS. 10, 10a, and 10b according to a sectional plane parallel to that of FIG. 10c but in which the teeth 10b of the second collectors 15 extend, once again we see that the teeth 10a and 10b are shifted in the direction of the stack of magnets so that they are respectively vis-à-vis magnets belonging to series 5a, 5b of different magnets 6, it is understood here, how is formed the continuity of the magnetic loop visible in FIGS. 10a, 10b, each magnetic loop extending between the induction part 2 and an induced part 3 having a portion extending axially in the induction part 2 and along the stack of magnets 6;
  • FIG. 11 shows an alternator according to the invention, of which a cylindrical induction part 2 is rotatably mounted relative to the induced part 3 along an axis of rotation XX coincides with the axis of revolution of the induction part 2 ;
  • the magnets 6 have bar shapes and are arranged at the periphery of the induction part 2, parallel to the axis XX, the magnets of the first and second series of magnets are arranged alternately with their radial axes radial with respect to the axis XX, the magnets of the first series 5a having their south poles oriented towards the inside of the induction part, ie towards the XX axis and their north poles oriented towards the outside of the induction part, the magnets of the second series 5b having their north poles oriented towards the inside of the induction part and their south poles oriented towards the outside. ;
  • FIG. 11a is an exploded perspective view of one of the two induced parts 3 (these two induced parts are identical to one another) of the alternator 1 of FIG. 11, this induced part 3 is intended to be arranged facing the curvature of the induction portion 2 of cylindrical shape, for this the induced portion has its teeth 10a and 10b of the first and second respective collectors parallel to the axis XX to be able to exchange magnetic flux F between the teeth of the induced part and the magnets 6;
  • FIG. 11b is a sectional view of the alternator of Figure 11, where only one of the two induced parts 3 is shown;
  • the second collector 15 forms metal loops (a loop is a frame) around the coil 11, each of these loops being on one side formed by teeth 10b of second collector and another opposite side formed by a plate portion 35 connected to the core 9 which is itself placed inside the coil 11;
  • FIG. 11c is a cross sectional view of the alternator of Figure 11b according to a sectional plane KK;
  • the alternation of the magnets 6 of the first and second series of magnets 5a, 5b and the teeth 10a of the first collector 10 which collect the flow F leaving the north poles of the magnets of the first series 5a and brings it back to the core 9 and the teeth 10b of the second collector 15 which distribute this flow F leaving the core 9 to the south poles of magnets of the second series of magnets 5b;
  • FIG. 11d illustrates a cross-sectional view of the alternator of FIG. 11b along a section plane JJ which passes through an axial end of the second collector 15, it can be seen here that the flux F leaving the core passes to the teeth 10b of the second collector to return to the south poles of the magnets of the second series of magnets 5b;
  • FIG. 11e is identical to FIG. 11b but here the alternator is not in first configuration as in FIGS. 11b, 11c, 11d, but in the second configuration, in fact in this FIG. 11b, the induction part 2 has pivoted relative to the induced portion 3 in the direction of movement 4 (here this direction of movement is a counterclockwise direction), the teeth 10a of the first collector 10 are now in front of magnets 6 of the second series of magnets 5b and the teeth 10b of the second collector 15 are in front of magnets 6 of the first series of magnets 5a, the alternator 1 has thus changed configuration and the direction of the magnetic flux F has reversed with respect to the flux F of the Figures 11b, 11c, 11d;
  • FIG. 11f is a sectional view K-K of the alternator of FIGS. 11b and 11c while it is in the second configuration, the flow F being inverted with respect to the flow F visible in FIG.
  • Figure 11g is a sectional view J-J of the alternator of Figures 11b and binds while it is in second configuration, the flow F being inverted with respect to the flow F visible in Figure lld;
  • FIG. 12 represents another embodiment of alternator 1 according to the invention, here the relative movement between induced parts 3 and induction. 2 is a translation movement in a translation direction 4, in this embodiment the induced part always has a first collector 10 located between the core 9 and the alternation of magnets 6, this first collector 10 still having teeth 10a.
  • this induced part 3 has a second collector 15 which extends since other end of the core 9 and passes on either side of the peripheral coil 11 of the core 9 to come opposite the magnets of the alternation of magnets 8, the teeth 10b of this second collector 15 being vis-à-vis the same magnets as those vis-à-vis which are the teeth 10a of the first collector;
  • Each of these magnets 6 vis-à-vis a tooth 10a and a tooth 10b is placed between these teeth 10a 10b;
  • the magnetic flux F is distributed between the teeth 10a and 10b and passes through the magnet track 17 by passing only magnets of the same series of magnets;
  • the magnets 6 of the alternation are here separated from each other by spacers 14;
  • FIG. 12a is a longitudinal sectional view of the alternator of FIG. 12 in a transverse cross-sectional plane of the magnets 6 of the alternation which have parallel shapes of bars between them and extending in a plane. that each magnet placed opposite one of the teeth 10a is also opposite one of the teeth 10b, these teeth 10a and 10b facing opposite North South poles of this magnet thus allowing a magnetic looping through the magnet and a collection of flux F to the core 9;
  • FIG. 12b is a cross-sectional view of the alternator of FIG. 12 in a section plane perpendicular to the direction of displacement 4 and in which, along its length, one of the magnets 6 of FIG. the alternation of magnets parallel to each other;
  • FIG. 12c is a view identical to that of Figure 12a but here the induced parts 3 and induction 2 have been moved relative to each other by displacement in the direction 4;
  • alternator 1 is in second configuration with the teeth of the first and second collectors 10, 15 exclusively opposite magnets 6 belonging exclusively to the second series 5b of magnets 6; It can be seen that here the magnetic flux F is in the opposite direction to that in FIG. 12a;
  • FIG. 12d is a cross-sectional view of the alternator of FIG. 12, identical to the section of FIG. 12b except that the alternator is here in its second configuration, the sectional magnet belonging here to the second series 5b of magnets;
  • FIG. 13 represents a perspective view of a tidal turbine according to the invention comprising several alternators 1 according to the invention implanted along a membrane 31 carried by a membrane support 30 to allow this membrane to wobble in a fluid flow 32, each alternator 1 is mechanically connected by connecting means 33 with the membrane so that during the corrugation, the induced parts 3 and induction 2 of the alternator move relative to the other in the direction of movement to thereby generate an electrical voltage across the coil of the alternator; For each alternator, its induced and induction parts are mechanically linked to each other via means for linear guidance of these parts relative to one another;
  • FIG. 14 illustrates a side view of 1 'tidal turbine of Figure 13.
  • the invention essentially relates to an alternator 1 comprising an induction part 2 and an induced part 3 movable relative to each other in at least one direction of movement 4.
  • this direction of movement is either:
  • Induced and induction parts are interconnected by means of guiding these parts relative to each other.
  • these guide means are linear guide means.
  • these guide means are rotational guiding means.
  • the induction part 2 comprises first and second series of magnets 5a, 5b, each of the magnets 6 of these series of magnets 5a, 5b comprising a north pole N and a south pole S.
  • the magnets 6 of the first series of magnets 5a have their north poles N oriented in a first direction of orientation 7a which is either parallel for all these magnets when the relative movement between induction and induced parts is linear (as on the Figures 1 to 8f and 12 to 14), ie centrifugal radial when the relative movement comprises a rotation (as in Figures 9 to 11g).
  • the magnets of the second series of magnets 5b have their north poles N oriented along the same second direction of orientation 7b opposite to said first direction of orientation 7a.
  • the magnets 6 of the second series of magnets 5b have their north poles N oriented in a second direction of orientation 7b which is:
  • the magnets 6 of the first and second series of magnets 5a, 5b are arranged to form an alternation of magnets 8 of the first series of magnets 5a and magnets of the second series of magnets 5b.
  • the alternator comprises at least one induced part 3 comprising a core 9 and an electric coil 11 surrounding this core 9.
  • This at least one induced part 3 comprises a first collector 10 which extends from the core 9 between a plane in which extends a first polar face 11a of the coil 11 and at least some of the magnets 6 of the first and second series of magnets 5a, 5b.
  • This first collector 10 has teeth 10a spaced apart so that, during the relative displacement of the induced part 3 with respect to the induction part 2 according to said at least one direction of movement 4, the alternator 1 alternately adopts first and second configurations distinct from each other. Note that several sheets can be stacked to form teeth and core. Alternatively, we can train the collector (s) and core assembly by molding a single piece.
  • the teeth 10a of the first collector 10 are respectively vis-à-vis magnets 6 belonging exclusively to the first series of magnets 5a.
  • these teeth 10a of the first collector 10 are respectively vis-à-vis magnets belonging exclusively to the second series of magnets 5b.
  • the first collector 10 and the core 9 belong to the same magnetic assembly, that is to say, together in which can flow a magnetic flux forming a magnetic loop.
  • this manifold 10 may consist of at least one protrusion of the core 9 extending from one side of the coil 11.
  • this first collector 10 can be constituted by a magnetic part distinct from the core 9 and in contact with this core 9.
  • the teeth 10a of the first collector 10 are spaced apart from each other by a constant pitch spacing of the teeth, said first spacing pitch Px1;
  • the magnets of the first series of magnets 5a are spaced apart from each other by a constant pitch spacing of the magnets of the first series of magnets, said second spacing pitch Px2;
  • any tooth 10a of the first collector 5a has an instantaneous surface opposite a magnet of one of the series of magnets 5a, 5b, these instantaneous surfaces of the teeth 10a being identical. between them.
  • the alternator 1 according to the invention thus has an operating symmetry independent of the relative direction of movement 4 between the induction part and the induced part.
  • the alternator produces the same voltage variation across the coil 11. Therefore, the alternator can be connected to a mechanism for mechanical actuation of the alternator forcing a cyclic inversion of its direction of movement.
  • the first collector 10 has a number of teeth 10a at least equal to six teeth and the magnets 6 of the alternation of magnets 8 are spaced apart in such a way that:
  • each tooth 10a of the first collector is in vis-à-vis a corresponding magnet of the first set of magnets 5a;
  • each tooth 10a of the first collector 10 is screwed to -vis a corresponding magnet 6 of the second series of magnets 5b.
  • the alternator 1 since the alternator 1 is in one of its first or second configurations, it can be seen that the first collector always concentrates towards the core 9 a magnetic flux F from at least six magnets 6 of the same series which improves the efficiency of the alternator.
  • the teeth 10a of the first collector 10 and the magnets 6 of the first and second series of magnets 5a, 5b are arranged in such a way that when the alternator 1 is in its first configuration or in its second configuration, each tooth 10a of the first collector disposed vis-a-vis a magnet which corresponds to it is separated from this magnet of a gap between iron. As illustrated in particular in FIGS. 2a and 6b, these iron spaces all have the same shape and the distance between the iron Ea is uniform over the entire gap.
  • the teeth of the first collector and the magnets are shaped so that any tooth of the first collector arranged vis-à-vis a given magnet extends parallel to the given magnet, the gap space is thus constant on the entire depth of the tooth.
  • the magnets of said first and second series of magnets 5a, 5b have the same shape of a bar.
  • Each bar-shaped magnet has a bar length, called the magnet depth PI, and a bar thickness called the magnet thickness El.
  • each north pole N and south S of the same magnet 6 is extends along the bar form, that is to say according to the depth PI, these north and south poles being separated from each other by the thickness El of the bar.
  • each tooth 10a of the first collector has the same tooth width L2 and a tooth depth P2, only its height may vary.
  • Each tooth 10b of the second collector has the same tooth width L2 'and a tooth depth P2', only its height being variable.
  • the widths of teeth L2, L2 'are identical to each other and preferably the lengths of teeth P2, P2' are also identical to each other.
  • Each magnet has a width L1 of a magnet measured perpendicular to its thickness E1.
  • the teeth 10a of the first collector are uniform to each other in dimensional terms.
  • the teeth 10b of the second collector are uniform to each other in dimensional terms.
  • the magnets of the first and second sets of magnets 5a, 5b are uniform to each other in dimensional terms.
  • the width 11 of the magnets is greater than the widths L2, L2 'of the teeth of the first and second respective collector
  • the alternator 1 comprises means for guiding the induced part with respect to the induction part arranged to guide the relative displacement 4 between the induced part 3 and the induction part 2.
  • These guiding means are such that during the relative displacement between the induced portion and the induction portion, any tooth of the first or second collector placed opposite a magnet has its tooth depth P2, P2 'parallel to the depth PI of the magnet in vis-à-vis which she is placed.
  • the depths P2 of the teeth are ideally equal to the depths PI of the magnets so that the magnetic flux transits over the entire length of the tooth and over the entire length of the magnet.
  • the guiding means is a guide means in linear translation (not shown) arranged to perform a guide in rectilinear translation in a direction of rectilinear displacement of the induced and induction parts relative to each other, the direction of movement 4 is a direction parallel to this direction of rectilinear movement.
  • the first direction of orientation 7a which for each magnet of the first series of magnets goes from its south pole S to its north pole N, is oriented perpendicular to the rectilinear direction of movement 4.
  • the second sense of 7b orientation which for each magnet of the second series of magnets goes from its south pole S to its north pole N is oriented perpendicular to the rectilinear direction of movement 4 and is opposite to the first direction 7a.
  • the guiding means is a means for guiding in rotation (not represented) around an axis. rotation of the alternator XX of the alternator.
  • the direction of movement 4 is here a clockwise or counterclockwise direction.
  • the magnets of the first and second series of magnets have their north poles oriented radially with respect to the axis of rotation XX.
  • the first orientation direction 7a goes from the south pole S to the north pole N and is centrifugal.
  • the second orientation direction 7b goes from its south pole S to its north pole N and is centripetal.
  • teeth 10a of the first collector 10 are arranged to extend from the core 9, in the direction of the alternation of magnets 8 of the first and second series of magnets 5a, 5b;
  • the first collector comprises shims arranged to maintain a spacing between these teeth, these wedges and teeth of the first collector, when observed in a longitudinal sectional plane Pc of the alternator which is parallel to said direction. displacement 4, form a crenellated profile extending in front of the alternation of the magnets 8;
  • each slot of the crenellated profile of the first collector has a slot width L0 corresponding to the distance separating two adjacent teeth of the crenel and each tooth of the first collector has a tooth width L2 corresponding to a dimension of the tooth. measured between two crenels adjacent to this tooth 10a;
  • each magnet 6 of the alternation 8 presents a magnet width Ll corresponding to a dimension of the magnet 6 measured in the longitudinal sectional plane Pc of the alternator 1 in a direction perpendicular to a polar axis Xp passing through the poles N, S of the magnet and each slot width LO is greater than any one of the widths of the magnets L1 of the alternation of magnets 8.
  • the teeth 10a of the first collector 10 when observed in the longitudinal section plane Pc of the alternator 1, form a crenellated profile.
  • the magnets of the first and second series of magnets 5a, 5b extending perpendicular to this plane Pc so that during the relative displacement between the induction part 2 and the induced part 3, the magnets 6 move along the profile crenellated and pass alternately in front of crenellations and teeth 10a.
  • the width L 0 of the slots is strictly greater than the width L 1 of the magnets, a magnet can not at any time be at the same time opposite two teeth 10 a of the first collector 10.
  • the magnets 6 of the first and second series 5a, 5b may all have the same width of the magnet Ll, the slots all having the same slot width L0 and the teeth 10a of the first collector 10 all having the same width tooth L2 and the tooth width L2 of the first collector 10 being strictly smaller than the magnet width L1.
  • this feature maximizes the volume of magnets and thus maximize the flow F potentially collectable by these teeth.
  • these induced parts 3 , 3 ' are preferably offset from each other by a quarter pole pitch p so that when one of the induced parts is in first or second configuration, then the magnetic flux F which passes through its core 9 is closed thanks to the presence teeth of the other induced part which are shifted by a quarter of a polar pitch p. This is visible in FIGS. 5a, 5b, 5c, 5d.
  • This offset can also be applied to the rotary variants of the alternator shown in FIGS. 11 to 11g. Note that in the case where there are three induced parts linked together and vis-à-vis the same induction part, as in Figure 10, the offset between the teeth of the induced parts can be d one-third of a polar pitch p to allow three-phase current generation.
  • the alternator of FIGS. 5a, 5b, 5c, 5d comprises several induced parts 3, 3 'respectively named first and second induced parts 3, 3', these induced parts being mechanically connected to each other so as to move together according to said direction of displacement 4.
  • the first collectors 10a, 10a 'of these first and second induced parts 3, 3' being such that when the teeth of one of these first collectors 10a, 10a 'are opposite magnets 6 belonging exclusively to the first series of magnets 5a or the second series of magnets 5b, then the teeth of the other of these first collectors 10a, 10a 'are offset with respect to the magnets of the first or second series of magnets 5b, magnets with an offset value:
  • This offset limits the maximum magnetic force opposing the displacement of the induction portion 2 relative to the first and second induced portions 3, 3 '.
  • the magnets of the alternation are of homogeneous shape and the polar pitch p corresponds to the distance between two polar axes Xp of successive magnets of the same series of magnets.
  • the polar axis Xp of a magnet is the axis passing through its south poles S and north N.
  • the polar pitch p also corresponds to twice the width of a magnet L1 measured along the direction of displacement 4 to which is added two times the distance separating two adjacent magnets from the alternation of magnets.
  • the distance separating two adjacent magnets from the alternation generally corresponds to the thickness of the spacers 14 which are interposed between the adjacent magnets of the alternation of magnets.
  • the collectors 10, 15 and the core may be made of a material allowing a magnetic loop such as iron, an iron-silicon alloy and / or iron-cobalt.
  • these elements are in slices of this material cut in the plane of the magnetic loop and these slices are isolated from each other, at least in certain places, for example by an electrically resistant varnish.
  • the magnets used in the alternator according to the invention are:
  • the coils are made of copper or copper wire with an aluminum core or graphene type material, or copper wire covered with silver.
  • the section of the teeth seen in planes of sections parallel to the direction of orientation 7a, 7b of the polarities may increase by following the path of the magnetic flux passing through the tooth towards the core 9.
  • each of the teeth first and second manifolds have a tooth section seen in section planes of the tooth parallel to said first and second orientation directions 7a, 7b which increases in the path of the magnetic flux passing through the tooth towards the core 9
  • the teeth 10b of Figures 2c and 11b whose height increases following the path of the magnetic flux to the core 9.
  • This height increase allows a section increase that optimizes the tooth geometry to minimize its weight while limiting the risk of magnetic saturation and magnetic field leakage.
  • the invention finally relates to a tidal turbine comprising a membrane support 30 carrying a membrane 31 arranged to wave when it is immersed in a fluid flow 32.
  • the membrane 31 is mechanically connected to at least one alternator 1 according to at least one embodiment of the invention.
  • This connection 33 between the membrane 31 and the at least one alternator 1 is such that when the membrane 31 corrugates, it then generates a relative displacement between the induced induction parts 2 and 3 of this at least one alternator 1 to thereby generate an electrical voltage across the coil 11 of alternator.
  • the alternators 1 form two groups of alternators respectively arranged facing opposite faces of the membrane.
  • Each alternator is connected to the membrane on the one hand via a first lever 33 extending from a location of the membrane 31 to a joint carried by the induced portion 3 of the alternator 1 and secondly via a second lever 33 extending from another place of the membrane 31 to a joint carried by the induction part 2 of the alternator 1.
  • Each alternator group is formed of several alternators aligned substantially parallel to the preferred corrugation direction of the membrane 31, so that as the propagation of the wave along the membrane, the levers move with the membrane and the ends of the lever carrying the same alternator is closer to the one of the other be apart from each other.
  • the alternator carried by a pair of levers thus tends to generate a current under the effect of the relative displacement between its induced and induction parts.
  • the alternator passes alternately from its first to second configurations and generates an alternating voltage across its coil; It can be seen that for any given alternator of the tidal turbine, the direction of relative displacement 4 between the induction part and the induced part reverses periodically, which enables the alternator to produce an alternating voltage in each of the directions of displacement 4.
  • the groups of alternators can be arranged in such a way that the alternators are arranged symmetrically with respect to the membrane so that when the membrane is bent, the alternator on the inner side of the curvature is then shortened while the alternator on the outer side is elongated. It is also possible that the groups of alternators located opposite the opposite faces of the membrane are offset so that during the displacement of the undulation along the membrane, two alternators placed vis-à-vis -vis and opposite sides of the membrane are never simultaneously at the end of the race. By end of race of an alternator, one understands the position adopted by this alternator when the direction of displacement of its induced and induction parts is reversed, either to lengthen or to shorten the alternator. This is useful for facilitating the initiation of wave propagation along the membrane.
  • This tidal turbine may comprise a converter circuit remote alternators 1 and at least some of the coils alternators are electrically connected to the converter circuit via electricity conductors.
  • This converter circuit is then arranged, from the electrical voltages generated by at least a portion of the coils 11 connected thereto, to generate an output electric current at output terminals of this at least one remote converter circuit.
  • Such a converter circuit allows 1 'tidal turbine to continue to operate even if some of the coils that are connected to the converter are defective.
  • the tidal turbine can continue to operate in degraded mode, without requiring a maintenance operation.
  • Another advantage of this converter circuit is that it makes it possible to accumulate electrical energy from several coils for delivering a higher and regulated electric power to the electric powers individually produced by the coils 5.
  • alternators can be arranged on one side or on both sides of the membrane.
  • the converters 2 are arranged on opposite sides of the membrane, they will preferably be aligned in planes parallel to the longitudinal section plane of the membrane and will be distributed symmetrically with respect to this plane extending equidistant from the sides of the membrane. membrane.
  • the coils of the alternators 1 are connected to the converter circuit to generate multi-phase currents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Alternateur (1) comprenant une partie d'induction (2) et une partie induite (3) mobiles l'une par rapport à l'autre : - la partie d'induction (2) comporte des première et seconde séries d'aimants (5a, 5b) disposés de manière à former une alternance d' aimants de première série et seconde séries d' aimants; - la partie induite (3) comportant un noyau (9) et une bobine (11) entourant ledit noyau (9). La partie induite (3) présente un premier collecteur (10) comportant des dents (10a) espacées de manière que lors du déplacement relatif de la partie induite (3) par rapport à la partie d'induction (2) selon ledit sens de déplacement (4), l'alternateur (1) adopte alternativement des première et seconde configurations distinctes dans la première configuration, les dents (10a) du premier collecteur (10) sont en vis-à-vis d'aimants (6) appartenant à la première série d'aimants (5a) et dans la seconde configuration, ces dents (10a) étant en vis-à-vis d'aimants appartenant exclusivement à la seconde série d'aimants (5b).

Description

Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique
L' invention concerne le domaine des alternateurs pour la production d'une tension électrique dans une bobine d'une partie induite.
ARRIERE PLAN DE L'INVENTION
Plus précisément, l'invention concerne un alternateur comprenant une partie d' induction et une partie induite mobiles l'une par rapport à l'autre selon au moins un sens de déplacement. La partie d'induction comporte des première et seconde séries d'aimants, chacun des aimants de ces séries d' aimants comportant un pôle nord et un pôle sud, les aimants de la première série d'aimants ayant leurs pôles nord orientés selon un même premier sens d'orientation, les aimants de la seconde série d' aimants ayant leurs pôles nord orientés selon un même second sens d' orientation opposé par rapport audit premier sens d'orientation, les aimants des première et seconde séries d'aimants étant disposés de manière à former une alternance d' aimants de la première série d'aimants et d'aimants de la seconde séries d'aimants. La partie induite comporte un noyau et une bobine entourant ce noyau.
On a constaté qu'à faible vitesse de déplacement relative entre les parties d'induction et induite, la tension électrique générée dans la bobine est faible et il serait utile d'augmenter cette tension électrique.
OBJET DE L'INVENTION
L'invention a pour objet de fournir un alternateur particulièrement adapté pour générer des tensions électriques lorsque la vitesse de déplacement relative entre parties d'induction et induite est faible.
RESUME DE L'INVENTION
En vue de la réalisation de cet objet, l'invention concerne principalement un alternateur comprenant une partie d' induction et une partie induite mobiles l'une par rapport à l'autre selon au moins un sens de déplacement;
- la partie d' induction comportant des première et seconde séries d'aimants, chacun des aimants de ces séries d' aimants comportant un pôle nord N et un pôle sud S, les aimants de la première série d'aimants ayant leurs pôles nord N orientés selon un même premier sens d'orientation, les aimants de la seconde série d'aimants ayant leurs pôles nord N orientés selon un même second sens d' orientation opposé par rapport audit premier sens d'orientation, les aimants des première et seconde séries d'aimants étant disposés de manière à former une alternance d'aimants de la première série d'aimants et d' aimants de la seconde séries d' aimants ;
- la partie induite comportant un noyau et une bobine entourant ledit noyau.
L'alternateur selon l'invention est essentiellement caractérisé en ce que la partie induite présente un premier collecteur s' étendant depuis le noyau entre un plan dans lequel s'étend une première face polaire de la bobine et certains au moins des aimants des première et seconde séries d'aimants, ce premier collecteur comportant des dents espacées entre elles de manière que lors du déplacement relatif de la partie induite par rapport à la partie d' induction selon ledit au moins un sens de déplacement, l'alternateur adopte alternativement des première et seconde configurations distinctes l'une de l'autre, dans la première configuration, les dents du premier collecteur étant respectivement en vis-à-vis d'aimants appartenant exclusivement à la première série d'aimants et dans la seconde configuration, ces dents du premier collecteur étant respectivement en vis-à-vis d'aimants appartenant exclusivement à la seconde série d'aimants.
Pour la compréhension de l'invention, ledit sens d'orientation d'un pôle nord d'un aimant est déterminé par un vecteur (axe orienté) passant par les pôles nord et sud de cet aimant et dont le sens va du pôle sud vers le pôle nord.
Pour la compréhension de l'invention, l'expression une alternance d'aimants de la première série d' aimants et d' aimant de la seconde séries d'aimants signifie que l'on a une succession d'aimants des première et seconde séries d' aimants et que sur cette succession d'aimants :
- chaque aimant d'une majorité des aimants de la première série d' aimants est intercalé entre deux aimants voisins de la seconde série d'aimants ; et
- chaque aimant d'une majorité des aimants de la seconde série d' aimants est intercalé entre deux aimants voisins de la première série d'aimants.
En d'autres termes l'alternance d'aimants est une répétition d'un motif principal constitué d'un aimant de la première série d'aimants disposé à côté d'un aimant de la seconde série d'aimants.
Dans la première configuration, comme les dents du premier collecteur sont respectivement en vis-à-vis d'aimants appartenant exclusivement à la première série d'aimants, ces dents du premier collecteur sont alors écartées des aimants de la seconde série d'aimants, et donc pas en vis-à-vis des aimants de la seconde série d' aimants .
De même, dans la seconde configuration, comme les dents du premier collecteur sont respectivement en vis-à- vis d'aimants appartenant exclusivement à la seconde série d'aimants, ces dents du premier collecteur sont alors écartées des aimants de la première série d' aimants et donc pas en vis-à-vis des aimants de la première série d' aimants .
L'alternateur selon l'invention fonctionne de la manière suivante :
lorsque l'alternateur est en première configuration, les dents du premier collecteur sont alors exclusivement en face d'aimants de la première série d' aimants et sont alors écartées des aimants de la seconde série d'aimants (en première configuration, la distance moyenne entre les dents du premier collecteur et les aimants de la première série d'aimants est inférieure à la distance moyenne entre ces dents et les aimants de la seconde série d'aimants), dans cette première configuration les flux magnétiques des aimants de la première série d' aimants en face de dents du premier collecteur sont collectés par ces dents pour passer au travers du noyau et y former un flux magnétique principal présentant une première orientation ;
lorsque l'alternateur est en seconde configuration, les dents du premier collecteur sont alors exclusivement en face d'aimants de la seconde série d' aimants et sont écartées des aimants de la première série d'aimants (en seconde configuration, la distance moyenne entre les dents du second collecteur et les aimants de la seconde série d'aimants est inférieure à la distance moyenne entre ces dents et les aimants de la première série d'aimants), dans cette seconde configuration les flux magnétiques des aimants de la seconde série d' aimants en face de dents du premier collecteur sont collectés par ces dents pour passer au travers du noyau et y former un flux magnétique principal présentant une seconde orientation qui est de sens contraire à ladite première orientation.
Par conséquent, lorsque l'on déplace la partie d' induction par rapport à la partie induite ou vice versa, l'alternateur passe alternativement entre ses première et seconde configurations ce qui entraine une variation d'intensité et de sens d'orientation du flux magnétique dans le noyau de la partie induite. Ainsi, pour des vitesses significatives de déplacement relatif entre les parties induites et d' induction, on constate que l'alternance de changement de configuration de l'alternateur provoque l'apparition d'une tension alternative aux bornes de la bobine. Cette tension électrique aux bornes de la bobine dépend de la quantité de flux magnétique et de la vitesse de la variation de ce flux magnétique dans le noyau. Grâce au collecteur de l'alternateur selon l'invention qui comporte plusieurs dents polaires, on augmente la quantité de flux passant par le noyau et pour une vitesse donnée de déplacement relatif entre parties induite et d'induction, on augmente la vitesse de variation de ce flux.
Le fait que les dents du premier collecteur soient espacées entre elles pour pouvoir être placées entre la bobine et l'alternance d'aimants et exclusivement en vis-à-vis des aimants de la première série d'aimants (lorsque l'alternateur est en première configuration) ou exclusivement en vis-à-vis des aimants de la seconde série d'aimants (lorsque l'alternateur est en seconde configuration) permet de collecter plusieurs flux magnétiques des aimants d'une même série d'aimants pour les acheminer vers un même noyau à l'intérieur de la bobine électrique. Il n'est pas nécessaire d'avoir autant de bobines que de dents ce qui est important pour limiter la longueur de fil de bobines et ainsi limiter la résistance électrique des bobines. A basse vitesse de déplacement entre les parties induite et d' induction, la tension aux bornes de la bobine est faible. En limitant la résistance de la bobine, on favorise le passage du courant ce qui fait que l'alternateur est mieux adapté aux basses vitesses car il limite les pertes par effet Joule et augmente ainsi le rendement. Par vitesse déplacement relative entre parties d' induction et induite est faible, on entend une vitesse de déplacement générant moins de 10 alternances entre première et seconde configurations par minute.
Comme le flux magnétique passant à l'intérieur de la bobine est supérieur aux flux magnétiques individuellement induits par chaque aimant d'une même série d'aimants. L'alternateur selon l'invention permet aussi d'obtenir une quantité de flux magnétique supérieure à la quantité de flux individuellement produite par l'un quelconque des aimants.
Par ailleurs étant donné que le flux provient de plusieurs aimants et est collecté via plusieurs dents du collecteur, l'alternateur selon l'invention permet de réduire le pas polaire entre deux aimants successifs d'une même série d'aimants tout en amplifiant le flux magnétique passant au travers du noyau grâce à la collecte de flux de plusieurs aimants.
Grâce au collecteur, il n'est pas nécessaire d'avoir une bobine par dent, mais on peut avoir une seule bobine entourant un seul noyau. Par rapport au cas où l'on aurait une bobine par dent, l'invention permet une réduction du nombre de bobines nécessaires et par conséquent une réduction de la longueur de conducteur électrique nécessaire à la production de bobine de l'alternateur.
On note que pour une vitesse de déplacement donnée de la partie induite par rapport à la partie d'induction, la fréquence de la tension électrique FEM (Force Electromotrice) aux bornes de la bobine dépend du nombre d' alternances entre aimants des première et seconde séries, c'est-à-dire du nombre d'alternances entre première et seconde configurations. Cette tension électrique, Force Electromotrice FEM, s'exprime selon la loi :
FEM = N*d0/dt ;
où N est le nombre de spires de la bobine et 30/3t est la variation de flux magnétique dans le noyau dans le temps t.
Par ailleurs, la fréquence f de variation de flux magnétique au travers de la bobine pour un déplacement à vitesse constante de la partie d' induction par rapport à la partie induite est déterminée par la formule :
f = /P ; où
^ est la fréquence de variation du flux ; ^ est la vitesse du déplacement relatif entre la partie d' induction et la partie induite ; et
P est le pas polaire, c'est-à-dire la distance entre deux axes polaires d'aimants successifs de la même série d'aimants (un axe polaire est l'axe de symétrie de l'aimant le long duquel se trouvent les pôles nord et sud de l'aimant, cet axe polaire passant par les pôles nord et sud de l'aimant) .
Comme l'usage du collecteur permet une réduction du pas polaire p associée à une augmentation de flux magnétique collecté, on constate que pour une vitesse constante de déplacement de la partie induite par rapport à la partie d'induction, l'invention permet d'augmenter cette fréquence ^ sans être obligé de réduire l'amplitude de variation de flux magnétique dans le noyau. Cet avantage est constaté avec des collecteurs présentant un nombre de dents compris entre deux et une valeur optimale de nombre de dent à partir de laquelle les fuites de flux résultant d'une augmentation du nombre de dents dégraderaient la performance de l'alternateur. Ce nombre optimum dépend des matériaux et formes choisies pour réaliser l'alternateur. Ainsi, à vitesse de déplacement constante , l'invention permet une augmentation de la fréquence f de variation de la tension électrique FEM aux bornes de la bobine et une augmentation de l'amplitude de cette tension.
Dans un mode de réalisation préférentiel de l'invention, le noyau est disposé à l'intérieur de la bobine, le premier collecteur s'étend à l'extérieur de la bobine, une portion centrale du premier collecteur étant située entre le noyau et certains des aimants des première et seconde séries d' aimants et deux portions latérales du premier collecteurs étant respectivement disposées de part et d'autre de la portion centrale du premier collecteur, ces portions latérales étant en vis- à-vis de la première face polaire de la bobine, entre cette bobine et des aimants des première et seconde séries d'aimants, chaque portion centrale ou latérale du premier collecteur portant au moins une des dents de ce premier collecteur.
Grâce à aux portions latérales du premier collecteur, on augmente la surface du collecteur se trouvant en vis-à-vis d'aimants d'une même série d'aimants, ce qui permet d'augmenter le flux magnétique collecté et transféré vers le noyau. Les portions latérales du collecteur sont respectivement placées de part et d' autre de la portion centrale du premier collecteur et s'étendent en dehors de la bobine de manière que lorsque l'alternateur se trouve dans sa première configuration :
- au moins une dent appartenant à une portion latérale du premier collecteur s'étend longitudinalement entre la première face polaire de la bobine et un des aimants de la première série d'aimants ; et
- au moins une dent appartenant à l'autre portion latérale du premier collecteur s'étend longitudinalement entre la première face polaire de la bobine et un autre des aimants de la première série d'aimants.
Les dents des portions latérales du premier collecteur sont telles que lorsque l'alternateur se trouve dans l'une quelconque de ses première ou seconde configurations, chaque dent d'une portion latérale du premier collecteur présente une majeure portion de sa profondeur P2 qui s'étend entre un des aimants et la bobine .
Les dents des portions latérales du premier collecteur permettent de collecter des flux magnétiques en avant et en arrière de la portion centrale du premier collecteur lors de son déplacement selon son au moins un sens de déplacement.
Cette caractéristique de l'invention permet de collecter un flux magnétique en avant et en arrière de la portion centrale du premier collecteur et de conduire ces flux vers la portion centrale du collecteur puis vers le noyau à l'intérieur de la bobine. Pour augmenter le flux magnétique collecté, il n'est pas nécessaire d'augmenter la taille de la bobine, seule la longueur du collecteur est augmentée par ces portions latérales qui comportent des dents.
Dans un mode de réalisation de l'invention, la bobine comporte une seconde face polaire, les première et seconde faces polaires de la bobine étant situées de part et d'autre de la bobine, l'alternateur comportant en outre un second collecteur s' étendant autour de la bobine, depuis un côté du noyau situé du côté de cette seconde face polaire de la bobine, une portion de ce second collecteur comportant des dents espacées entre elles de manière que lorsque l'alternateur est dans l'une desdites première ou seconde configurations les dents du second collecteur soient alors respectivement en vis-à- vis d'aimants appartenant exclusivement à l'une desdites séries d'aimants. Par ailleurs, dans ce mode de réalisation, les dents des premier et second collecteurs sont conformées de manière que lorsque les dents du premier collecteur sont exclusivement en vis-à-vis de pôles nord des aimants alors les dents du second collecteur sont exclusivement en vis-à-vis de pôles sud des aimants et inversement.
En d' autres termes lorsque les dents du premier collecteur sont exclusivement en vis-à-vis de pôles nord alors les dents du second collecteur sont exclusivement en face de pôles sud et inversement et lorsque les dents du premier collecteur sont exclusivement en vis-à-vis de pôles sud alors les dents du second collecteur sont exclusivement en vis-à-vis de pôles nord.
Par ces caractéristiques les premier et second collecteurs forment une boucle magnétique permettant une circulation de flux entre plusieurs pôles nord d'aimants et plusieurs pôles sud d'aimants, le flux de ces aimants étant collecté par les dents des premier et second collecteurs et étant conduit par ces collecteurs vers le noyau de la bobine.
Idéalement, les dents du second collecteur s'étendent entre la première face polaire et une face de l'alternance d'aimants des première et seconde séries d'aimants, les dents du second collecteur étant espacées des dents du premier collecteur et ces dents du second collecteur s' étendant entre les dents du premier collecteur de manière que lorsque l'alternateur est placé dans l'une quelconque de ses première ou seconde configurations, les dents du premier collecteur sont en vis-à-vis d'aimants appartenant à l'une desdites première ou seconde séries d'aimants, les dents du second collecteur étant alors en vis-à-vis d'aimants appartenant à l'autre desdites première ou seconde séries d'aimants.
En ayant les dents des premier et second collecteurs entre la première face polaire de la bobine et une des faces de l'alternance d'aimants on obtient un alternateur compact et pouvant fonctionner avec une seule face de l'alternance d'aimants.
Idéalement, les premier et second collecteurs comportent le même nombre de dents. Idéalement chaque dent des premier et second collecteurs présente une surface d'échange de flux magnétique, cette surface d'échange étant la surface de la dent en vis-à-vis de l'aimant lorsque l'alternateur est dans l'une de ses première ou seconde configurations.
Idéalement toutes les surfaces d'échange de flux sont égales entre elles et la somme des surfaces d'échange des dents du premier collecteur est égale à la somme des surfaces d'échange des dents du second collecteur. Cette caractéristique permet de limiter la perte magnétique liée à une insuffisance de surface d'échange de l'un des collecteurs constituant la bouche magnétique .
Dans un mode réalisation particulier de réalisation de l'alternateur selon l'invention, les aimants des première et seconde séries d' aimants sont respectivement disposés sur une pièce magnétiquement perméable, les pôles nord des aimants de la première série d' aimants et les pôles sud des aimants de la seconde série d'aimants étant en vis-à-vis de cette pièce magnétiquement perméable, les dents du second collecteur étant espacées des dents du premier collecteur et ces dents du second collecteur s' étendant entre les dents du premier collecteur de manière que lorsque l'alternateur est placé dans l'une quelconque de ses première ou seconde configurations, les dents du premier collecteur sont en vis-à-vis d'aimants appartenant à l'une desdites première ou seconde séries d'aimants, les dents du second collecteur étant alors en vis-à-vis d'aimants appartenant à l'autre desdites première ou seconde séries d'aimants.
Dans ce mode de réalisation, les dents des premier et second collecteurs sont disposées en vis-à-vis d'une même face de l'alternance des aimants des première et seconde séries d'aimants, l'autre face de cette alternance étant en vis-à-vis de la pièce magnétiquement perméable qui supporte ces aimants de l'alternance d'aimants. Ce mode de réalisation est intéressant si l'on cherche à minimiser la hauteur d'encombrement de la partie induite.
Les matériaux utilisables pour produire la pièce magnétiquement perméable 16 de la figure 2a ou de la figure 11c sont du fer doux à basse teneur en carbone, un alliage fer/silicium et/ou fer/cobalt.
Alternativement au précédent mode de réalisation de l'alternateur, on peut faire en sorte que les aimants des première et seconde séries d' aimants forment une piste d'aimants présentant des première et seconde faces opposées de la piste d'aimants, les dents du premier collecteur étant situées en vis-à-vis de la première face de la piste d'aimants et les dents du second collecteur étant disposée en vis-à-vis de la seconde face de la piste d'aimants et les dents des premier et second collecteur étant conformées de manière que lorsque l'alternateur est dans l'une de ses première ou seconde configurations, les dents des premier et second collecteurs sont alors en vis-à-vis d'aimants appartenant à la même desdites première ou seconde séries d'aimant.
Dans ce mode de réalisation, le premier collecteur est en vis-à-vis de la première face de la piste d'aimants alors que le second collecteur s'étend autour de cette piste d'aimants pour venir en vis-à-vis de la seconde face de la piste d'aimants. Comme les dents des premier et second collecteurs ne sont plus intercalées, ce mode de réalisation permet de réduire l'espace entre deux dents successives d'un même collecteur et par conséquent il permet de réduire le pas polaire de l'alternateur. La réduction du pas polaire peut être recherchée lorsque l'on souhaite avoir un alternateur capable de fonctionner à très basse vitesse de déplacement relatif entre parties d' induction et partie induite (plus le pas polaire est faible et plus augmente la fréquence de l'alternance entre première et seconde configurations) .
Dans un mode de réalisation préférentiel, la bobine est enroulée autour d'un noyau et est de forme rectangulaire lorsque vue en section dans un plan perpendiculaire à une direction de flux magnétique passant dans le noyau lorsque l'alternateur est dans l'une de ses première ou seconde configurations.
Pour une section intérieur de bobine donnée, la longueur de fil de bobine la plus faible est obtenue avec une bobine carré lorsque vue en coupe selon un plan de coupe perpendiculaire au flux traversant le noyau. Cette forme idéale carrée est préférentielle par rapport à une forme traditionnellement circulaire car elle permet de réduire la longueur de fil de bobine et par conséquent la résistance électrique de la bobine. Ce mode de réalisation et particulièrement intéressant à basse vitesse de déplacement relatif entre les parties induite et d'induction.
Selon ce mode de réalisation, le noyau peut être de forme rectangulaire, préférentiellement carré, lorsque vue en section dans le plan perpendiculaire à la direction de flux magnétique passant dans le noyau lorsque l'alternateur est dans l'une de ses première ou seconde configurations. Le fait que la bobine rectangulaire, préférentiellement carré, soit formée / enroulée autour du noyau rectangulaire, préférentiellement carré, permet de limiter les vides entre bobine et noyau ce qui facilite l'atteinte de l'objectif de réduction de la longueur de fil de bobine.
Enfin, l'invention concerne une hydrolienne comportant un support de membrane et une membrane portée par ce support de membrane, cette membrane étant agencée pour onduler lorsqu'elle est plongée dans un écoulement de fluide. Cette hydrolienne est essentiellement caractérisée en ce que la membrane est reliée à au moins un alternateur selon l'invention, cette liaison entre la membrane et l'alternateur étant telle que lorsque la membrane ondule, elle génère un déplacement relatif entre les parties d'induction et induite de l'au moins un alternateur.
Plus généralement, l'alternateur peut être utilisé en combinaison avec tout type d' hydrolienne .
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
la figure 1 présente une vue en perspective d'un premier mode de réalisation d'alternateur 1 selon 1' invention;
- la figure la représente le second collecteur 15 de l'alternateur de la figure 1, ce second collecteur étant réalisé par un empilement de tôles permettant le passage de flux magnétique entre les tôles, certaines de ces tôles formant un cadre dont un côté forme une dent 10b du second collecteur 15 et d'autres tôles forment un cadre ouvert sur un de ses côtés, ces dernières tôles étant conformées pour réaliser un calage inter dentaire;
- la figure lb représente le noyau 9 de l'alternateur et le premier collecteur 10 de l'alternateur de la figure 1 avec ses dents 10a espacées d'un pas constant d'espacement Pxl;
- la figure le représente la partie induite 3 de l'alternateur 1 de la figure 1 sans son second collecteur 15 ;
la figure 2a est une vue en coupe de l'alternateur 1 de la figure 1, cette coupe étant dans un plan de déplacement Pc relatif des parties induite 3 et d'induction 2 l'une par rapport à l'autre, alors que l'alternateur est en seconde configuration ;
la figure 2b est une vue en coupe de l'alternateur 1 de la figure 1, dans un plan de coupe dans lequel s'étend une dent 10a du premier collecteur 10, l'alternateur étant en seconde configuration ;
la figure 2c est une vue en coupe de l'alternateur de la figure 1, dans un plan de coupe parallèle à celui de la figure 2b et dans lequel s'étend une dent 10b du second collecteur 15, l'alternateur 1 étant toujours en seconde configuration ;
la figure 3a est une vue en coupe de l'alternateur de la figure 1, dans le plan de déplacement Pc alors que l'alternateur est en première configuration avec les dents 10a en vis-à-vis d'aimants de la première série 5a et les dents 10b en vis-à-vis d'aimants de la seconde série 5b ;
- la figure 3b est identique à la figure 2b, mais ici l'alternateur est passé en première configuration ;
- la figure 3c est identique à la figure 2c, mais ici l'alternateur est passé en première configuration ;
- la figure 4 présente un alternateur 1 selon un mode de réalisation où l'on a deux parties induites 3, 3' respectivement placées en vis-à-vis de faces opposées de la piste d'aimants 8 de la partie d'induction 2 ;
- la figure 5a présente une vue en coupe de l'alternateur de la figure 4, dans le plan de déplacement Pc, la première partie induite 3 de cet alternateur 1 étant placée en première configuration;
- la figure 5b présente une vue identique à celle de la figure 5a, alors que la seconde partie induite 3' de l'alternateur est placée dans sa première configuration, c'est-à-dire que ses dents 10a de son premier collecteur sont en vis-à-vis d'amants de la première série 5a;
- la figure 5c présente une vue identique à celle de la figure 5a, alors que la première partie induite de l'alternateur est placée dans sa seconde configuration;
- la figure 5d présente une vue identique à celle de la figure 5a, alors que la seconde partie induite 3' de l'alternateur est placée dans sa seconde configuration, ces figures 5a, 5b, 5c, 5d illustrent respectivement les configurations successivement adoptées par l'alternateur lors d'un cycle complet de l'alternateur, le cycle inverse se produisant en inversant le sens de déplacement 4;
la figure 6a est une vue éclatée d'un alternateur selon l'invention où l'on voit les dents 10a, 10b des premier et second collecteurs 10, 15 d'une des parties induites 3 qui sont intercalées entre elles et en vis-à-vis d'une même face de la partie d'induction 2, ici les dents des collecteurs sont individuellement détachables pour faciliter l'assemblage de l'alternateur 1;
la figure 6b illustre une vue en coupe partielle dans un plan A-A de déplacement de l'alternateur de la figure 6a;
- la figure 6c présente des parties des premier et second collecteurs 10, 15 destinées à être respectivement mises en vis-à-vis des dents des collecteurs présentées aux figures 6a et 6b ;
la figure 6d présente l'alternateur de la figure 6a complet, avec les collecteurs de ses deux parties induites 3, 3' assemblés ;
- la figure 7a est une vue en perspective d'un alternateur selon l'invention réalisé selon un autre mode de réalisation particulier dans lequel l'alternateur 1 comporte deux parties induites 3, 3' placées de part et d'autre d'une piste d'aimants 17 de la partie d'induction 2, les premiers collecteurs des parties induites 3, 3' sont formés d'une seule pièce comportant collecteurs 10, 15 et noyau 9 de bobine 11;
la figure 7b est une vue de côté de l'alternateur de la figure 7a où l'on voit le décalage des dents 10a des premiers collecteurs par rapport aux dents 10b des seconds collecteurs 15 ;
la figure 7c est une vue en coupe C-C longitudinale de l'alternateur des figures 7a et 7b alors que sa première partie induite 3 est en seconde configuration (le flux magnétique allant du noyau vers les dents du premier collecteur) ;
la figure 7d est une vue en coupe D-D transversale de l'alternateur des figures 7a, 7b et 7c, alors que sa première partie induite 3 est toujours en seconde configuration, on voit que la boucle magnétique passe du noyau 9 vers les dents 10a du premier collecteur 10 puis passe au travers d'aimants adjacents de la piste d' aimants de la partie d' induction avant de remonter vers le second collecteur 15 de la première partie induite 3 et enfin revenir vers le noyau 9 de cette première partie induite 3 ;
- la figure 7e est une vue en coupe dans un plan parallèle au plan de coupe transversale D-D de l'alternateur, ici on comprend que, dans le mode de réalisation de l'alternateur selon les figures 7a à 7e, les dents 10a du premier collecteur d'une partie induite 3 donnée s'étendent dans des plans différents des plans dans lesquels s'étendent les dents du second collecteur 15 de cette même partie induite donnée 3, une partie de la boucle magnétique passant via des aimants adjacents de la piste d'aimants 17 visibles à la figure 7c ; - la figure 8a est une vue en perspective d'une portion d'alternateur selon l'invention, cet alternateur étant réalisé selon un autre mode de réalisation particulier, dans lequel l'alternateur 1 comporte d'une part deux parties induites 3, 3' placées de part et d'autre d'une piste d'aimants 17 d'une première partie d' induction 2 et d' autre part deux autres parties induites 3'', 3''' placées de part et d'autre d'une piste d'aimants 17' d'une seconde partie d'induction 2';
- la figure 8b présente une coupe longitudinale
B-B de deux des parties induites 3, 3' placées de part et d'autre d'une des deux parties d'induction 2 de l'alternateur de la figure 8a ;
la figure 8c est une vue de dessus de l'alternateur de la figure 8a où l'on voit les deux pistes d'aimants 17, 17' parallèles entre elles et s' étendant dans un même plan ;
la figure 8d est une vue en perspective de l'intégralité de l'alternateur partiellement représenté aux figures 8a, 8b, 8c, ici deux des parties induites 3, 3'' respectivement en vis-à-vis des deux pistes d'aimants 17, 17' parallèles entre elles sont reliées par une pièce en forme de plaque 35 pour permettre une continuité magnétique entre ces deux premières parties induites 3, 3' ' , on voit aussi que deux autres 3' , 3' ' ' des quatre parties induites respectivement en vis-à-vis des deux pistes d'aimants parallèles 17, 17' sont reliées par une autre pièce 35' en forme de plaque pour permettre une continuité magnétique entre ces deux dernières parties induites 3' , 3' ' ' , une boucle magnétique pouvant ainsi passer par ces quatre parties induites 3, 3' , 3' ' , 3' ' ' en traversant les deux pistes d'aimants 17, 17' ;
la figure 8e présente une vue en coupe longitudinale E-E de l'alternateur de la figure 8d dans laquelle on voit que chaque dents des premiers collecteurs des parties induites 3, 3', 3'', 3''' respectivement placées en vis-à-vis d'une même piste d'aimants sont toutes en vis-à-vis d'une même première ou seconde série d'aimants de cette piste d'aimants ;
- la figure 8f est une vue en coupe transversale
F-F de l'alternateur des figures 8d, 8e, ce plan de coupe F-F étant perpendiculaire au plan de coupe E-E, dans ce plan de coupe F-F, on comprend que la boucle magnétique formée à un instant donné dans l'alternateur 1 passe par ses quatre parties induites 3, 3' , 3' ' , 3' ' ' et par les deux pistes d'aimants 17, 17' des parties d'induction dont les séries d'aimants sont décalées entre elles pour permettre ce bouclage magnétique changeant alternativement de sens lors du déplacement simultané des parties induites par rapport aux parties d'induction;
la figure 9 illustre un mode de réalisation particulier d'alternateur 1 selon l'invention où la partie d'induction 2 est formée d'un empilement d'aimants 6 chacun en forme de disque évidé en son centre et dont les polarités N-S sont orientées radialement (les aimants de la première série 5a ayant leurs pôles nord orientés vers l'extérieur de la partie d'induction, les aimants de la seconde série 5b ayant leurs pôles nord orientés vers l'intérieur de la partie d'induction), ici, les parties induites 3 identiques entre elles sont disposées en étoile autour de la partie d'induction 2, les aimants 6 de l'alternance d'aimants 8 empilés sont séparés / espacés entre eux par des entretoises 14, chaque aimant 6 en vis-à-vis d'une dent 10a d'un premier collecteur 10 est distant des dents 10b du second collecteur 15 et inversement, chaque aimant 6 en vis-à-vis d'une dent 10b du second collecteur 15 est distant des dents 10a du premier collecteur 15, ici la génération de tension aux bornes des bobines 11 se fait lors du déplacement relatif des parties induites 3 par rapport à l'unique partie d'induction 2 selon un axe longitudinal de l'empilement d'aimants, la rotation de cet empilement étant libre et n'entraînant aucun changement de configuration de l'alternateur 1, seule sa translation entraînant les changement de configuration ;
la figure 10 est un mode de réalisation de l'alternateur selon l'invention qui est sensiblement similaire à celui de la figure 9, mais dans ce mode chaque second collecteur 3 est relié au noyau qui lui correspond via une portion courbe 20 parallèle à l'empilement d'aimants 6 en formes de disques, ce mode permet d'optimiser la forme du collecteur pour augmenter le ratio poids / puissance de l'alternateur par rapport à l'alternateur de la figure 9 dont les second collecteurs 3 sont prismatiques;
la figure 10a est une vue en coupe longitudinale de l'alternateur 1 de la figure 10 dans un plan de coupe où s'étend l'axe de révolution de l'empilement d'aimants 6, on voit ici que quelle que soit la configuration adoptée par l'alternateur 1, pour chaque partie induite donnée 3, lorsque les dents 10a du premier collecteur 10 sont exclusivement en vis-à-vis d'aimants 6 d'une des séries d'aimants 5b de la partie d'induction 2, alors les dents 10b du second collecteur 3 sont exclusivement en vis-à-vis d'aimants 5a de l'autre série d'aimants, le flux magnétique F passant entre les dents 10a et 10b en traversant au moins deux entretoises 14 et au moins trois aimants adjacents ;
la figure 10b illustre une vue en coupe transversale de l'alternateur 1 des figures 10 et 10a selon un plan de coupe dans lequel on voit les trois parties induites 3 réparties autour de la partie d'induction 2, on voit ici que les dents 10a des premier collecteur 10 et les dents 10b des seconds collecteurs 15 s'étendent toutes dans des plans perpendiculaires à l'axe de révolution de l'alternateur, mais pour toute partie induite 3 donnée, on constate que la dent 10a du premier collecteur 10 s'étend dans un plan distant du plan dans lequel s'étendent les dents 10b du second collecteur 15, une distance séparant ces plans entre eux de manière que lorsque les dents 10a sont exclusivement en vis-à-vis d'aimants d'une des première ou seconde séries alors les dents 10b du second collecteur sont forcément exclusivement en vis-à-vis d'aimants de l'autre des première ou seconde séries et chaque dent 10a du premier collecteur voisine d'une dent 10b du second collecteur 15 étant forcément en vis-à-vis d'aimants voisins de l'alternance d'aimants 6 ;
la figure 10c illustre une vue en coupe transversale de l'alternateur des figures 10, 10a, et 10b selon un plan de coupe parallèle à celui de la figure 10c mais dans lequel s'étendent les dents 10b des seconds collecteurs 15, encore une fois on voit que les dents 10a et 10b sont décalées dans le sens de l'empilement d'aimants pour qu'elles soient respectivement en vis-à- vis d'aimants appartenant à des séries 5a, 5b d'aimants 6 différentes, on comprend ici comment se forme la continuité de la boucle magnétique visible aux figures 10a, 10b, chaque boucle magnétique s' étendant entre la partie d'induction 2 et une partie induite 3 présentant une portion s' étendant axialement dans la partie d'induction 2 et le long de l'empilement d'aimants 6;
la figure 11 présente un alternateur selon l'invention dont une partie d'induction 2 de forme cylindrique est montée à rotation par rapport à la partie induite 3 selon un axe de rotation X-X confondu avec l'axe de révolution de partie d'induction 2 ; Ici les aimants 6 ont des formes de barreaux et sont disposés à la périphérie de la partie d'induction 2, parallèlement à l'axe X-X, les aimants des première et seconde séries d'aimants sont disposés en alternance avec leurs axes polaires radiaux par rapport à l'axe X-X, les aimants de la première série 5a ayant leurs pôles sud orientés vers l'intérieur de la partie d'induction, c'est à dire vers l'axe X-X et leurs pôles nord orientés vers l'extérieur de la partie d' induction, les aimants de la seconde série 5b ayant leurs pôles nord orientés vers l'intérieur de la partie d' induction et leurs pôles sud orientés vers 1 ' extérieur ;
- la figure lia est une vue éclatée en perspective d'une des deux parties induites 3 (ces deux parties induites sont identiques entre elles) de l'alternateur 1 de la figure 11, cette partie induite 3 est prévue pour être disposée face à la courbure de la partie d'induction 2 de forme cylindrique, pour cela cette partie induite présente ses dents 10a et 10b des premier et second collecteurs respectifs parallèles à l'axe X-X pour pouvoir échanger des flux magnétiques F entre les dents de la partie induite et les aimants 6 ;
- la figure 11b est une vue en coupe de l'alternateur de la figure 11, où une seule des deux parties induites 3 est représentée ; Ici on voit que le second collecteur 15 forme des boucles métalliques (une boucle est un cadre) autour de la bobine 11, chacune de ces boucles étant d'un côté formée par des dents 10b de second collecteur et d'un autre côté opposé formée par une portion de plaque 35 reliée au noyau 9 qui est lui- même placé à l'intérieur de la bobine 11 ;
- la figure 11c est une vue en coupe transversale de l'alternateur de la figure 11b selon un plan de coupe K-K ; Ici on voit l'alternance des aimants 6 des première et seconde séries d'aimants 5a, 5b et les dents 10a du premier collecteur 10 qui collectent le flux F sortant des pôles nord des aimants de la première série 5a et le ramène vers le noyau 9 et les dents 10b du second collecteur 15 qui répartissent ce flux F sortant du noyau 9 vers les pôles sud d' aimants de la seconde série d' aimants 5b ;
la figure lld illustre une vue en coupe transversale de l'alternateur de la figure 11b selon un plan de coupe J-J qui passe par une extrémité axiale du second collecteur 15, on voit ici que le flux F sortant du noyau transite vers les dents 10b du second collecteur pour revenir vers les pôles sud des aimants de la seconde série d'aimants 5b ;
- la figure lie est identique à la figure 11b mais ici l'alternateur n'est pas en première configuration comme sur les figures 11b, 11c, lld, mais en seconde configuration, en effet sur cette figure 11b, la partie d'induction 2 a pivoté par rapport à la partie induite 3 selon le sens de déplacement 4 (ici ce sens de déplacement est un sens antihoraire) , les dents 10a du premier collecteur 10 sont maintenant en face d'aimants 6 de la seconde série d'aimants 5b et les dents 10b du second collecteur 15 sont en face d'aimants 6 de la première série d'aimants 5a, l'alternateur 1 a donc changé de configuration et le sens du flux magnétique F s'est inversé par rapport au flux F des figures 11b, 11c, lld ;
- la figure llf est une vue en coupe K-K de l'alternateur des figures 11b et lie alors qu'il est en seconde configuration, le flux F étant inversé par rapport au flux F visible à la figure lie;
la figure 11g est une vue en coupe J-J de l'alternateur des figures 11b et lie alors qu'il est en seconde configuration, le flux F étant inversé par rapport au flux F visible à la figure lld ;
la figure 12 représente un autre mode de réalisation d'alternateur 1 selon l'invention, ici le mouvement relatif entre parties induite 3 et d' induction 2 est un mouvement de translation selon un sens de translation 4, dans ce mode de réalisation la partie induite comporte toujours un premier collecteur 10 situé entre le noyau 9 et l'alternance d'aimants 6, ce premier collecteur 10 présentant toujours des dents 10a orientées en vis-à-vis de l'alternance d'aimants 6 pour être sélectivement placées en vis-à-vis d'une seule des séries d'aimants, cette partie induite 3 présente un second collecteur 15 qui s'étend depuis l'autre extrémité du noyau 9 et passe de part et d'autre de la bobine 11 périphérique du noyau 9 jusqu'à venir en vis-à-vis des aimants de l'alternance d'aimants 8, les dents 10b de ce second collecteur 15 étant en vis-à-vis des mêmes aimants que ceux en vis-à-vis desquels sont les dents 10a du premier collecteur ; Chacun de ces aimants 6 en vis-à-vis d'une dent 10a et d'une dent 10b est placé entre ces dents 10a 10b ; Le flux magnétique F est réparti entre les dents 10a et 10b et traverse la piste d'aimants 17 en ne passant que par des aimants d'une même série d'aimants ; Les aimants 6 de l'alternance sont ici séparés entre eux par des entretoises 14 ;
la figure 12a est une vue en coupe longitudinale de l'alternateur de la figure 12 selon un plan de coupe transversal des aimants 6 de l'alternance qui ont des formes de barreaux parallèles entre eux et s' étendant dans un plan, on voit ici que chaque aimants placé en vis-à-vis d'une des dents 10a est aussi en vis- à-vis d'une des dents 10b, ces dents 10a et 10b étant face à des pôles opposés Nord Sud de cet aimant permettant ainsi un bouclage magnétique au travers de l'aimant et une collecte de flux F vers le noyau 9 ;
- la figure 12b est une vue en coupe transversale de l'alternateur de la figure 12 dans un plan de coupe perpendiculaire au sens de déplacement 4 et dans lequel s'étend, selon sa longueur, un des aimants 6 de l'alternance d'aimants parallèles entre eux ;
- la figure 12c est une vue identique à celle de la figure 12a mais ici les parties induite 3 et d'induction 2 ont été déplacées l'une par rapport à l'autre par déplacement selon le sens 4 ; Contrairement aux figures 12a et 12b qui présentent l'alternateur en première configuration avec les dents des premier et second collecteurs 10, 15 exclusivement en face d'aimants de la première série d'aimants 5a, ici l'alternateur 1 se trouve en seconde configuration avec les dents des premier et second collecteur 10, 15 exclusivement en face d'aimants 6 appartenant exclusivement à la seconde série 5b d'aimants 6 ; On voit qu'ici, le flux magnétique F est de sens contraire à ce qu' il est à la figure 12a ;
- la figure 12d est une vue en coupe transversale de l'alternateur de la figure 12, identique à la coupe de la figure 12b à la différence que l'alternateur est ici dans sa seconde configuration, l'aimant en coupe appartenant ici à la seconde série 5b d' aimants ;
- la figure 13 représente une vue en perspective d'une hydrolienne selon l'invention comportant plusieurs alternateurs 1 selon l'invention implantés le long d'une membrane 31 portée par un support de membrane 30 pour permettre à cette membrane d' onduler dans un écoulement de fluide 32, chaque alternateur 1 est relié mécaniquement par des moyens de liaison 33 avec la membrane pour que lors de l'ondulation, les parties induite 3 et d'induction 2 de l'alternateur se déplacent l'une par rapport à l'autre selon le sens de déplacement pour ainsi générer une tension électrique aux bornes de la bobine de l'alternateur ; Pour chaque alternateur ses parties induite et d' induction sont liées mécaniquement entre elles via des moyens de guidage linéaire de ces parties l'une par rapport à l'autre ;
- la figure 14 illustre une vue de côté de 1 ' hydrolienne de la figure 13.
DESCRIPTION DETAILLEE DE L'INVENTION Comme indiqué précédemment, l'invention concerne essentiellement un alternateur 1 comprenant une partie d'induction 2 et une partie induite 3 mobiles l'une par rapport à l'autre selon au moins un sens de déplacement 4.
Selon le cas, ce sens de déplacement est soit :
- soit selon une direction rectiligne de déplacement, comme sur les figures 1 à 10c et 12 à 14 ;
- soit selon une orientation horaire ou antihoraire comme sur les figures 11 à 11g.
Les parties induite et d' induction sont reliées entre elles par des moyens de guidage de ces parties l'une par rapport à l'autre.
Dans le cas d'un sens de déplacement 4 selon une direction rectiligne de déplacement, ces moyens de guidage sont des moyens de guidage linéaire.
Dans le cas d'un sens de déplacement 4 horaire ou antihoraire, ces moyens de guidage sont des moyens de guidage en rotation.
Dans tous les modes de réalisation de l'invention, on constate que la partie d'induction 2 comporte des première et seconde séries d'aimants 5a, 5b, chacun des aimants 6 de ces séries d'aimants 5a, 5b comportant un pôle nord N et un pôle sud S.
Les aimants 6 de la première série d'aimants 5a ont leurs pôles nord N orientés selon un premier sens d'orientation 7a qui est soit parallèle pour tous ces aimants lorsque le mouvement relatif entre parties d'induction et induite est linéaire (comme sur les figures 1 à 8f et 12 à 14), soit radial centrifuge lorsque le mouvement relatif comporte une rotation (comme sur les figures 9 à 11g) .
Les aimants de la seconde série d' aimants 5b ont leurs pôles nord N orientés selon un même second sens d' orientation 7b opposé par rapport audit premier sens d'orientation 7a. En l'occurrence, les aimants 6 de la seconde série d' aimants 5b ont leurs pôles nord N orientés selon un second sens d' orientation 7b qui est :
- soit parallèle pour tous ces aimants lorsque le mouvement relatif entre parties d'induction et induite est linéaire (comme sur les figures 1 à 8f et 12 à 14) ;
soit radial centripète lorsque le mouvement relatif comporte une possible rotation (comme sur les figures 9 à 11g) .
Les aimants 6 des première et seconde séries d'aimants 5a, 5b sont disposés de manière à former une alternance d' aimants 8 de la première série d' aimants 5a et d'aimants de la seconde séries d'aimants 5b.
Dans tous les modes de réalisation de l'invention, on constate que l'alternateur comporte au moins une partie induite 3 comportant un noyau 9 et une bobine électrique 11 entourant ce noyau 9. Cette au moins une partie induite 3 comporte un premier collecteur 10 qui s'étend depuis le noyau 9 entre un plan dans lequel s'étend une première face polaire lia de la bobine 11 et certains au moins des aimants 6 des première et seconde séries d'aimants 5a, 5b.
Ce premier collecteur 10 comporte des dents 10a espacées entre elles de manière que lors du déplacement relatif de la partie induite 3 par rapport à la partie d' induction 2 selon ledit au moins un sens de déplacement 4, l'alternateur 1 adopte alternativement des première et seconde configurations distinctes l'une de l'autre. On note que plusieurs tôles peuvent être empilées pour former dents et noyau. Alternativement, on peut former l'ensemble collecteur ( s ) et noyau par moulage d'une seule et même pièce.
Dans la première configuration, les dents 10a du premier collecteur 10 sont respectivement en vis-à-vis d'aimants 6 appartenant exclusivement à la première série d' aimants 5a .
Dans la seconde configuration, ces dents 10a du premier collecteur 10 sont respectivement en vis-à-vis d'aimants appartenant exclusivement à la seconde série d'aimants 5b.
Le premier collecteur 10 et le noyau 9 appartiennent à un même ensemble magnétique, c'est-à-dire en ensemble dans lequel peut circuler un flux magnétique formant une boucle magnétique. Comme on le voit sur les figures 1, lb 2a, à 5d, 7a à 12d, ce collecteur 10 peut être constitué par au moins une excroissance du noyau 9 s' étendant d'un côté de la bobine 11.
Alternativement, comme on le voit sur les figures 6a à 6d, ce premier collecteur 10 peut être constitué par une pièce magnétique distincte du noyau 9 et en contact contre ce noyau 9.
Comme on le voit dans tous les modes de réalisation décrits :
- les dents 10a du premier collecteur 10 sont espacées entre elles d'un pas d'espacement constant des dents, dit premier pas d'espacement Pxl ;
- les aimants de la première série d' aimants 5a sont espacés entre eux d'un pas d'espacement constant des aimants de la première série d'aimants, dit second pas d'espacement Px2; et
- les aimants de la seconde série d' aimants 5b sont espacés entre eux d'un pas d'espacement constant des aimants de la seconde série d'aimants 5b, dit troisième pas d'espacement Px3. On note que les second et troisième pas d'espacement Pxl, Px2 sont égaux entre eux et que le premier pas d'espacement Pxl est choisi de manière qu'à chaque instant lors du déplacement relatif des parties induite 3 et d'induction 2 l'une par rapport à l'autre, toute dent 10a du premier collecteur 5a présente une surface instantanée en vis-à-vis d'un aimant d'une des séries d'aimants 5a, 5b, ces surfaces instantanées des dents 10a étant identiques entre elles.
Dans le cas d'une mobilité relative linéaire entre parties induite et d'induction, ces pas Pxl, Px2, Px3 sont des distances.
Dans le cas d'une mobilité relative par rotation entre parties induite et d'induction, ces pas Pxl, Px2, Px3 sont des angles.
Par ces caractéristiques des pas Pxl, Px2, Px3, lors d'un déplacement à vitesse relative constante entre la partie induite 3 et la partie d'induction 2, on constate que la tension aux bornes de la bobine 11 varie selon une forme alternative de fréquence et d'amplitude sensiblement constantes. Cette forme alternative est proche d'un signal périodique triangulaire. Par ailleurs, par ces caractéristiques de l'alternateur 1, on constate que cette forme alternative de la tension ne dépend pas du sens de déplacement relatif entre la partie induite 3 et la partie d'induction 2, mais uniquement de la vitesse relative de ce déplacement.
L'alternateur 1 selon l'invention présente ainsi une symétrie de fonctionnement indépendante du sens de déplacement 4 relatif entre la partie d'induction et la partie induite. Ainsi, indépendamment du sens de déplacement 4, l'alternateur produit la même variation de tension aux bornes de la bobine 11. Par conséquent, l'alternateur peut être relié à un mécanisme d' actionnement mécanique de l'alternateur forçant une inversion cyclique de son sens de déplacement.
Dans tous les modes de réalisation de l'alternateur 1, le premier collecteur 10 présente un nombre de dents 10a au moins égal à six dents et les aimants 6 de l'alternance d'aimants 8 sont espacés entre eux de telle manière que :
lorsque l'alternateur est dans sa première configuration (comme c'est le cas sur les figures 3a à 3c, 5a, 7c à 7e, 8e, 11b, 11c, lld, 12a, 12b) , chaque dent 10a du premier collecteur est en vis-à-vis d'un aimant correspondant de la première série d' aimants 5a ; et de manière que
lorsque l'alternateur 1 est dans sa seconde configuration (comme c'est le cas sur les figures 2a à 2c, 5c, 10a à 10c, lie à 11g, 12c à 12d) chaque dent 10a du premier collecteur 10 est en vis-à-vis d'un aimant correspondant 6 de la seconde série d'aimants 5b.
Ainsi, quelle que soit la position relative entre la partie induite 3 et la partie d'induction 2, dès lors que l'alternateur 1 se trouve dans une de ses première ou seconde configurations, on constate que le premier collecteur concentre toujours vers le noyau 9 un flux magnétique F provenant d'au moins six aimants 6 d'une même série ce qui améliore le rendement de l'alternateur.
Dans tous les modes de réalisation de l'invention, on constate que les dents 10a du premier collecteur 10 et les aimants 6 des première et seconde séries d'aimants 5a, 5b sont disposés de manière que lorsque l'alternateur 1 se trouve dans sa première configuration ou dans sa seconde configuration, chaque dent 10a du premier collecteur disposée en vis-à-vis d'un aimant qui lui correspond se trouve séparée de cet aimant d'un espace d'entre fer. Comme illustré en particulier sur les figures 2a et 6b, ces espaces d'entre fer ont tous une même forme et la distance d'entre fer Ea est uniforme sur toute la profondeur d'entrefer. Idéalement, les dents du premier collecteur et les aimants sont conformés pour que toute dent du premier collecteur disposée en vis-à-vis d'un aimant donné s'étende parallèlement à cet aimant donné, l'espace d'entrefer étant ainsi constant sur toute la profondeur de la dent.
Dans les modes de réalisation décrits aux figures 1, 2a à 8f, 11 à 12d, les aimants desdites première et seconde séries d'aimants 5a, 5b présentent une même forme de barreau. Chaque aimant en forme de barreau présente une longueur de barreau, dite profondeur d'aimant PI, et une épaisseur de barreau dite épaisseur d'aimant El. Dans ces modes, chaque pôle nord N et sud S d'un même aimant 6 s'étend le long de la forme en barreau, c'est-à-dire selon la profondeur PI, ces pôles nord et sud étant séparés entre eux de l'épaisseur El du barreau.
Idéalement, chaque dent 10a du premier collecteur présente une même largeur de dent L2 et une profondeur de dent P2, seule sa hauteur pouvant varier. Chaque dent 10b du second collecteur présente une même largeur de dent L2' et une profondeur de dent P2', seule sa hauteur pouvant varier. Les largeurs de dents L2, L2' sont identiques entre elles et préférentiellement les longueurs de dents P2, P2' sont aussi identiques entre elles. Les profondeurs des dents P2 et P2' sont parallèles aux profondeurs PI des aimants en forme de barreaux. Chaque aimant présente une largeur Ll d'aimant mesurée perpendiculairement à son épaisseur El. Les dents 10a du premier collecteur sont uniformes entre elles en termes dimensionnels . Les dents 10b du second collecteur sont uniformes entre elles en termes dimensionnels. Les aimants des première et seconde séries d'aimants 5a, 5b sont uniformes entre eux en termes dimensionnels. La largeur 11 des aimants est supérieure aux largeurs L2, L2' des dents des premier et second collecteurs respectifs.
L'alternateur 1 comporte des moyens de guidage de la partie induite par rapport à la partie d' induction agencés pour guider le déplacement 4 relatif entre la partie induite 3 et la partie d' induction 2. Ces moyens de guidage sont tels que lors du déplacement relatif entre la partie induite et la partie d' induction, toute dent du premier ou second collecteur placée en vis-à-vis d'un aimant présente sa profondeur de dent P2, P2' parallèle à la profondeur PI de l'aimant en vis-à-vis duquel elle est placée. Les profondeurs P2 des dents sont idéalement égales aux profondeurs PI des aimants de manière que le flux magnétique transite sur toute la longueur de la dent et sur toute la longueur de l'aimant.
Plus précisément, dans le cas modes des figures 1 à 8f et 9, 10, 10a, 10b, 10c, 12, 12a, 12b, 12c, 12d, 13, 14, le moyen de guidage est un moyen de guidage en translation linéaire (non représenté) agencé pour réaliser un guidage en translation rectiligne selon une direction de déplacement rectiligne des parties induite et d'induction l'une par rapport à l'autre, le sens de déplacement 4 est un sens parallèle à cette direction de déplacement rectiligne.
Dans ces figures, le premier sens d'orientation 7a, qui pour chaque aimant de la première série d'aimants va de son pôle sud S vers son pôle nord N, est orienté perpendiculairement au sens de déplacement rectiligne 4. Le second sens d' orientation 7b qui pour chaque aimant de la seconde série d' aimants va de son pôle sud S vers son pôle nord N est orienté perpendiculairement au sens de déplacement rectiligne 4 et il est contraire au premier sens 7a.
Dans le cas des modes des figures 11, lia, 11b, 11c, lld, lie, llf, 11g, le moyen de guidage est un moyen de guidage en rotation (non représenté) autour d'un axe de rotation de l'alternateur X-X de l'alternateur. Le sens de déplacement 4 est ici un sens horaire ou antihoraire. Dans ces modes, les aimants des première et seconde séries d' aimants ont leurs pôles nord orientés radialement par rapport à l'axe de rotation X-X.
Pour chaque aimant de la première série d'aimants, le premier sens d'orientation 7a va du pôle sud S vers le pôle nord N et il est centrifuge.
Pour chaque aimant de la seconde série d'aimants, le second sens d'orientation 7b va de son pôle sud S vers son pôle nord N et il est centripète.
Dans des modes particuliers de réalisation de l'invention, illustrés aux figures 2a, 3a, 5a à 5d, 6b, 7a, 7c, 8b, 8e, 10a, 12a, 12c, on constate :
- que les dents 10a du premier collecteur 10 sont disposées pour s'étendre depuis le noyau 9, en direction de l'alternance d'aimants 8 des première et seconde séries d'aimants 5a, 5b ;
- que le premier collecteur 10 comporte des cales 12 disposées pour maintenir un écartement entre ces dents 10a, ces cales 12 et dents 10a du premier collecteur 10, lorsque observées dans un plan de coupe longitudinale Pc de l'alternateur 1 qui est parallèle audit sens de déplacement 4, forment un profil crénelé s' étendant face à l'alternance des aimants 8 ;
- que chaque créneau du profil crénelé du premier collecteur 10 présente une largeur de créneau L0 qui correspond à la distance séparant deux dents adjacentes du créneau et chaque dent 10a du premier collecteur 10 présente une largeur de dent L2 correspondant à une dimension de la dent 10a mesurée entre deux créneaux adjacents à cette dent 10a ; et
- que chaque aimant 6 de l'alternance 8 présente une largeur d' aimant Ll correspondant à une dimension de l'aimant 6 mesurée dans le plan de coupe longitudinale Pc de l'alternateur 1 selon une direction perpendiculaire à un axe polaire Xp passant par les pôles N, S de l'aimant et chaque largeur de créneau LO est supérieure à l'une quelconque des largeurs des aimants Ll de l'alternance d'aimants 8.
En d'autres termes, comme illustré aux figures 2a, 3a, 5a à 5d, 6b, 7a, 7c, 8b, 8e, 10a, 12a, 12c, les dents 10a du premier collecteur 10, lorsque observées dans le plan de section longitudinale Pc de l'alternateur 1, forment un profil crénelé. Les aimants des première et seconde séries d'aimants 5a, 5b s' étendant perpendiculairement à ce plan Pc de manière que lors du déplacement relatif entre la partie d' induction 2 et la partie induite 3, les aimants 6 se déplacent le long du profil crénelé et passent en alternance devant les créneaux et les dents 10a. Comme la largeur L0 des créneaux est strictement supérieure à la largeur Ll des aimants, un aimant ne peut à aucun moment se trouver simultanément en vis-à-vis de deux dents 10a du premier collecteur 10.
Dans ce mode particulier, les aimants 6 des première et seconde séries 5a, 5b peuvent présenter tous une même largeur d'aimant Ll, les créneaux présentant tous une même largeur de créneau L0 et les dents 10a du premier collecteur 10 présentant toutes une même largeur de dent L2 et la largeur de dent L2 du premier collecteur 10 étant strictement inférieures à la largeur d'aimant Ll .
Pour une largeur de dents et un pas dentaire donné, cette caractéristique permet de maximiser le volume d'aimants et ainsi maximiser le flux F potentiellement collectable par ces dents. Dans les modes de réalisation où l'alternateur présente plusieurs parties induites 3, 3' placées de part et d'autre de la piste d'aimants 17, comme sur les figures 4, 5a, 5b, 5c, 5d, ces parties induites 3, 3' sont préférentiellement décalées les unes des autres d'un quart de pas polaire p de manière que lorsqu'une des parties induites est en première ou seconde configuration, alors le flux magnétique F qui traverse son noyau 9 est bouclé grâce à la présence de dents de l'autre partie induite qui sont décalées d'un quart de pas polaire p. Ceci est visible aux figures 5a, 5b, 5c, 5d. Ce décalage peut aussi être appliqué aux variantes rotatives de l'alternateur présentées aux figures 11 à 11g. On note que dans le cas où l'on a trois parties induites liées entre elles et en vis-à-vis d'une même partie d'induction, comme sur la figure 10, le décalage entre les dents des parties induites peut être d'un tiers de pas polaire p pour permettre une génération de courant triphasé .
L'alternateur des figures 5a, 5b, 5c, 5d comporte plusieurs parties induites 3, 3' respectivement nommées première et seconde parties induites 3, 3' , ces parties induites étant liées mécaniquement entre elles de manière à se déplacer ensemble selon ledit sens de déplacement 4. Les premiers collecteurs 10a, 10a' de ces première et seconde parties induites 3, 3' étant tels que lorsque les dents de l'un de ces premier collecteur 10a, 10a' sont en vis-à-vis d'aimants 6 appartenant exclusivement à la première série d' aimants 5a ou à la seconde série d'aimants 5b, alors les dents de l'autre de ces premiers collecteurs 10a, 10a' sont décalées vis-à-vis des aimants des première ou seconde séries d'aimants d'une valeur de décalage :
- supérieure à un huitième de pas polaire p de l'alternance d'aimants ; et préférentiellement - égale à d'un quart de pas polaire p de l'alternance d'aimants.
Ce décalage permet de limiter l'effort magnétique maximum s' opposant au déplacement de la partie d' induction 2 par rapport aux première et seconde parties induites 3, 3' .
Les aimants de l'alternance sont de forme homogène et le pas polaire p correspond à la distance entre deux axes polaires Xp d'aimants successifs de la même série d'aimants.
L'axe polaire Xp d'un aimant est l'axe passant par ses pôles sud S et nord N.
Dans le cas particulier des modes illustrés, où les aimants des séries ont une même forme homogène, on constate que le pas polaire p correspond aussi à deux fois la largeur d'un aimant Ll mesurée selon le sens de déplacement 4 à laquelle est ajoutée deux fois la distance séparant deux aimants adjacents de l'alternance d'aimants. La distance séparant deux aimants adjacents de l'alternance correspond généralement à l'épaisseur des entretoises 14 qui sont intercalées entre les aimants adjacents de l'alternance d'aimants. Ces entretoises 14 sont aussi de forme homogène entre elles.
On note que les collecteurs 10, 15 et le noyau peuvent être en un matériau permettant un bouclage magnétique tel que du fer, un alliage fer-silicium et/ou fer-cobalt. Préférentiellement , ces éléments sont en tranches de ce matériau coupées dans le plan de la boucle magnétique et ces tranches étant isolées entre elles, au moins à certains endroits, par exemple par un vernis électriquement résistant.
Typiquement, les aimants utilisés dans l'alternateur selon l'invention sont :
- en alliage néodyme/fer/bore ou en alliage samarium/cobalt ce qui permet d'avoir des aimants à forte énergie ; ou
- en alliage ferrite ou aluminium/nickel/chrome ce qui permet d'avoir des aimants moins chers mais à plus faible énergie.
Les bobines sont en fil de cuivre ou cuivre avec une âme aluminium ou en matériau de type graphène, ou en fil cuivre recouvert d'argent.
De manière générale la section des dents vue dans des plans de sections parallèles au sens d'orientation 7a, 7b des polarités peut aller en augmentant en suivant le chemin du flux magnétique passant par la dent vers le noyau 9. En particulier, chacune des dents des premier et second collecteurs présente une section de dent vue dans des plans de sections de la dent parallèles auxdits premier et second sens d'orientation 7a, 7b qui va en augmentant en suivant le chemin du flux magnétique passant par la dent vers le noyau 9. Ceci est visible en particulier pour les dents 10a des figures le ou lia dont la hauteur augmente en se rapprochant du noyau 9. Ceci est aussi visible pour les dents 10b des figures 2c et 11b dont la hauteur augmente en suivant le chemin du flux magnétique vers le noyau 9. Cette augmentation de hauteur permet une augmentation de section qui permet d'optimiser la géométrie de dent pour minimiser son poids tout en limitant le risque de saturation magnétique et de fuite de champ magnétique.
Comme indiqué précédemment et illustré aux figures 13 et 14, l'invention concerne enfin une hydrolienne comportant un support de membrane 30 portant une membrane 31 agencée pour onduler lorsqu'elle est plongée dans un écoulement de fluide 32. La membrane 31 est reliée mécaniquement à au moins un alternateur 1 selon l'un au moins des modes de réalisation de l'invention. Cette liaison 33 entre la membrane 31 et ledit au moins un alternateur 1 est telle que lorsque la membrane 31 ondule, elle génère alors un déplacement relatif entre les parties d' induction 2 et induite 3 de cet au moins un alternateur 1 pour ainsi générer une tension électrique aux bornes de la bobine 11 d'alternateur.
Sur la figure 14, on voit ici que les alternateurs 1 forment deux groupe d'alternateurs respectivement disposés en vis-à-vis de faces opposées de la membrane. Chaque alternateur est relié à la membrane d'une part via un premier levier 33 s' étendant depuis un endroit de la membrane 31 jusqu'à une articulation portée par la partie induite 3 de l'alternateur 1 et d'autre part via un second levier 33 s' étendant depuis un autre endroit de la membrane 31 jusqu'à une articulation portée par la partie induction 2 de l'alternateur 1. Chaque groupe d'alternateur est formé de plusieurs alternateurs alignés sensiblement parallèlement à la direction d'ondulation privilégiée de la membrane 31, ce qui fait qu'au fur et à mesure de la propagation de l'onde le long de la membrane, les leviers se déplacent avec la membrane et les extrémités de ces levier portant un même alternateur soit se rapprochent l'un de l'autre soit s'écartent l'un de l'autre. L'alternateur porté par un couple de leviers a ainsi tendance à générer un courant sous l'effet du déplacement relatif entre ses parties induite et d'induction. Lors de ce déplacement, l'alternateur passe alternativement de ses première à seconde configurations et génère une tension alternative aux bornes de sa bobine ; On constate que pour tout alternateur donné de l' hydrolienne, le sens de déplacement relatif 4 entre partie d' induction et partie induite s'inverse périodiquement ce qui permet à l'alternateur de produire une tension alternative dans chacun des sens de déplacement 4. On note que les groupes d'alternateurs peuvent être disposés de manière que les alternateurs soient disposés symétriquement par rapport à la membrane de manière que lorsque la membrane est courbée, l'alternateur se trouvant du côté intérieur de la courbure soit alors raccourci alors que l'alternateur situé du côté externe soit allongé. Il est aussi possible que les groupes d'alternateurs situés en vis-à-vis des faces opposées de la membrane soient décalés de manière à ce que lors du déplacement de l'ondulation le long de la membrane, deux alternateurs placés en vis-à-vis et de côtés opposés de la membrane ne se trouvent jamais simultanément en fin de course. Par fin de course d'un alternateur, on entend la position adoptée par cet alternateur lorsque le sens de déplacement de ses parties induite et d'induction s'inverse, soit pour allonger soit pour raccourcir l'alternateur. Ceci est utile pour faciliter l'amorçage de la propagation de l'onde le long de la membrane.
Cette hydrolienne peut comporter un circuit convertisseur distant des alternateurs 1 et certaines au moins des bobines des alternateurs sont reliées électriquement au circuit convertisseur par l'intermédiaire de conducteurs d'électricité. Ce circuit convertisseur est alors agencé pour, à partir des tensions électriques générées par une partie au moins des bobines 11 qui lui sont reliées, générer un courant électrique de sortie au niveau de bornes de sortie de cet au moins un circuit convertisseur distant.
Un tel circuit convertisseur permet à 1 ' hydrolienne de continuer à fonctionner même si certaines des bobines qui sont reliées au convertisseur sont défectueuses. L' hydrolienne peut ainsi continuer à fonctionner en mode dégradé, sans pour autant nécessiter une opération de maintenance.
Un autre avantage de ce circuit convertisseur est qu'il permet de cumuler de l'énergie électrique provenant de plusieurs bobines pour délivrer une puissance électrique supérieure et régulée aux puissances électriques individuellement produites par les bobines 5.
On note que ces alternateurs, peuvent être disposés sur une seule face ou sur les deux faces de la membrane .
Dans le cas où les convertisseurs 2 sont disposés sur des faces opposées de la membrane, ils seront préférentiellement alignés dans des plans parallèles au plan de section longitudinale de membrane et seront répartis symétriquement par rapport à ce plan s' étendant à équidistance de côtés de la membrane.
Il est également possible que les bobines des alternateurs 1 soient reliées au circuit convertisseur pour générer des courants multi-phases .

Claims

REVENDICATIONS
1) Alternateur (1) comprenant une partie d'induction (2) et une partie induite (3) mobiles l'une par rapport à l'autre selon au moins un sens de déplacement (4) :
la partie d'induction (2) comportant des première et seconde séries d'aimants (5a, 5b), chacun des aimants (6) de ces séries d'aimants (5a, 5b) comportant un pôle nord (N) et un pôle sud (S), les aimants (6) de la première série d'aimants (5a) ayant leurs pôles nord (N) orientés selon un même premier sens d'orientation (7a), les aimants de la seconde série d'aimants (5b) ayant leurs pôles nord (N) orientés selon un même second sens d'orientation (7b) opposé par rapport audit premier sens d'orientation (7a), les aimants (6) des première et seconde séries d'aimants (5a, 5b) étant disposés de manière à former une alternance d'aimants de la première série d'aimants et d'aimants de la seconde séries d' aimants ;
- la partie induite (3) comportant un noyau (9) et une bobine (11) entourant ledit noyau (9), caractérisé en ce que la partie induite (3) présente un premier collecteur (10) s' étendant depuis le noyau (9) entre un plan dans lequel s'étend une première face polaire (lia) de la bobine (11) et certains au moins des aimants (6) des première et seconde séries d'aimants (5a, 5b), ce premier collecteur (10) comportant des dents (10a) espacées entre elles de manière que lors du déplacement relatif de la partie induite (3) par rapport à la partie d'induction (2) selon ledit au moins un sens de déplacement (4), l'alternateur (1) adopte alternativement des première et seconde configurations distinctes l'une de l'autre, dans la première configuration, les dents (10a) du premier collecteur (10) étant respectivement en vis-à-vis d'aimants (6) appartenant exclusivement à la première série d'aimants (5a) et dans la seconde configuration, ces dents (10a) du premier collecteur (10) étant respectivement en vis-à-vis d'aimants appartenant exclusivement à la seconde série d'aimants (5b) .
2) Alternateur selon la revendication 1, dans lequel :
- les dents (10a) du premier collecteur (10) sont espacées entre elles d'un pas d'espacement constant des dents, dit premier pas d'espacement (Pxl);
- les aimants de la première série d'aimants (5a) sont espacés entre eux d'un pas d'espacement constant des aimants de la première série d'aimants, dit second pas d'espacement (Px2); et
- les aimants de la seconde série d'aimants (5b) sont espacés entre eux d'un pas d'espacement constant des aimants de la seconde série d'aimants (5b), dit troisième pas d'espacement (Px3);
- les second et troisième pas d'espacement (Pxl, Px2) étant égaux entre eux et le premier pas d'espacement
(Pxl) étant tel qu'à chaque instant lors du déplacement relatif des parties induite et d'induction l'une par rapport à l'autre, toute dent du premier collecteur (5a) présente une surface instantanée en vis-à-vis d'un aimant d'une des séries d'aimants (5a, 5b), ces surfaces instantanées étant identiques entre elles.
3) Alternateur selon l'une quelconque des revendications précédentes, dans lequel le premier collecteur (10) présente un nombre de dents au moins égal à six dents et les aimants de l'alternance d'aimants ( 8 ) étant espacés entre eux de telle manière que lorsque l'alternateur est dans sa première configuration, chaque dent du premier collecteur est en vis-à-vis d'un aimant correspondant de la première série d'aimants (5a) et de manière que lorsque l'alternateur (1) est dans sa seconde configuration chaque dent (10a) du premier collecteur (10) est en vis-à-vis d'un aimant correspondant (6) de la seconde série d'aimants (5b) .
4) Alternateur selon l'une quelconque des revendications précédentes dans lequel, les dents du premier collecteur (10) sont disposées pour s'étendre depuis le noyau (9), en direction de l'alternance d'aimants (8) des première et seconde séries d'aimants (5a, 5b), le premier collecteur (10) comportant des cales (12) disposées pour maintenir un écartement entre ces dents (10a), ces cales (12) et dents (10a) du premier collecteur (10), lorsque observées dans un plan de coupe longitudinale (Pc) de l'alternateur (1) qui est parallèle audit sens de déplacement (4), forment un profil crénelé s'étendant face à l'alternance des aimants (8), chaque créneau du profil crénelé du premier collecteur (10) présente une largeur de créneau (L0) qui correspond à la distance séparant deux dents adjacentes du créneau et chaque dent (10a) du premier collecteur (10) présente une largeur de dent (L2) correspondant à une dimension de la dent (10a) mesurée entre deux créneaux adjacents à cette dent (10a), chaque aimant (6) de l'alternance (8) présentant une largeur d'aimant (Ll) correspondant à une dimension de l'aimant (6) mesurée dans le plan de coupe longitudinale (Pc) de l'alternateur (1) selon une direction perpendiculaire à un axe polaire passant par les pôles (N, S) de l'aimant, chaque largeur de créneau (L0) étant supérieure à l'une quelconque des largeurs des aimants (Ll) de l'alternance d'aimants (8).
5) Alternateur (1) selon la revendication 4, dans lequel les aimants (6) des première et seconde séries (5a, 5b) présentent tous une même largeur d'aimant (Ll), les créneaux présentent tous une même largeur de créneau (L0) et les dents (10a) du premier collecteur (10) présentent toutes une même largeur de dent (L2), la largeur de dent (L2) du premier collecteur (10) étant strictement inférieures à la largeur d'aimant (Ll) .
6) Alternateur selon l'une quelconque des revendications précédentes, dans lequel le noyau (9) est disposé à l'intérieur de la bobine (11), le premier collecteur (10) s'étend à l'extérieur de la bobine (11), une portion centrale du premier collecteur (10) étant située entre le noyau (9) et certains des aimants (6) des première et seconde séries d'aimants (5a, 5b) et deux portions latérales du premier collecteurs (10) étant respectivement disposées de part et d'autre de la portion centrale du premier collecteur (10), ces portions latérales étant en vis-à-vis de la première face polaire (lia) de la bobine (11), entre cette bobine (11) et des aimants (6) des première et seconde séries d'aimants (5a, 5b) , chaque portion centrale ou latérale du premier collecteur (10) portant au moins une des dents (10a) de ce premier collecteur (10) .
7) Alternateur selon l'une quelconque des revendications précédentes, dans lequel la bobine (11) comporte une seconde face polaire (11b), les première et seconde faces polaires (lia, 11b) de la bobine (11) étant situées de part et d'autre de la bobine (11), l'alternateur comportant en outre un second collecteur (15) s'étendant autour de la bobine (11), depuis un côté du noyau (9) situé du côté de cette seconde face polaire (11b) de la bobine (11), une portion de ce second collecteur (15) comportant des dents (10b) espacées entre elles de manière que lorsque l'alternateur (1) est dans l'une desdites première ou seconde configurations les dents (10b) du second collecteur (15) sont alors respectivement en vis-à-vis d'aimants (6) appartenant exclusivement à l'une desdites séries d'aimants (5a, 5b), les dents des premier et second collecteurs (10, 15) étant par ailleurs conformées de manière que lorsque les dents du premier collecteur (10) sont exclusivement en vis-à-vis de pôles nord (N) des aimants alors les dents (10b) du second collecteur (15) sont exclusivement en vis-à-vis de pôles sud (S) des aimants (6) et inversement.
8) Alternateur selon la revendication 7, dans lequel les dents du second collecteur s'étendent entre la première face polaire (lia) et une face de l'alternance d'aimants des première et seconde séries d'aimants, les dents (10b) du second collecteur (15) étant espacées des dents (10a) du premier collecteur (10) et ces dents (10b) du second collecteur (15) s' étendant entre les dents (10a) du premier collecteur (10) de manière que lorsque l'alternateur est placé dans l'une quelconque de ses première ou seconde configurations, les dents (10a) du premier collecteur (10) sont en vis-à-vis d'aimants (6) appartenant à l'une desdites première ou seconde séries d'aimants (5a, 5b), les dents (10b) du second collecteur (15) étant alors en vis-à-vis d'aimants appartenant à l'autre desdites première ou seconde séries d'aimants (5a, 5b) .
9) Alternateur selon l'une quelconque des revendications 7 ou 8, dans lequel les aimants des première et seconde séries d'aimants (5a, 5b) sont respectivement disposés sur une pièce magnétiquement perméable (16), les pôles nord des aimants de la première série d'aimants et les pôles sud (S) des aimants de la seconde série d'aimants (5b) étant en vis-à-vis de cette pièce magnétiquement perméable (16) .
10) Alternateur selon l'une quelconque des revendications 7 à 9, dans lequel, chacune des dents des premier et second collecteurs présente une section de dent vue dans des plans de sections de la dent parallèles auxdits premier et second sens d'orientation (7a, 7b) qui va en augmentant en suivant le chemin du flux magnétique passant par la dent vers le noyau (9) .
11) Alternateur selon l'une quelconque des revendications 7 à 10, dans lequel chaque dent du second collecteur est formée le long d'une portion de périphérie d'une tôle correspondante de forme annulaire fermée, alors que chaque dent du premier collecteur est formées à l'extrémité d'une tôle correspondante plane et d'épaisseur constante, cette tôle allant en s ' élargissant en allant du noyau vers l'extrémité de la dent.
12) Alternateur selon la revendication 7, dans lequel les aimants (6) des première et seconde séries d'aimants (5a, 5b) forment une piste d'aimants (8) présentant des première et seconde faces opposées de la piste d'aimants (17), les dents (10a) du premier collecteur (10) étant situées en vis-à-vis de la première face (17a) de la piste d'aimants (17) et les dents (10b) du second collecteur (15) étant disposée en vis-à-vis de la seconde face (17b) de la piste d'aimants (17) et les dents des premier et second collecteur (10, 15) étant conformées de manière que lorsque l'alternateur est dans l'une de ses première ou seconde configurations, les dents (10a, 10b) des premier et second collecteurs sont alors en vis-à-vis d'aimants (6) appartenant à la même desdites première ou seconde séries d'aimant.
13) Alternateur selon l'une quelconque de revendications 1 à 12, dans lequel la bobine (11) est enroulée autour du noyau (9) et est de forme rectangulaire lorsque vue en section dans un plan perpendiculaire à une direction de flux magnétique (F) passant dans le noyau (9) lorsque l'alternateur est dans l'une de ses première ou seconde configurations.
14) Alternateur selon la revendication 13, dans lequel le noyau (9) est de forme rectangulaire lorsque vue en section dans le plan perpendiculaire à la direction de flux magnétique (F) passant dans le noyau (9) lorsque l'alternateur est dans l'une de ses première ou seconde configurations .
15) Alternateur selon l'une quelconque de revendications 1 à 14, comportant plusieurs parties induites la partie induite (3, 3' ) respectivement nommées première et seconde parties induites (3, 3' ) , ces parties induites étant liées mécaniquement entre elles de manière à se déplacer ensemble selon ledit sens de déplacement (4), les premiers collecteurs (10a, 10a') de ces première et seconde parties induites (3, 3') étant tels que lorsque les dents de l'un de ces premier collecteur (10a, 10a') sont en vis-à-vis d'aimants (6) appartenant exclusivement à la première série d'aimants (5a) ou à la seconde série d'aimants (5b), alors les dents de l'autre de ces premiers collecteurs (10a, 10a') sont décalées vis-à-vis des aimants des première ou seconde séries d'aimants d'une valeur de décalage supérieure à un huitième de pas polaire (p) de l'alternance d'aimants et préférentiellement égale à d'un quart de pas polaire (p) de l'alternance d'aimants, ce décalage permettant de limiter l'effort magnétique maximum s' opposant au déplacement de la partie d'induction (2) par rapport aux première et seconde parties induites (3, 3' ) , le pas polaire (p) correspondant à la distance entre deux axes polaires d'aimants successifs de la même série d'aimants.
16) Hydrolienne comportant un support de membrane (30) portant une membrane (31) agencée pour onduler lorsqu'elle est plongée dans un écoulement de fluide
(32) , caractérisé en ce que la membrane (31) est reliée mécaniquement à au moins un alternateur (1) selon l'une quelconque des revendications précédentes, cette liaison
(33) entre la membrane (31) et ledit au moins un alternateur (1) étant telle que lorsque la membrane (31) ondule, elle génère un déplacement relatif entre les parties d'induction (2) et induite (3) de cet au moins un alternateur (1)
EP15711065.1A 2014-03-05 2015-03-05 Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique Withdrawn EP3114759A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451794A FR3018405B1 (fr) 2014-03-05 2014-03-05 Generateur electrique a aimants permanents dote d`un collecteur de flux magnetique
PCT/EP2015/054657 WO2015132352A1 (fr) 2014-03-05 2015-03-05 Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique

Publications (1)

Publication Number Publication Date
EP3114759A1 true EP3114759A1 (fr) 2017-01-11

Family

ID=51483507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15711065.1A Withdrawn EP3114759A1 (fr) 2014-03-05 2015-03-05 Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique

Country Status (8)

Country Link
US (1) US20170077793A1 (fr)
EP (1) EP3114759A1 (fr)
JP (1) JP2017509302A (fr)
CN (1) CN106688169A (fr)
CA (1) CA2941630A1 (fr)
FR (1) FR3018405B1 (fr)
WO (1) WO2015132352A1 (fr)
ZA (1) ZA201606390B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3123692B1 (fr) 2021-06-02 2023-06-02 Drevet Jean Baptiste Générateurs d’électricité à membrane ondulante.

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193553A (ja) * 1986-02-18 1987-08-25 Yaskawa Electric Mfg Co Ltd 永久磁石形リニア電磁アクチユエ−タ
JPH02246762A (ja) * 1989-03-18 1990-10-02 Hitachi Ltd リニアモータ
GB9001604D0 (en) * 1990-01-24 1990-03-21 Mecrow Barrie C Doubly excited synchronous electrical machine arrangement
US5175457A (en) * 1991-10-28 1992-12-29 Mechanical Technology Incorporated Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
JPH0787722A (ja) * 1993-09-13 1995-03-31 Oriental Motor Co Ltd リニアモータ
EP0924838A1 (fr) * 1997-12-19 1999-06-23 Eta SA Fabriques d'Ebauches Générateur d'énergie électrique monophasé
SE521607C2 (sv) * 2000-04-07 2003-11-18 Abb Ab En linjär elektrisk maskin
JP3945150B2 (ja) * 2000-11-06 2007-07-18 株式会社日立製作所 リニアモータ
JP3894297B2 (ja) * 2001-02-28 2007-03-14 富士電機機器制御株式会社 リニアアクチュエータ
WO2003088454A1 (fr) * 2002-04-11 2003-10-23 Éocycle Technologies Inc. Machine électrique à flux transverse à rotor dentelé
DE102005025672A1 (de) * 2004-09-30 2006-04-27 Siemens Ag Polygonartig aufgebaute elektrische Maschine
FR2934650B1 (fr) * 2008-08-01 2010-09-17 Jean Baptiste Drevet Generateur d'energie.
JP2010141978A (ja) * 2008-12-10 2010-06-24 Hitachi Ltd 推力発生機構
US9000626B2 (en) * 2008-12-10 2015-04-07 Hitachi, Ltd. Thrust generation mechanism, drive device, XY stage and XYZ stage
JP5355364B2 (ja) * 2009-12-02 2013-11-27 日立オムロンターミナルソリューションズ株式会社 紙葉類処理装置
JP5494397B2 (ja) * 2009-12-28 2014-05-14 ウシオ電機株式会社 Led線状光源および読取装置
WO2011115632A1 (fr) * 2010-03-15 2011-09-22 Motor Excellence Llc Systèmes à flux transversal et/ou à flux commuté, configurés de façon à réduire les déperditions de flux, à réduire les déperditions d'hystérésis et à réaliser une adaptation de phase
WO2011118568A1 (fr) * 2010-03-23 2011-09-29 日立金属株式会社 Moteur linéaire
JP5796576B2 (ja) * 2010-06-09 2015-10-21 株式会社日立製作所 発電機およびそれを用いた発電装置
CN201854166U (zh) * 2010-09-10 2011-06-01 中国科学院宁波材料技术与工程研究所 一种轴式直线电机
US9985483B2 (en) * 2016-05-24 2018-05-29 Abb Schweiz Ag Electro-dynamic machine, system and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015132352A1 *

Also Published As

Publication number Publication date
JP2017509302A (ja) 2017-03-30
ZA201606390B (en) 2018-05-30
FR3018405A1 (fr) 2015-09-11
CN106688169A (zh) 2017-05-17
FR3018405B1 (fr) 2017-11-03
WO2015132352A1 (fr) 2015-09-11
US20170077793A1 (en) 2017-03-16
CA2941630A1 (fr) 2015-09-11

Similar Documents

Publication Publication Date Title
EP2880742B1 (fr) Moteur electrique optimise a dents etroites
EP3130061B1 (fr) Stator de machine electrique tournante
WO2015155731A2 (fr) Rotor de machine électrique tournante
EP2763296B1 (fr) Machine électrique avec pièces intermédiaires à plusieurs entrefers et flux magnétique 3D
FR3000851A1 (fr) Machine electrique a plusieurs entrefers et flux magnetique 3d
FR3015794A1 (fr) Element de machine electromagnetique a circuits electromagnetiques optimises integres a des pistes sous forme de lignes crenelees annulaires
EP3210285A1 (fr) Moteur polyphasé présentant une alternance d'aimants permanents et de pôles saillants
EP3130060A2 (fr) Rotor de machine electrique tournante
WO2017149434A1 (fr) Procede pour generer un champ magnetique et generateur de champ magnetique
FR2941105A1 (fr) Machine electrique tournante,en particulier pour un demarreur de vehicule automobile
EP2071708B1 (fr) Couronne d'orientation motorisée
EP3120445B1 (fr) Machine electrique hybride
WO2015132352A1 (fr) Générateur électrique à aimants permanents doté d'un collecteur de flux magnétique
EP3685492B1 (fr) Isthmes de ponts magnetiques d'un rotor de machine electrique
FR3030931A1 (fr) Machine electrique a excitation separee avec au moins deux induits et un inducteur
WO2003098783A1 (fr) Moteur lineaire
WO2016198422A1 (fr) Machine electrique a commutation de flux a simple excitation
WO2005076434A2 (fr) Dispositif actionneur electrique ou generateur electrique reagissant a la force de repulsion magnetique
BE1023490B1 (fr) Moteur électrique
FR3016486A1 (fr) Machine a aimants permanents a commutation de flux avec une focalisation de flux amelioree
EP0783202A1 (fr) Accélérateur pour actionneur linéaire
WO2016113227A1 (fr) Moteur électrique
FR2975545A1 (fr) Dispositif de generatrice a plat
FR2884069A1 (fr) Machine electrique tournante acyclique a courant continu
WO2011045479A2 (fr) Machine electrique a bobines spiralees fixes ou mobiles.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170619

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181002