EP1144708A2 - Verfahren zum beschichten von hohlkörpern - Google Patents

Verfahren zum beschichten von hohlkörpern

Info

Publication number
EP1144708A2
EP1144708A2 EP99967878A EP99967878A EP1144708A2 EP 1144708 A2 EP1144708 A2 EP 1144708A2 EP 99967878 A EP99967878 A EP 99967878A EP 99967878 A EP99967878 A EP 99967878A EP 1144708 A2 EP1144708 A2 EP 1144708A2
Authority
EP
European Patent Office
Prior art keywords
powder
metal
donor
coating
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99967878A
Other languages
English (en)
French (fr)
Other versions
EP1144708B1 (de
EP1144708A3 (de
Inventor
Horst Pillhöfer
Andreas Fritsch
Thomas Dautl
Guido Schesny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1144708A2 publication Critical patent/EP1144708A2/de
Publication of EP1144708A3 publication Critical patent/EP1144708A3/de
Application granted granted Critical
Publication of EP1144708B1 publication Critical patent/EP1144708B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat

Definitions

  • the invention relates to a method for coating hollow bodies, in which a powder mixture of a metal donor powder, an inert filling powder and an activator powder is provided, the powder mixture with an inner surface of the body to be coated, e.g. made of a Ni, Co or Fe-based alloy, is brought into contact and heated.
  • a powder mixture of a metal donor powder, an inert filling powder and an activator powder is provided, the powder mixture with an inner surface of the body to be coated, e.g. made of a Ni, Co or Fe-based alloy, is brought into contact and heated.
  • the known processes for diffusion coating components made of heat-resistant alloys, such as Ni, Co or Fe-based alloys include the so-called powder packing processes.
  • powder packing processes Such a method is disclosed in US Pat. No. 3,667,985, in which the component surfaces to be coated are brought into contact and heated with a donor powder made of titanium and aluminum, to which an inert filler material and a halogen salt activator are mixed.
  • a powder packing method is known from US Pat. No. 3,958,047, in which the metallic component is brought into contact with a donor powder containing aluminum and chromium and is diffusion-coated with heating.
  • the achievable inner layer thicknesses are also limited here because the coating gas or the donor metal gas becomes impoverished on its way through the cavities of the component and a layer thickness gradient arises over the length of the cavity. Because the layer thickness of the outer coating is higher than that of the inner coating due to the process, the service life of the components is limited due to the thinner inner coating.
  • DE 30 33 074 A1 discloses a method for diffusion coating the inner surface of cavities, in which a metallic workpiece with an aluminizing diffusion powder mixture composed of 15% aluminum powder with a particle size of 40 ⁇ m and 85% alumina powder with a particle size of approximately 200 to 300 ⁇ m and an NH-CL powder can be coated.
  • US Pat. No. 5,208,071 discloses a method for aluminizing a ferritic component with an aluminum oxide slip and subsequent heat treatment, the slip consisting of at least 10% by weight of chromium, at least 10% by weight of inert filler material, at least 12% by weight of water Binder and a halogen activator and the coated ferritic component finally heat is treated.
  • the use of a slip differs significantly from a powder pack coating process.
  • the composition of the coating powder can comprise 10 to 60% chromium powder, 0.1 to 20% chromium halide and aluminum oxide.
  • the problem on which the present invention is based is to improve a powder packing process of the type described in the introduction in such a way that the layer thicknesses of the inner coating are sufficiently large even in the case of cavities with relatively complicated geometries.
  • the solution to this problem is characterized according to the invention in that the inert filling powder is provided with an average or average particle size which is approximately the same size as the average particle size of the metal donor powder.
  • the advantage is that, with such a choice of particle sizes, the specific density can be increased without the powder mixture clumping, for example due to an excessive proportion of the metal donor powder. It is also ensured that there is no early depletion of the donor metal.
  • a powder mixture is free-flowing and finds its way into narrow edges of inner cavities to be coated. Hollow bodies such as guide and rotor blades of gas turbines made of heat-resistant Ni, Co or Fe-based alloys can be coated.
  • the layer thicknesses of the inner coating also lie in narrow edges or gusset areas of the cavities in the range of 50 to 110 ⁇ m and thus ensure the function of the inner coating as an oxidation and corrosion protection layer.
  • the metal donor powder and the inert filling powder are provided with an average particle size of greater than 40 ⁇ m, as a result of which the coating gas can be permeated well by the bed of the powder mixture.
  • the powder mixture is preferably provided with a proportion of the metal donor powder of 10 to 25% by weight in order to prevent the powder mixture from clumping together and to ensure good permeation through the bed.
  • an alloy with a proportion of the donor metal of 20 to 80% by weight is provided as the metal donor powder, so that a sufficiently thick layer thickness is ensured due to the high proportion of donor metal.
  • a mixture of an alloy with a donor metal content of 40 to 70% by weight and an alloy with a donor metal content of 30 to 50% by weight is provided as the metal donor powder, so that the depletion of the metal donor in the two Alloys gradually, that is with a time delay.
  • the metal donor powder and the inert filling powder can be provided with an average or average particle size of 150 ⁇ m.
  • Such a powder mixture is free-flowing and fills the cavities with the inner surfaces to be coated due to an advantageous specific bulk density.
  • the hollow body is a hollow turbine guide vane of a gas turbine, which is provided with an oxidation and corrosion protection layer.
  • the cavity has a length of approximately 160 mm. Its inner surfaces are spaced between 2 and 6 mm and converge at two opposite end sections.
  • a powder mixture of approximately 20% by weight of metal donor powder and approximately 80% by weight of inert filler powder is provided to coat the inner surfaces of the guide vanes.
  • AlCr is selected as the metal donor powder and AI2O3 as the inert filler powder.
  • the melting point of AlCr is at least about 100 ° C above the coating temperature of about 800 ° C - 1200 ° C, so that no diffusion bonding of the metal particles to one another or clumping occurs.
  • the proportion of an activator powder is about 3% by weight, with AIF3, i.e. a halide compound is selected.
  • AIF3 i.e. a halide compound is selected.
  • a connection for the activator powder comes e.g. also consider CrC.
  • Such a connection must have a low vapor pressure at the coating temperature so that it remains intact during the entire coating process.
  • a halide compound of the donor metal here aluminum, is used to avoid agglomeration due to a chemical reaction of the halogen with the donor metal.
  • the average particle size of the inert filling powder is 100 ⁇ m and is significantly larger than the particle size of the metal donor powder, which is 60 ⁇ m.
  • the proportion of aluminum, i.e. of the metal dispenser, on the metal dispenser powder is 50% by weight.
  • the powder mixture provided in this way is filled into the cavity of the guide vanes for coating the inner surfaces.
  • the subsequent coating is carried out at 1080 ° C and a holding time of 6 h, the outer coating, i.e. the coating of the outer surfaces of the guide vane can be carried out simultaneously in a one-step process using a conventional powder packing process or by a gas diffusion coating process.
  • The.AI content in the layer is between 30 and 35% by weight in the inner coating deposited in this way.
  • an inert filler powder (A Oa) with an average particle size of approximately 100 ⁇ m is selected, which makes up approximately 80% by weight of the powder mixture.
  • AIF 3 with about 3% by weight of a powder mixture is selected and mixed as the activator powder.
  • the metal donor powder which makes up about 20% by weight of the powder mixture, consists of two fractions.
  • the first fraction is an alloy of AlCr, in which the proportion of aluminum is 50% by weight.
  • the proportion of the donor metal, aluminum is lower in the second fraction and is 30% by weight.
  • the Al content in the inner layers is 24 to 28% by weight.
  • the inner layer thicknesses are between 65 and 105 ⁇ m and thus significantly higher than the layer thicknesses that can be achieved with conventional (powder pack) processes.
  • the hollow body is a hollow turbine guide vane of a gas turbine, which is provided with an oxidation and corrosion protection layer by means of a powder pack coating process.
  • the elongated cavity is about 180 mm long.
  • the inner surfaces are spaced between 2 and 6 mm and converge at two opposite, longitudinal end sections.
  • a powder mixture of approximately 15% by weight of metal donor powder and just below 85% by weight of inert filler powder is provided.
  • the proportion of the metal donor powder can range from 10 to 25% by weight, depending on the application.
  • the metal donor powder is AlCr and the inert filler powder is AI2O3.
  • a halogen compound such as AIF 3 is used as the activator powder.
  • the activator powder is thus a halide compound of the donor metal AI.
  • the average particle size of the inert filling powder is approximately the same size as the average particle size of the metal donor powder and is 150 ⁇ m.
  • the proportion of the donor metal AI in the metal donor powder, which is an alloy, is 50% by weight.
  • the specific density of such a powder pack mixture is not high because of a high proportion of the metal donor powder, but because of the selected particle size distribution. With this pouring of the powder pack mixture, there is sufficient permeation of the coating gases originating from the halide compound.
  • the powder mixture thus provided is filled into its cavity.
  • the bed is easy to pour and also has access to the narrow edges of the cavity.
  • the subsequent coating takes place at 1080 ° C and a holding time of 6 h. It can be used simultaneously with the outer coating, i.e. the coating of the outer surface of the turbine guide vane, which can be carried out by a conventional powder packing process or by a gas diffusion coating process. In general, the coating is carried out simultaneously on several turbine guide vanes.
  • the Al content in the inner coating deposited in this way is between 30 and 35% by weight and therefore in a very advantageous range, i.e. it occurs e.g. B. no embrittlement of the layer.
  • the layer thicknesses are also in the narrow edges or gusset area of the cavities in the range from 60 to 110 ⁇ m, so that the function of the inner coating as protection against oxidation and corrosion is ensured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

Ein Verfahren zum Beschichten von Hohlkörpern, bei dem eine Pulvermischung aus einem Metallspenderpulver, einem inerten Füllpulver und einem Aktivatorpulver aus einem Metallhalogenid bereitgestellt wird, die Pulvermischung mit einer zu beschichtenden, inneren Oberfläche der Hohlkörpers in Kontakt gebracht und erwärmt wird, wobei zur Erhöhung der Innenschichtdicken das inerte Füllpulver mit einer mittleren Partikelgrösse, die ungefähr gleich gross wie die mittlere Partikelgrösse des Metallspenderpulvers ist, bereitgestellt wird.

Description

Verfahren zum Beschichten von Hohlkörpern
Die Erfindung betrifft ein Verfahren zum Beschichten von Hohlkörpern, bei dem eine Pulvermischung aus einem Metallspenderpulver, einem inerten Füllpulver und einem Aktivatorpulver bereitgestellt wird, die Pulvermischung mit einer zu beschichtenden inneren Oberfläche des Körpers, z.B. aus einer Ni-, Co- oder Fe-Basislegierung, in Kontakt gebracht und erwärmt wird.
Zu den bekannten Verfahren zum Diffusionsbeschichten von Bauteilen aus warmfe- sten Legierungen, wie Ni-, Co- oder Fe-Basislegierungen, gehören die sog. Pulverpackverfahren. Ein derartiges Verfahren wird in der US 3,667,985 offenbart, bei dem die zu beschichtenden Bauteiloberflächen mit einem Spenderpulver aus Titan und Aluminium, dem ein inertes Füllmaterial sowie ein Halogensalz-Aktivator zugemischt wird, in Kontakt gebracht und erhitzt wird. Aus der US 3,958,047 ist ein Pulverpack- verfahren bekannt, bei dem das metallische Bauteil mit einem Aluminium und Chrom enthaltenden Spenderpulver in Kontakt gebracht und unter Erhitzen diffusionsbeschichtet wird.
Diese Verfahren eignen sich insbesondere zur Beschichtung der Außenoberflächen metallischer Bauteile, wobei Schichtdicken zwischen 50 und 100 μm erzielt werden. Beim Beschichten von inneren Oberflächen treten jedoch verfahrensimmanente Nachteile auf, so daß die erreichbaren Innenschichtdicken bei relativ komplizierten Geometrien mit engen Spalten, Winkeln oder Hinterschneidungen begrenzt und unzureichend sind und im allgemeinen unter 30 μm liegen. Problematisch ist dabei, daß die Spenderpulver lediglich eine geringe Fließfähigkeit besitzen und die Hohlräume unvollständig füllen. Zudem läßt sich das Spenderpulver nach dem Beschichten nur schwer und nicht rückstandsfrei aus den Hohlräumen entfernen und sintert an den Oberflächen an.
Die genannten Nachteile der Pulverpackverfahren lassen sich zum Teil durch sog. Gasdiffusionsbeschichtungsverfahren umgehen. Ein solches Verfahren ist aus der US 4, 148,275 bekannt, bei dem eine z.B. Aluminium enthaltende Pulvermischung in einer ersten Kammer und die zu beschichtenden, metallischen Bauteile in einer zwei- ten Kammer eines Behälters angeordnet sind. Das Beschichtungsgas wird durch Erhitzen des Pulvers erzeugt und lagert sich unter Einsatz eines Trägergases an den äußeren und inneren Oberflächen der zu beschichtenden Bauteile ab. Die Gasdiffusi- onsbeschichtungsverfahren besitzen jedoch den Nachteil, daß die Vorrichtungen zur Durchführung des Verfahrens, wie z.B. zur Zwangsführung der Beschichtungsgase, im Vergleich zu jenen für die Pulverpackverfahren komplex und teuer sind. Darüber hinaus sind auch hier die erreichbaren Innenschichtdicken begrenzt, weil das Beschichtungsgas bzw. das Spendermetallgas auf seinem Weg durch die Hohlräume des Bauteils verarmt und ein Schichtdickengradient über die Länge des Hohlraums entsteht. Weil die Schichtdicke der Außenbeschichtung verfahrensbedingt über jener der Innenbeschichtung liegt, ist die Lebensdauer der Bauteile infolge der dünneren Innenbeschichtung begrenzt.
Aus der US 4,208,453 ist ein Verfahren zum Diffusionsbeschichten der Innen- und Außenflächen von Bauteilen, wie Gasturbinenschaufeln, bekannt, bei dem eine Pulvermischung aus 10 % Chrom-Spenderpulver mit einer Partikelgröße von 10 bis 20 μm und 90 % Aluminiumoxid-Granulat mit einer Partikelgröße von 100 bis 300 μm besteht. Zudem wird ein Metallhalogenid als Aktivator hinzugefügt. Die Offenbarung beschäftigt sich nicht mit Maßnahmen zur Erhöhung der Schichtdicke in Hohlräumen mit komplizierten Geometrien.
Die DE 30 33 074 A1 offenbart ein Verfahren zur Diffusionsbeschichtung der Innenfläche von Hohlräumen, bei dem ein metallisches Werkstück mit einem aluminisie- renden Diffusionspulvergemisch aus 15 % Aluminiumpulver mit einer Teilchengröße von 40 μm und 85 % Tonerdepulver mit einer Teilchengröße von etwa 200 bis 300 μm sowie einem NH-CL-Pulver beschichtet werden kann.
Die US 5,208,071 offenbart ein Verfahren zum Aluminisieren eines ferritischen Bauteils mit einem Aluminiumoxid-Schlicker und anschließender Wärmebehandlung, wobei der Schlicker aus wenigstens 10 Gew.-% Chrom, wenigstens 10 Gew.-% inertem Füllmaterial, wenigstens 12 Gew.-% Wasser, einem Binder sowie einem Halogenaktivator besteht und das beschichtete ferritische Bauteil abschließend wärme- behandelt wird. Die Verwendung eines Schlickers unterscheidet sich verfahrenstechnisch deutlich von einem Pulverpackbeschichtungsverfahren.
Aus der GB 2 109 822 A ist ein Metalldiffusionsverfahren bekannt, mit dem Diffusi- onsbeschichtungen schneller als beim Pulverpackverfahren hergestellt werden können, wobei das Beschichtungspulver locker vorliegt und mit mechanischen Mitteln während der Erwärmung mit dem zu beschichtenden Bauteil, insbesondere auch mit dessen innerer Oberfläche, in Kontakt gehalten wird. Die Zusammensetzung des Beschichtungspulvers kann 10 bis 60 % Chrompulver, 0, 1 bis 20 % um Chromhalo- genid und Aluminiumoxid umfassen.
Das der vorliegenden Erfindung zugrunde liegende Problem besteht darin, ein Pulverpackverfahren der eingangs beschriebenen Gattung so zu verbessern, daß die Schichtdicken der Innenbeschichtung auch bei Hohlräumen mit verhältnismäßig komplizierten Geometrien ausreichend groß sind.
Die Lösung dieses Problems ist erfindungsgemäß dadurch gekennzeichnet, daß das inerte Füllpulver mit einer durchschnittlichen bzw. mittleren Partikelgröße, die ungefähr gleich groß wie die mittlere Partikelgröße des Metallspenderpulvers ist, bereit- gestellt wird.
Der Vorteil besteht darin, daß sich bei einer derartigen Wahl der Partikelgrößen die spezifische Dichte erhöhen läßt, ohne daß ein Verklumpen der Pulvermischung, z.B. aufgrund eines zu hohen Anteils des Metallspenderpulvers, auftritt. Ebenso ist ge- währleistet, dass kein frühzeitiges Verarmen des Spendermetalls auftritt. Eine derartige Pulvermischung ist gut rieselfähig und findet Zugang in engen Kanten von zu beschichtenden inneren Hohlräumen. Es lassen sich Hohlkörper, wie Leit- und Laufschaufeln von Gasturbinen aus warmfesten Ni-, Co- oder Fe-Basislegierungen, beschichten. Die Schichtdicken der Innenbeschichtung liegen auch in engen Kanten oder Zwickelbereichen der Hohlräume im Bereich von 50 bis 1 10 μm und gewährleisten somit die Funktion der Innenbeschichtung als Oxidations- und Korrosionsschutzschicht. In einer bevorzugten Ausgestaltung wird das Metallspenderpulver und das inerte Füllpulver mit einer durchschnittlichen Partikelgröße von größer als 40 μm bereitgestellt, wodurch eine gute Permeation des Beschichtungsgases durch die Schüttung der Pulvermischung erfolgen kann.
Bevorzugt wird die Pulvermischung mit einem Anteil des Metallspenderpulvers von 10 bis 25 Gew.-% bereitgestellt, um das Verklumpen der Pulvermischung zu vermeiden und eine gute Permeation durch die Schüttung zu gewährleisten.
Es ist des weiteren zweckmäßig, daß als Metallspenderpulver eine Legierung mit einem Anteil des Spendermetalls von 20 bis 80 Gew.-% bereitgestellt wird, damit aufgrund des hohen Spendermetallanteils eine ausreichend starke Schichtdicke gewährleistet ist.
Es kann vorteilhaft sein, daß als Metallspenderpulver eine Mischung aus einer Legierung mit einem Spendermetallanteil von 40 bis 70 Gew.-% und einer Legierung mit einem Spendermetallanteil von 30 bis 50 Gew.-% bereitgestellt wird, so daß die Verarmung des Metallspenders in den beiden Legierungen schrittweise, d.h. mit zeitlicher Verzögerung, erfolgt.
Das Metallspenderpulver und das inerte Füllpulver können mit einer durchschnittlichen bzw. mittleren Partikelgröße von 150 μm bereitgestellt werden. Eine derartige Pulvermischung ist gut rieselfähig und füllt die Hohlräume mit den zu beschichtenden Innenoberflächen aufgrund einer vorteilhaften spezifischen Schüttdichte gut aus. Zudem erfolgt eine gute Permeation des Beschichtungsgases durch die Schüttung der Pulvermischung.
Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.
Im folgenden wird die Erfindung anhand von Beispielen näher erläutert.
In einem ersten Beispiel ist der Hohlkörper einer hohle Turbinen-Leitschaufel einer Gasturbine, die mit einer Oxidations- und Korrosionsschutzschicht versehen wird. Der Hohlraum besitzt eine Länge von etwa 160 mm. Seine inneren Oberflächen sind zwischen 2 und 6 mm beabstandet und laufen an zwei gegenüberliegenden Endabschnitten zusammen. Zur Beschichtung der inneren Oberflächen der Leitschaufeln wird eine Pulvermischung aus etwa 20 Gew.- Metallspenderpulver und etwa 80- Gew.-% inertem Füllpulver bereitgestellt. Als Metallspenderpulver wird AlCr und als inertes Füllpulver AI2O3 gewählt. Der Schmelzpunkt von AlCr liegt wenigstens etwa 100 °C über der Beschichtungstemperatur von etwa 800 °C - 1200 °C, so daß kein Diffusionsverbinden der Metallpartikel untereinander bzw. ein Verklumpen auftritt.
Der Anteil eines Aktivatorpulvers beträgt etwa 3 Gew.- , wobei AIF3, d.h. eine Halo- genidverbindung, gewählt wird. Als Verbindung für das Aktivatorpulver kommt z.B. auch CrC in Betracht. Eine solche Verbindung muß einen niedrigen Dampfdruck bei der Beschichtungstemperatur aufweisen, damit sie während des gesamten Beschich- tungsprozesses erhalten bleibt. Zudem wird eine Halogenidverbindung des Spen- dermetalls, hier Aluminium, eingesetzt, um eine Agglomeration infolge einer chemischen Reaktion des Halogens mit dem Spendermetall zu vermeiden.
Die durchschnittliche Partikelgröße des inerten Füllpulvers beträgt 100 μm und ist deutlich größer als die Partikelgröße des Metallspenderpulvers, die 60 μm beträgt. Der Anteil von Aluminium, d.h. des Metallspenders, an dem Metallspenderpulver beträgt 50 Gew.-%.
Die so bereitgestellte Pulvermischung wird in den Hohlraum der Leitschaufeln zur Beschichtung der inneren Oberflächen eingefüllt. Die anschließende Beschichtung erfolgt bei 1080 °C und einer Haltezeit von 6 h, wobei die Außenbeschichtung, d.h. die Beschichtung der äußeren Oberflächen der Leitschaufel, gleichzeitig in einem Einstufenprozeß mit einem herkömmlichen Pulverpackverfahren oder auch durch ein Gasdiffusionsbeschichtungsverfahren erfolgen kann.
Der.AI-Gehalt in der Schicht liegt bei der auf diese Weise abgeschiedenen Innenbeschichtung zwischen 30 und 35 Gew.- . Bei einem zweiten Beispiel wird wieder ein inertes Füllpulver (A Oa) mit einer dur- schnittlichen Partikelgröße von etwa 100 μm gewählt, das etwa 80 Gew.-% der Pulvermischung ausmacht. Als Aktivatorpulver wird AIF3 mit etwa 3 Gew.-% eine Pulvermischung gewählt und zugemischt.
Im Unterschied zu Beispiel 1 besteht das Metallspenderpulver, das einen Anteil von etwa 20 Gew.-% an der Pulvermischung ausmacht, aus zwei Fraktionen. Die erste Fraktion ist eine Legierung aus AlCr, bei der der Anteil von Aluminium 50 Gew.-% beträgt. In der zweiten Fraktion ist der Anteil des Spendermetalls, Aluminium, gerin- ger und beträgt 30 Gew.-%. Mit dieser Maßnahme läßt sich der Beschichtungsprozeß in der Weise optimieren, daß zunächst die Fraktion mit dem geringeren AI-Gehalt verarmt, der Beschichtungsprozeß jedoch durch die Fraktion mit dem größeren AI- Gehalt fortgesetzt wird. Auf diese Weise läßt sich die Duktilität der Schichten auf den inneren Oberflächen der Leitschaufel vergrößern.
Der AI-Gehalt in den inneren Schichten beträgt 24 bis 28 Gew.-%. Die Innenschichtdicken liegen zwischen 65 und 105 μm und damit deutlich über den mit herkömmlichen (Pulverpack-)Verfahren erzielbaren Schichtdicken.
In einem dritten Beispiel ist der Hohlkörper eine hohle Turbinen-Leitschaufel einer Gasturbine, die mittels eines Pulverpackbeschichtungsverfahrens mit einer Oxida- tions- und Korrosionsschutzschicht versehen wird. Der längliche Hohlraum ist etwa 180 mm lang. Die inneren Oberflächen sind zwischen 2 und 6 mm beabstandet und laufen an zwei gegenüberliegenden, längsseitigen Endabschnitten zusammen. Zur Beschichtung der inneren Oberfläche der Leitschaufel wird eine Pulvermischung aus etwa 15 Gew.-% Metallspenderpulver und knapp unter 85 Gew.-% inertem Füllpulver bereitgestellt. Der Anteil des Metallspenderpulvers kann je nach Einsatzfall im Bereich von 10 bis 25 Gew.-% liegen. Das Metallspenderpulver ist AlCr und das inerte Füllpulver ist AI2O3. Als Aktivatorpulver wird eine Halogenverbindung wie AIF3 einge- setzt, dessen Anteil etwa 3 Gew.-% beträgt. Das Aktivatorpulver ist somit einer Halo- genidverbindung des Spendermetalls AI. Die mittlere Partikelgröße des inerten Füllpulvers ist ungefähr gleich groß wie die mittlere Partikelgröße des Metallspenderpulvers und beträgt 150 μm. Der Anteil des Spendermetalls AI an dem Metallspenderpulver, das eine Legierung ist, beträgt 50 Gew.-%. Die spezifische Dichte einer derartigen Pulverpackmischung ist nicht aufgrund eines hohen Anteils des Metallspenderpulvers, sondern aufgrund der gewählten Partikelgrößenverteilung hoch. Bei dieser Schüttung der Pulverpackmischung erfolgt eine ausreichend Permeation der aus der Halogenidverbindung stammenden Beschichtungsgase.
Für die Beschichtung der inneren Oberfläche der Turbinen-Leitschaufel wird die so bereitgestellte Pulvermischung in deren Hohlraum eingefüllt. Bei der gewählten Partikelgrößenverteilung des inerten Füllpulvers und des Metallspenderpulvers ist die Schüttung gut rieselfähig und findet auch Zugang zu den engen Kanten des Hohlraums. Die anschließende Beschichtung erfolgt bei 1080°C und einer Haltezeit von 6 h. Sie kann gleichzeitig mit der Außenbeschichtung, d.h. der Beschichtung der äußeren Oberfläche der Turbinen-Leitschaufel, die nach einem herkömmlichen Pulverpackverfahren oder auch durch ein Gasdiffusionsbeschichtungsverfahren erfolgen kann, durchgeführt werden. Im allgemeinen wird die Beschichtung bei mehreren Turbinen-Leitschaufeln gleichzeitig durchgeführt.
Der AI-Gehalt in der auf diese Weise abgeschiedenen Innenbeschichtung liegt zwischen 30 und 35 Gew.-% und mithin in einem sehr vorteilhaften Bereich, d.h. es tritt z. B. keine Versprödung der Schicht auf.
Die Schichtdicken liegen auch in engen Kanten oder Zwickelbereich der Hohläume im Bereich von 60 bis 1 10 μm, so daß die Funktion der Innenbeschichtung als Oxida- tions- und Korrosionsschutz gewährleistet ist.

Claims

Patentansprüche
1. Verfahren zum Beschichten von Hohlkörpern, bei dem eine Pulvermischung aus einem Metallspenderpulver, einem inerten Füllpulver und einem Aktivatorpulver aus einem Metallhalogenid bereitgestellt wird, die Pulvermischung mit einer zu beschichtenden, inneren Oberfläche des Hohlkörpers in Kontakt gebracht und erwärmt wird, dadurch gekennzeichnet, daß das inerte Füllpulver mit einer mittleren Partikelgröße, die ungefähr gleich groß wie die mittlere Partikelgröße des Metallspenderpulvers ist, bereitgestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Metallspenderpulver und das inerte Füllpulver mit einer durchschnittlichen Partikelgröße von gößer als 40 μm bereitgestellt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Pulvermischung mit einem Anteil des Metallspenderpulvers von 10 bis 25 Gew.-% bereitgestellt wird.
4. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekenn- zeichnet, daß als Metallspenderpulver eine Legierung mit einem Anteil des Spendermetalls von 20 bis 80 Gew.-% bereitgestellt wird.
5. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß als Metallspenderpuiver eine Mischung aus einer Legierung mit ei- nem Spendermetallanteil von 40 bis 70 Gew.- und einer Legierung mit einem
Spendermetallanteil von 30 bis 50 Gew.-% bereitgestellt wird.
6. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß eine Pulvermischung mit einem Aktivatorpulveranteil von 2 bis 5 Gew.-% bereitgestellt wird.
7. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekenn¬ zeichnet, daß für das Aktivatorpulver ein Metallhalogenid des Spendermetalls ausgewählt wird.
8. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß als Spendermetallpulver AlCr ausgewählt wird.
9. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß als inertes Füllpulver AIΛausgewählt wird.
10. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Pulvermischung auf eine Beschichtungstemperatur von 800 °C bis 1200 °C erwärmt wird.
1 1. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Metallspenderpulver und das interte Füllpulver mit einer mitteleren Partikelgröße von etwa 150 μm bereitgestellt werden.
EP99967878A 1998-12-10 1999-12-09 Verfahren zum beschichten von hohlkörpern Expired - Lifetime EP1144708B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19856901A DE19856901C2 (de) 1998-12-10 1998-12-10 Verfahren zum Beschichten von Hohlkörpern
DE19856901 1998-12-10
PCT/DE1999/003942 WO2000034547A2 (de) 1998-12-10 1999-12-09 Verfahren zum beschichten von hohlkörpern

Publications (3)

Publication Number Publication Date
EP1144708A2 true EP1144708A2 (de) 2001-10-17
EP1144708A3 EP1144708A3 (de) 2002-09-11
EP1144708B1 EP1144708B1 (de) 2003-03-05

Family

ID=7890564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99967878A Expired - Lifetime EP1144708B1 (de) 1998-12-10 1999-12-09 Verfahren zum beschichten von hohlkörpern

Country Status (5)

Country Link
US (1) US6887519B1 (de)
EP (1) EP1144708B1 (de)
DE (2) DE19856901C2 (de)
ES (1) ES2192415T3 (de)
WO (1) WO2000034547A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361338A2 (de) 2002-05-07 2003-11-12 General Electric Company Aluminisierung der Innenflächen einer Gasturbinenschaufel mit einer bestimmten Beschichtungsdicke

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645485B2 (en) * 2004-04-30 2010-01-12 Honeywell International Inc. Chromiumm diffusion coatings
DE502004004360D1 (de) * 2004-05-03 2007-08-30 Siemens Ag Verfahren zum Herstellen eines hohlgegossenen Bauteils mit Innenbeschichtung
GB2414245B (en) * 2004-05-19 2007-10-10 Diffusion Alloys Ltd Metallising process
FR2888145B1 (fr) * 2005-07-07 2008-08-29 Onera (Off Nat Aerospatiale) Procede de fabrication et d'assemblage par brasure de billes en superalliage et objets fabriques avec de tels assemblages
SG169243A1 (en) * 2009-08-21 2011-03-30 United Technologies Corp Applying vapour phase aluminide coating on airfoil internal cavities using improved method
FR3001976B1 (fr) * 2013-02-13 2015-02-20 Air Liquide Procede de depot d'un revetement contre la corrosion
FR3011010B1 (fr) * 2013-09-24 2020-03-06 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de depot d’un revetement protecteur contre la corrosion
DE102018103319A1 (de) * 2018-02-14 2019-08-14 Iwis Motorsysteme Gmbh & Co. Kg Metallbauteil
FR3084891B1 (fr) * 2018-08-07 2022-06-24 Commissariat Energie Atomique Revetement pour piece en alliage refractaire

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667985A (en) 1967-12-14 1972-06-06 Gen Electric Metallic surface treatment method
US3958047A (en) 1969-06-30 1976-05-18 Alloy Surfaces Co., Inc. Diffusion treatment of metal
US4208453A (en) * 1969-06-30 1980-06-17 Alloy Surfaces Company, Inc. Modified diffusion coating of the interior of a steam boiler tube
US4156042A (en) * 1975-04-04 1979-05-22 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Coating articles having fine bores or narrow cavities in a pack-cementation process
US4132816A (en) 1976-02-25 1979-01-02 United Technologies Corporation Gas phase deposition of aluminum using a complex aluminum halide of an alkali metal or an alkaline earth metal as an activator
GB1586501A (en) * 1976-06-11 1981-03-18 Alloy Surfaces Co Inc Metal coating
DE3033074A1 (de) * 1979-09-07 1981-04-02 Alloy Surfaces Co., Inc., Wilmington, Del. Verfahren zur diffusionsbeschichtung der innenflaeche von hohlraeumen
GB2109822A (en) * 1981-11-19 1983-06-08 Diffusion Alloys Ltd Metal diffusion process
JPS59177360A (ja) * 1983-03-28 1984-10-08 Nippon Karoraizu Kogyo Kk 金属表面被覆用粒状拡散剤とこれを用いた固体金属拡散被覆法
US5208071A (en) * 1990-02-28 1993-05-04 The Babcock & Wilcox Company Method for aluminizing a ferritic workpiece by coating it with an aqueous alumina slurry, adding a halide activator, and heating
DE4035790C1 (de) * 1990-11-10 1991-05-08 Mtu Muenchen Gmbh
US5989733A (en) * 1996-07-23 1999-11-23 Howmet Research Corporation Active element modified platinum aluminide diffusion coating and CVD coating method
US6022632A (en) 1996-10-18 2000-02-08 United Technologies Low activity localized aluminide coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0034547A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361338A2 (de) 2002-05-07 2003-11-12 General Electric Company Aluminisierung der Innenflächen einer Gasturbinenschaufel mit einer bestimmten Beschichtungsdicke
EP1361338A3 (de) * 2002-05-07 2005-09-07 General Electric Company Aluminisierung der Innenflächen einer Gasturbinenschaufel mit einer bestimmten Beschichtungsdicke

Also Published As

Publication number Publication date
ES2192415T3 (es) 2003-10-01
DE19856901A1 (de) 2000-06-15
WO2000034547A2 (de) 2000-06-15
DE59904502D1 (de) 2003-04-10
DE19856901C2 (de) 2003-01-16
WO2000034547A3 (de) 2000-08-17
EP1144708B1 (de) 2003-03-05
EP1144708A3 (de) 2002-09-11
US6887519B1 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
DE2926879C2 (de) Verfahren zum Beschichten der Oberfläche von Metallsubstraten mit verschleißfesten Materialien
DE3329908A1 (de) Verfahren zur bildung einer schutzdiffusionsschicht auf teilen aus einer nickel-, kobalt- und eisenlegierung
DE3329907A1 (de) Verfahren zur bildung einer schutzdiffusionsschicht auf teilen aus einer nickel-, kobalt und eisenlegierung
EP0883697B1 (de) Vorrichtung und verfahren zur präparation und/oder beschichtung der oberflächen von hohlbauteilen
CH616613A5 (de)
EP1144708B1 (de) Verfahren zum beschichten von hohlkörpern
DE1521387A1 (de) Verfahren zum Flammspritzen
DE3030961A1 (de) Bauteile aus superlegierungen mit einem oxidations- und/oder sulfidationsbestaendigigen ueberzug sowie zusammensetzung eines solchen ueberzuges.
EP0168868A1 (de) Verfahren zum Aufbringen einer schutzoxydbildende Elemente enthaltenden Korrosionsschutzschicht auf den Grundkörper einer Gasturbinenschaufel und Korrosionssschutzschicht auf dem Grundkörper einer Gasturbinenschaufel
DE3426201A1 (de) Verfahren zum aufbringen von schutzschichten
EP1670965A1 (de) Verfahren zu lokalen alitierung, silizierung oder chromierung von metallischen bauteilen
DE3104581A1 (de) Mit einer deckschicht versehener gegenstand aus einer superlegierung und verfahren zu seiner herstellung
DE2830851C3 (de) Verfahren zur Ausbildung von Metalldiffusionsschutzüberzügen auf Werkstücken aus Metall oder Metallegierungen
DE3442250C2 (de)
EP1097249B1 (de) Verfahren zur herstellung einer panzerung für ein metallisches bauteil
DE19920567C2 (de) Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
DE2032418C3 (de) Verfahren zur teilweisen Oberflachenbeschichtung von Werkstucken aus Superlegierungen durch Metalldiffusion
DE1521570A1 (de) Verfahren zum Schutz von Metallegierungsgegenstaenden gegen Oxydation,Korrosion und Erosion
DE2441260B2 (de) Verfahren zur herstellung einer als trennmittel und diffusionsbarriere wirkenden schicht
DE1939115C3 (de) Verfahren zum Herstellen eines Oxidteilchen einschließenden metallischen Überzuges
DE2350694C3 (de) Verfahren zum Beschichten eines Werkstückes aus einer Superlegierung zum Schutz gegen Korrosion und Reaktionsgemisch
DE2560464C2 (de) Diffusionsüberzugsverfahren und seine Anwendung
DE2603640C3 (de) Auf Reibung beanspruchter Mehrschichtenkörper und Verfahren zu dessen Herstellung
DE593517C (de) Verfahren zur Herstellung von Entladungsgefaessen
EP3473749A1 (de) Verfahren zum aufbringen einer schicht auf ein bauteil und bauteil hergestellt nach dem verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010609

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59904502

Country of ref document: DE

Date of ref document: 20030410

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192415

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1144708E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181218

Year of fee payment: 20

Ref country code: GB

Payment date: 20181219

Year of fee payment: 20

Ref country code: FR

Payment date: 20181218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190121

Year of fee payment: 20

Ref country code: DE

Payment date: 20181220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59904502

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191210