EP1141695A1 - Procede d'examen aux ultrasons d'un materiau solidifie et/ou durci, recipient de reception et generateur d'ultrasons utilises pour la mise en oeuvre de ce procede - Google Patents
Procede d'examen aux ultrasons d'un materiau solidifie et/ou durci, recipient de reception et generateur d'ultrasons utilises pour la mise en oeuvre de ce procedeInfo
- Publication number
- EP1141695A1 EP1141695A1 EP99962082A EP99962082A EP1141695A1 EP 1141695 A1 EP1141695 A1 EP 1141695A1 EP 99962082 A EP99962082 A EP 99962082A EP 99962082 A EP99962082 A EP 99962082A EP 1141695 A1 EP1141695 A1 EP 1141695A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ultrasound
- ultrasonic
- energy
- receptacle
- waves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 61
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 32
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 239000004567 concrete Substances 0.000 claims abstract description 13
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- 238000007906 compression Methods 0.000 claims abstract description 8
- 230000006835 compression Effects 0.000 claims abstract description 8
- 239000004568 cement Substances 0.000 claims abstract description 6
- 230000008859 change Effects 0.000 claims description 16
- 238000007711 solidification Methods 0.000 claims description 9
- 230000008023 solidification Effects 0.000 claims description 9
- 230000002123 temporal effect Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000011835 investigation Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009439 industrial construction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4409—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
- G01N29/4418—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a model, e.g. best-fit, regression analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/12—Analysing solids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/30—Arrangements for calibrating or comparing, e.g. with standard objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
- G01N33/383—Concrete or cement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0251—Solidification, icing, curing composites, polymerisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0421—Longitudinal waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/048—Transmission, i.e. analysed material between transmitter and receiver
Definitions
- the invention relates to the investigation of a solidifying and / or hardening material, such as cement, concrete or the like, by means of ultrasound waves, which penetrate the material from an ultrasound transmitter to an ultrasound transducer, are continuously measured and analyzed.
- Ultrasonic waves can pass through a material non-destructively and are influenced by the elastic properties of the material. In this way information about the elastic properties can be obtained.
- the invention is therefore based on the object of being able to use an ultrasound examination method reliably in industrial practice and of being easy to handle to enable continuous monitoring of the condition of a solidifying and / or hardening material.
- the material to be examined is placed in a receptacle and compressed.
- a preferably broadband (i.e. sufficiently linear frequency response function over a wide spectral range) ultrasound transmitter and a corresponding transducer On each opposite side of the receptacle there is a preferably broadband (i.e. sufficiently linear frequency response function over a wide spectral range) ultrasound transmitter and a corresponding transducer.
- This converts the acceleration signal into a voltage signal and feeds it to a computer-controlled analog-digital converter card, which stores the signal in digital form and thus makes it available for further analysis.
- the speed of the compression wave v P (T), the relative energy E (T) of a measured signal, and the frequency spectrum f (T) of the signal can be extracted using appropriate algorithms.
- the speed of the compression wave v P (T), the relative energy E (T) of a measured signal, and the frequency spectrum f (T) of the signal depend on the time T since the material was manufactured and together form a complete set of parameters that cover the entire contains information about the material accessible via elastic waves.
- the relative energy E (T) is defined as the quotient of the wave energy that can be measured after the wave has passed through the material and the energy that was introduced into the material by the ultrasonic pulses.
- the individual energies are calculated from the integral of the amplitude squares of the respective signals. If the energy introduced is not available as a measured value, this can be assumed to be constant when using a suitable ultrasonic transmitter.
- the relative energy increases with increasing hardening or solidification of the material. Its integral over time can serve as a further representation of the energy.
- the transmitted ultrasound wave does not only contain a certain frequency.
- a wide, continuous frequency spectrum is stimulated up to a certain cutoff frequency, which is reciprocal to the pulse duration.
- the material is able to transmit different frequency components differently.
- the spectrum of the signals can be calculated using a Fourier transformation. If these individual spectra are normalized to their maximum, arranged in chronological order and the spectral amplitudes are shown graphically as gray values, so-called contour plots are included. From this three-dimensional representation, z. B. by calculating mean
- the measured curves are examined in more detail. This is done with the aim of describing the change over time of the measured quantities (speed, energy, frequency) depending on the material composition and composition. So this is a solution to an inversion problem unknown material properties.
- the method according to the invention simplifies the classification of the material in the context of quality assurance.
- thermodynamics functions with a sufficient number of free parameters must be used, with the aid of which the curve profiles typical of the change in the measured variables v P , E and f can be interpreted.
- the Boltzmann function known from thermodynamics is particularly suitable for speed:
- parameter A2 can be assigned to the water / cement value W / Z when examining fresh concrete.
- the arrival time of the ultrasound signal at the sensor is determined, which then leads to the transit time.
- an algorithm was developed that is based on the partial energy and the use of the Hinkley criterion. This allows a robust and very simple approach to first-time detection.
- the sum of the partial energy S, of a single digitized wave signal can be represented as the sum of the squares of the amplitudes x k 2 :
- the sample point / corresponds to a certain time during the signal.
- the arrival of the signal is expressed in a significant increase in this energy sum.
- the trend can be represented as follows, for example:
- S N is the energy at the last sample point N.
- An automatic iteration routine for adapting to the signal quality was implemented for the variable ⁇ value.
- the method according to the invention can be carried out in industrial practice for the reliable and easy-to-use continuous monitoring of the state of a solidifying and / or hardening material with the aid of a receptacle according to the invention and an ultrasonic transmitter according to claim 4.
- the molded part of the receptacle acoustically decouples the vessel walls from one another and at the same time creates a secure seal in the receptacle, so that the material is prevented from leaking out of the receptacle.
- the structure with the aid of the connecting elements enables simple assembly and disassembly of the receptacle into its components for cleaning purposes.
- the ultrasound transmitter has means for accelerating a ball, which are formed by a compressed gas or a movable lifting magnet. This enables reproducible ultrasound generation with simple means.
- the method according to the invention or its parts is not restricted to the examination of concrete, but can also be used for other materials, composite materials, plastics, etc.
- Fig. 1 is a schematic diagram of the experimental arrangement for performing the
- FIG. 2 shows a longitudinal section through an ultrasound transmitter for carrying out the method according to FIG. 1;
- FIG. 3 shows a longitudinal section through another ultrasound transmitter for carrying out the method according to FIG. 1;
- FIG. 4 shows a receptacle for carrying out the method according to FIG. 1;
- FIG. 5 shows a representation of the measured profile of an ultrasonic signal when carrying out the method according to FIG. 1, as well as the sum of the partial energy of the signal with 3 different values for the trend;
- FIG. 6 shows a representation of the measured course of the temporal change in the rate of propagation of ultrasound waves when performing the method according to FIG.
- FIG. 7 shows a representation of the measured course of the change over time of the energy of ultrasonic waves when carrying out the method according to FIG. 1 on mortar with various additives;
- Fig. 8 is a representation of the measured course of the change over time
- FIG. 9 shows a contour plot to show the measured course of the change in frequency spectra over time when the method according to FIG.
- FIG. 1 The principle of the measurement is shown schematically in FIG. 1.
- a material 2 to be examined is located in a receptacle 1.
- An ultrasound transmitter or impactor 3 sends an ultrasound pulse over the wall of the receptacle 1 into the material to be examined 2.
- a / D converter card A which starts the measurement.
- the ultrasound waves arrive at the ultrasound transducer 4.
- the ultrasound transducer 4 converts the acceleration signal into the voltage values, which are then digitized and stored by the A / D converter unit B.
- a preamplifier C is provided in front of the A / D converter unit B.
- the A / D converter units A and B are connected to an evaluation and control device D.
- the temporal change in the propagation speed, energy and frequency of the ultrasonic waves provides information about the material properties.
- the ultrasound sensor 5 provided for the control is only required if an impactor is used as excitation.
- the ultrasound transmitter 3a in FIG. 2 consists of a non-magnetic tube 6, in the tube end 7 of which faces away from the receptacle, a ball 8 made of ferritic steel is held by means of permanent magnets.
- a pressure gas shock can be exerted on the ball 8.
- the ball 8 is released from the permanent magnet by this pressure gas shock, is accelerated by the spreading gas in the direction of the tube end 10 facing the receptacle and strikes the housing wall of the receptacle, so that a short, broadband ultrasound pulse spreads.
- the ball 8 loses only part of its energy and can return to its starting position with the residual pulse, in which it is held again by the permanent magnet.
- Bores 11 prevent the air column from being compressed in front of the ball 8, and the accelerated ball 8 is thereby braked.
- a safety device which acts on the solenoid valve, prevents accidental triggering of the compressed gas shock.
- a sight glass allows the position of the ball 8 to be monitored in the starting position.
- C0 2 is preferably used as the compressed gas in that a gas bottle can be connected to the solenoid valve 9.
- the gas pressure can be checked and changed by means of a pressure setting device.
- the pulse energy can be varied either this way or by changing the valve opening time. From the control unit WO 00/34769 - Q - PCT / DE99 / 03760
- a single pressure gas surge a delayed pressure gas surge or a multiple pressure gas surge
- the trigger signal for the compressed gas surge can be given manually or via TTL trigger signals.
- the delay time for the delayed burst of compressed gas or the interval between two bursts of compressed gas can be set between 1 s and several minutes.
- FIG. 3 shows an ultrasound transmitter 3b, which comprises a lifting magnet with a coil body 12 and a displaceable armature 13.
- a spherical cap 15 is fixed on the armature tip 14.
- a voltage pulse from a control unit energizes the coil body 12 so that the armature 13 is accelerated out of its rest position.
- the spherical cap 15 strikes the ball 16 held by a fastening means (union nut), which transmits the shock as an ultrasound pulse to the receptacle.
- a return spring 18 returns the armature 13 to its rest position, where it remains on a damping seat plate 19 until the next voltage pulse.
- the ball 16 can be exchanged by means of the releasably fastened fastening means 17 in order to vary the contact time during the impact and thus the pulse width (frequency width).
- a transition piece 20 is made of electrically insulating material.
- the cap 15 is connected to the armature in an electrically conductive manner.
- a voltage between the ball 16 and the armature 13 is short-circuited for the duration of the contact time of the impact. This creates a trigger pulse for external devices, the length of which corresponds to the contact time.
- the length of the voltage pulse on the control device can be changed to generate different pulse strengths or energies. Solenoids of different powers can be used for this purpose.
- the receptacle 21 has 2 vessel walls 22, 23 made of a rigid, transparent material, between which a U-shaped molded part 24 made of elastic material (for example rubber) is arranged.
- the rigid vessel walls 22, 23 are connected to one another via connecting elements 25 and thus fix the elastic molded part between them.
- An ultrasound transmitter 3 is attached to the vessel wall 23 opposite an ultrasound transducer 4, which is attached to the vessel wall 22.
- the receptacle 21 can hold a hardening and / or solidifying material in order to be able to examine it in situ during the hardening by means of ultrasound.
- the receptacle also establishes contact between the material and ultrasound transmitter 3 and receptacle 4 via the vessel walls 22, 23.
- the vessel 21 hardly influences the examination of the material, since it has poorer acoustic properties than this.
- the attenuation of the ultrasonic waves in the Vessel walls 22, 23 and in the molded part 24 is larger than in the material to be examined.
- the vessel is made up of a few, easy-to-handle and cleanable parts. It is also reusable. Due to their rigid shape, the vessel walls 22, 23 cause the radiation of approximately plane waves, so that near-field effects are eliminated. On the one hand, this enables smaller vessel geometries (with point sources and the propagation of spherical waves, measurements with travel paths that are smaller than twice the wavelength would be problematic).
- the molded part 24 acoustically decouples the vessel walls 22, 23 and fulfills the function of a seal.
- the vessel walls 22, 23 are pressed against the molded part 24.
- a rubber cover (not shown) can prevent water from evaporating and thus falsify the measurement.
- FIG. 5 shows the principle of the automatic detection of the first application time for the determination of the compression wave speed.
- the measured waveform of an ultrasound signal is shown as an example.
- the sum of the partial energy of the signal with 3 different values for the trend ⁇ is plotted on the same time axis. From this it can be deduced that an ⁇ of 5 is most suitable for determining the minimum of the energy, corresponding to the arrival time of the waves.
- the algorithm used performs this optimization.
- FIG. 6 shows the change in the propagation speed of the sound waves using the example of a mortar without and with three different additives.
- the change in energy is plotted in an analogous manner in FIG. 7 over time.
- the increase in speed or energy at different times can be seen in both figures, corresponding to the different nature of the additives.
- the size of the increase and the time at which a certain final value of speed or energy is reached also vary.
- a variant of this is the integral of FIG Energy in which the slope of the curves shows serious differences.
- the change in the frequency spectra is shown in FIG. 9 on the basis of a measurement on a concrete.
- High low-frequency components in the spectra can be seen at the beginning of the measurement, and an increasing broadening of the frequency band in the further course.
- characteristic frequency-amplitude representations over time are obtained for different materials or materials with varying elastic properties. Curves that are easier to analyze can be derived from this. If you determine z. B. arithmetically the frequency maxima in the range 0-20 kHz, the lower of the dotted curves shown in FIG. 9 results, which is typical for this material. Such a curve can also be determined for other frequency ranges (e.g. 20-60 kHz) (upper curve); the area between the curves then describes characteristic material parameters.
- FIG. 10 shows a parameter study for adapting the Boltzmann function selected as a compensation function to the course of the change in the wave speed over time. For this presentation, a measurement was selected using the described method on concrete. According to their mathematical formulation
- the free parameters are determined by the best possible adaptation of the compensation function to the change in the rate of propagation over time.
- Reference values of the free parameters are known from reference measurements, which correspond to certain material properties, such as strength, hardness, grain size or the like. When a material is to be examined, current values of the free parameters are determined and compared with the reference values, so that statements about the material properties of the material under investigation are obtained.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Mathematical Physics (AREA)
- Ceramic Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Pour l'examen d'un matériau solidifié et/ou durci (2), tel que ciment, béton ou analogues, au moyen d'ultrasons émis par un générateur d'ultrasons (3) et pénétrant ledit matériau, les ondes ultrasonores sont mesurées (4) et analysées en continu. La variation, en fonction du temps, de la vitesse des ondes de compression et/ou de l'énergie relative des ondes ultrasonores et/ou des spectres de fréquence des ondes ultrasonores, est évaluée, de façon approchée, par une fonction d'égalisation, de préférence, la fonction de Boltzmann. Les paramètres libres de la fonction d'égalisation sont associés aux propriétés du matériau et permettent de comparer une mesure réelle avec des valeurs de référence de ces paramètres, de manière à déterminer les propriétés du matériau examiné.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19856259 | 1998-12-07 | ||
DE19856259A DE19856259B4 (de) | 1998-12-07 | 1998-12-07 | Verfahren zur Untersuchung eines erstarrenden und/oder erhärtenden Werkstoffs mittels Ultraschalls |
PCT/DE1999/003760 WO2000034769A1 (fr) | 1998-12-07 | 1999-11-27 | Procede d'examen aux ultrasons d'un materiau solidifie et/ou durci, recipient de reception et generateur d'ultrasons utilises pour la mise en oeuvre de ce procede |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1141695A1 true EP1141695A1 (fr) | 2001-10-10 |
Family
ID=7890157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99962082A Withdrawn EP1141695A1 (fr) | 1998-12-07 | 1999-11-27 | Procede d'examen aux ultrasons d'un materiau solidifie et/ou durci, recipient de reception et generateur d'ultrasons utilises pour la mise en oeuvre de ce procede |
Country Status (5)
Country | Link |
---|---|
US (1) | US6655213B1 (fr) |
EP (1) | EP1141695A1 (fr) |
AU (1) | AU1856800A (fr) |
DE (1) | DE19856259B4 (fr) |
WO (1) | WO2000034769A1 (fr) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020112540A1 (en) * | 2000-12-20 | 2002-08-22 | Schlumberger Technology Corporation | Acoustic method for estimating mechanical properties of a material and apparatus therefor |
US7047809B2 (en) * | 2003-01-21 | 2006-05-23 | Applied Sonics, Incorporated | Ultrasonic monitor of material composition and particle size |
EP1726947A1 (fr) * | 2005-04-20 | 2006-11-29 | Sika Technology AG | appareil et procédé pour la determination ultrasonore de module d'élasticité dynamique |
US7380466B2 (en) * | 2005-08-18 | 2008-06-03 | Halliburton Energy Services, Inc. | Apparatus and method for determining mechanical properties of cement for a well bore |
US7975555B2 (en) * | 2005-12-01 | 2011-07-12 | California Institute Of Technology | Apparatus for simultaneously measuring longitudinal and shear wave speeds in materials under compression load via an ultrasonic transducer |
US7549320B2 (en) | 2007-01-11 | 2009-06-23 | Halliburton Energy Services, Inc. | Measuring cement properties |
US7621186B2 (en) | 2007-01-31 | 2009-11-24 | Halliburton Energy Services, Inc. | Testing mechanical properties |
US20080240894A1 (en) * | 2007-03-29 | 2008-10-02 | Eric Reisenauer | Storage and retrieval system |
US20080240900A1 (en) * | 2007-03-29 | 2008-10-02 | Eric Reisenauer | System for storage and retrieval |
KR100885801B1 (ko) | 2007-08-06 | 2009-02-26 | 재단법인 한국건자재시험연구원 | 콘크리트 응결시간 자동측정장치 제어 시스템 |
DE102008024050B4 (de) * | 2008-05-16 | 2010-09-16 | ETH Zürich | Verfahren zum in-line Messen des Erstarrungs-, Kontraktions- sowie des Wandablöseverhaltens von Gießmaterial in einer Produktion in Gießformen gegossener Confectionary-/Schokoladenprodukte und Vorrichtung zum Durchführen dieses Verfahrens |
US8601882B2 (en) | 2009-02-20 | 2013-12-10 | Halliburton Energy Sevices, Inc. | In situ testing of mechanical properties of cementitious materials |
US8783091B2 (en) | 2009-10-28 | 2014-07-22 | Halliburton Energy Services, Inc. | Cement testing |
WO2012003980A1 (fr) * | 2010-07-08 | 2012-01-12 | Mf Instruments Gmbh | Dispositif et procédé de caractérisation in situ des paramètres de qualité et/ou des propriétés de systèmes de liants inorganiques |
US8453510B2 (en) * | 2010-07-23 | 2013-06-04 | Conocophillips Company | Ultrasonic transducer system and evaluation methods |
EP2541243A1 (fr) * | 2011-07-01 | 2013-01-02 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Appareil et procédé d'essai non destructif utilisant une imagerie à ultrasons |
US8960013B2 (en) | 2012-03-01 | 2015-02-24 | Halliburton Energy Services, Inc. | Cement testing |
US8794078B2 (en) | 2012-07-05 | 2014-08-05 | Halliburton Energy Services, Inc. | Cement testing |
EP3538333A1 (fr) | 2016-11-10 | 2019-09-18 | Windmolders Beton N.V | Procédé et dispositif de fabrication d'une pierre à pavé |
US10969315B2 (en) | 2017-12-12 | 2021-04-06 | Imam Abdulrahman Bin Faisal University | Combined ultrasonic pulse velocity and Schmidt Hammer rebound test for non-destructive evaluation |
CN108872386B (zh) * | 2018-08-27 | 2021-06-29 | 上海同济检测技术有限公司 | 混凝土强度超声波角测法检测的校正方法 |
CN109781847B (zh) * | 2019-01-23 | 2021-06-11 | 湘潭大学 | 一种声波检测混凝土坍落度的方法 |
CN112212124A (zh) * | 2020-08-25 | 2021-01-12 | 武汉中仪物联技术股份有限公司 | 一种管道管壁强度检测方法及检测机器人 |
CN112327108A (zh) * | 2020-10-09 | 2021-02-05 | 国网冀北电力有限公司检修分公司 | 一种罐式断路器局部放电超声信号去噪及时间差识别方法 |
CN112649511B (zh) * | 2020-11-27 | 2021-10-08 | 中国水利水电科学研究院 | 一种堆石混凝土施工质量的检测方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2617779C2 (de) | 1976-04-23 | 1982-02-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Perkussionsinstrument für Diagnose- und Prüfzwecke |
DE2617770A1 (de) * | 1976-04-23 | 1977-11-03 | Peter Sprenger Fa | Vorrichtung zum befahren von masten u.dgl. |
US4259868A (en) * | 1979-10-01 | 1981-04-07 | Halliburton Company | Method and apparatus for nondestructive testing of cement |
NO154506C (no) * | 1979-10-11 | 1986-10-01 | Elf Aquitaine | Celle for akustisk aa kontrollere settings- og herdingskarakteristikafor sement. |
US4380930A (en) * | 1981-05-01 | 1983-04-26 | Mobil Oil Corporation | System for transmitting ultrasonic energy through core samples |
FR2569476B1 (fr) * | 1984-08-24 | 1987-01-09 | Schlumberger Prospection | Procede et dispositif pour evaluer la qualite du ciment entourant le tubage d'un puits |
US4754645A (en) * | 1987-05-14 | 1988-07-05 | Canadian Patents And Development Limited | Ultrasonic characterization of polymers under simulated processing conditions |
US5178005A (en) * | 1990-07-02 | 1993-01-12 | Western Atlas International, Inc. | Sample sleeve with integral acoustic transducers |
US5265461A (en) * | 1991-03-19 | 1993-11-30 | Exxon Production Research Company | Apparatuses and methods for measuring ultrasonic velocities in materials |
JPH05161341A (ja) * | 1991-11-08 | 1993-06-25 | Mitsubishi Materials Corp | 超小型回転駆動装置およびその磁気ギヤの製造方法 |
JPH0720097A (ja) | 1993-06-30 | 1995-01-24 | Asahi Chem Ind Co Ltd | コンクリート製品の非破壊検査方法およびその非破壊検査装置 |
WO1997008948A1 (fr) * | 1995-09-05 | 1997-03-13 | Soundtech, Inc. | Generateur electromagnetique de sons pour leurre de peche |
US5741971A (en) * | 1996-01-17 | 1998-04-21 | Bj Services Company | Method for analyzing physical properties of materials |
DE19629485C2 (de) * | 1996-07-12 | 1998-05-20 | Geotron Elektronik Rolf Kromph | Verfahren und Vorrichtung zur Bestimmung der Druckfestigkeit von Beton während dessen Erhärtung mittels Ultraschall-Geschwindigkeitsmessungen |
US5992223A (en) * | 1997-07-14 | 1999-11-30 | Chandler Engineering Company Llc | Acoustic method for determining the static gel strength of a cement slurry |
US6112599A (en) * | 1998-03-26 | 2000-09-05 | Cement Test Equipment, Inc. | Method and apparatus for measuring a cement sample using a single transducer assembly |
-
1998
- 1998-12-07 DE DE19856259A patent/DE19856259B4/de not_active Expired - Fee Related
-
1999
- 1999-11-27 AU AU18568/00A patent/AU1856800A/en not_active Abandoned
- 1999-11-27 WO PCT/DE1999/003760 patent/WO2000034769A1/fr not_active Application Discontinuation
- 1999-11-27 EP EP99962082A patent/EP1141695A1/fr not_active Withdrawn
- 1999-11-27 US US09/857,536 patent/US6655213B1/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0034769A1 * |
Also Published As
Publication number | Publication date |
---|---|
US6655213B1 (en) | 2003-12-02 |
WO2000034769A1 (fr) | 2000-06-15 |
DE19856259B4 (de) | 2005-05-19 |
DE19856259A1 (de) | 2000-06-29 |
AU1856800A (en) | 2000-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19856259B4 (de) | Verfahren zur Untersuchung eines erstarrenden und/oder erhärtenden Werkstoffs mittels Ultraschalls | |
DE68929055T2 (de) | Ultraschall-Dichtemessgerät und Verfahren | |
EP0357164B1 (fr) | Méthode d'ultrasons et circuit pour sa réalisation | |
DE4391000C2 (de) | Transaxiales Kompressionsverfahren für die Schallgeschwindigkeitsberechnung | |
EP1491887B1 (fr) | Procédé de détermination ultrasonore de la porosité d'un échantillon | |
WO2002030288A1 (fr) | Tomodensitometre | |
DE2617674A1 (de) | Ultraschall-verfahren zur beurteilung bzw. bestimmung von akustischen inhomogenitaeten | |
DE10259218A1 (de) | Verfahren und Vorrichtung zur Größenbestimmung eines Risses in einem Werkstück mittels der Ultraschall-Impuls-Methode | |
DE19624043A1 (de) | Meßverfahren für den Abstand zwischen einem Kraftfahrzeug und einem Objekt | |
DE102008042278A1 (de) | Verfahren zur zerstörungsfreien Ultraschalluntersuchung sowie Vorrichtung zur Durchführung des Verfahrens | |
DE2511750C2 (de) | Verfahren zur quantitativen werkstoff-korngroessenbestimmung | |
DE102011051546A1 (de) | Vorrichtung zur zerstörungsfreien Prüfung eines Prüflings mittels Ultraschall, Verfahren zum Betreiben einer solchen Vorrichtung sowie Verfahren zur zerstörungsfreien Prüfung eines Prüflings mittels Ultraschall | |
DE3435989C2 (de) | Verfahren zur Wanddickenmessung von Körpern mittels Ultraschallimpulsen und Vorrichtung zur Durchführung des Verfahrens | |
DE3033990A1 (de) | Verfahren und vorrichtung zur schallemissions-ortung und -analyse | |
DE2653384C3 (de) | Anordnung von Phantomsubstanzen zur Simulation menschlichen oder tierischen Gewebes | |
DE19531858A1 (de) | Messverfahren für Abspannseile | |
DE19915016A1 (de) | Verfahren zur Bestimmung der Absorptionsfähigkeit eines Mediums für elektromagnetische Wellen und Sensor zur Erkennung von Fremdeinschlüssen in dem Medium | |
DE4305064C1 (de) | Verfahren und Vorrichtung zur gleichzeitigen zerstörungsfreien Charakterisierung mehrerer Kennwerte oberflächenmodifizierter Werkstoffe | |
EP3857185B1 (fr) | Procédé et dispositif pour la mesure acoustique dans un tuyau | |
DE19746272B4 (de) | Vorrichtung zur Vermessung mechanisch belasteter Bauteile | |
DE4016105B4 (de) | Verfahren und Vorrichtung zur Erfassung von Oberflächenstrukturen | |
EP2673630A1 (fr) | Procédé de détection de la position d'un défaut dans un corps | |
DE2424658A1 (de) | Ultraschall-zaehlvorrichtung | |
DE102014104914A1 (de) | Vorrichtung und Verfahren zur zerstörungsfreien Prüfung eines Prüflings mittels Ultraschall nach der Vergleichskörpermethode | |
WO2005119243A1 (fr) | Dispositif d'examen acoustique d'un objet a mesurer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010709 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060829 |