EP2673630A1 - Procédé de détection de la position d'un défaut dans un corps - Google Patents

Procédé de détection de la position d'un défaut dans un corps

Info

Publication number
EP2673630A1
EP2673630A1 EP12703455.1A EP12703455A EP2673630A1 EP 2673630 A1 EP2673630 A1 EP 2673630A1 EP 12703455 A EP12703455 A EP 12703455A EP 2673630 A1 EP2673630 A1 EP 2673630A1
Authority
EP
European Patent Office
Prior art keywords
sound
defect
hyperbola
detection
sound signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12703455.1A
Other languages
German (de)
English (en)
Inventor
Hehrwart Schröder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gehrlein Jan
Original Assignee
Gehrlein Jan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gehrlein Jan filed Critical Gehrlein Jan
Publication of EP2673630A1 publication Critical patent/EP2673630A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/103Number of transducers one emitter, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Definitions

  • At least one further hyperbola H2 can be calculated from the transit time difference T3 to T4 with the focal points P3 and P4.
  • the position coordinate is the defect.
  • a first technical realization possibility for generating a corresponding sound pulse is given by a pulse hammer.
  • the pulse hammer generates a sufficiently precise sound signal, which, however, no defined
  • Frequency modulation is superimposed and this frequency is a wavelength in the order of magnitude of the to be detected
  • selective excitation or heating of the material can be generated by means of a laser, or with sufficient
  • Wave packets is very short compared to the heat conduction time scale is formed, so no broadening due to
  • the modulated oscillation frequency then has to be the natural frequency of the grid points, which then modulated as well as the excitation pulse
  • Ultrasonic vibration continues as a sound signal through the body.
  • For generating a sound pulse means
  • the body has a corresponding magnetizability and conductivity in order to generate a thermal shock wave by the magnetic induction.
  • Another excitation method for generating a defined sound pulse is by the forced alignment of the magnetic moments, preferably by
  • Sound signal in the body is about 0.1 mm to 3 mm, preferably 0.5 mm to 1 mm, and the frequency of the sound signal is> 200 MHz. As have been found to be useful
  • the inventive method is an arrangement of
  • the body to be analyzed is a disc-shaped rotating body, in particular a
  • railway wheel is and at least three defined positions for sound detection radially, preferably in a radial sector of 90 ° to 120 °, as well as at least one further defined position for sound detection axially offset analysis.
  • defects represent any type of sound reflecting parts in and / or on the body to be analyzed.
  • the implementation of the wheel axle, the hub or other interfaces in a position capable of sound pulses reflect. It is therefore in the nature of the method that in the context of the analysis of the detected sound signal and its descent from a defect information is determined, whether this defect is now on a structurally conditioned
  • FIG. 2 shows an arrangement corresponding
  • Figure 5 is a schematic representation of a real
  • FIG. 1 shows a schematic exemplary representation of the arrangement to be executed
  • Figure 1 thus shows the arrangement of a sound pulse generator 2 in a position PI, which emits a sound signal Sl.
  • the sound signal propagates in the wheel tire 1 as a spherical wave and reaches after a running time Tl a defect 3, where it is reflected at the defect 3 such that it is based on the Huygensschem principle starting from the defect 3 as new
  • the sound signal reaches the other detection positions P2 to P4 via the path of the
  • incident laser beam 6 is reflected and returned as a reflected laser beam 7 to the laser interferometer.
  • reflected laser beam 7 is reflected and returned as a reflected laser beam 7 to the laser interferometer.
  • Laser beams 6 and reflected laser beams 7 may be information about the vibration of the surface at the
  • Ball caps must be found around the detection positions P2 to P4, wherein the radius of the respective spherical caps from the running time of the sound pulse from the defect 3 to the respective detection position P2 to P4 and the speed of sound in the tire 1 would be determined. Because of
  • the duration of the sound signal Sl from the sound encoder 2 to defect 3 represents an unknown.
  • the corresponding spherical caps provide information as to which part of the space the defect is to be located in, so that as part of the evaluation already corresponding unrealistic quantities are discarded and therefore need not be calculated.
  • the first hyperbola Hl is shown here as a dashed line.
  • FIG. 2 shows a schematic representation of a
  • Tires 1 of a railway carriage or a locomotive can be attached and thus a maintenance or
  • Figure 3 shows an enlarged view of the wheel tire 1 with its tread 4 and the axis 21.
  • the tire 1 is shown schematically in Figure 3, a defect 3, which is on a segment of a hyperboloid 30 around a
  • Detection position P is arranged.
  • the marking of corresponding further detection positions and associated hyperboloidal sections has been dispensed with. their
  • Amplitude signal A is plotted against the time t.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
EP12703455.1A 2011-02-08 2012-02-08 Procédé de détection de la position d'un défaut dans un corps Withdrawn EP2673630A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110010680 DE102011010680A1 (de) 2011-02-08 2011-02-08 Verfahren zur Positionserfassung eines Defekts in einem Körper
PCT/EP2012/000562 WO2012107218A1 (fr) 2011-02-08 2012-02-08 Procédé de détection de la position d'un défaut dans un corps

Publications (1)

Publication Number Publication Date
EP2673630A1 true EP2673630A1 (fr) 2013-12-18

Family

ID=45581826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12703455.1A Withdrawn EP2673630A1 (fr) 2011-02-08 2012-02-08 Procédé de détection de la position d'un défaut dans un corps

Country Status (3)

Country Link
EP (1) EP2673630A1 (fr)
DE (1) DE102011010680A1 (fr)
WO (1) WO2012107218A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868991A (zh) * 2014-03-20 2014-06-18 北京新联铁科技股份有限公司 一种双机械手轨道车辆超声波双轮探伤机及其工作方法
CN104807885B (zh) * 2015-05-08 2018-03-23 北京新联铁集团股份有限公司 火车车轮激光超声无损伤探伤方法
CN112051334B (zh) * 2020-09-04 2021-11-09 清华大学 基于tofd探伤装置的焊缝跟踪系统及其焊缝跟踪方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2945912C2 (de) * 1979-11-14 1982-12-23 Krautkrämer, GmbH, 5000 Köln Verfahren zur räumlichen Bestimmung von Inhomogenitäten bei der zerstörungsfreien Prüfung von Werkstoffen nach der Ultraschall-Impuls-Echo-Methode
DE602008004075D1 (de) * 2008-01-18 2011-02-03 Mitsubishi Electric Corp Mehrfache Objektlokalisierung mithilfe eines Netzwerks von Empfängern
DE102009017020A1 (de) 2009-04-14 2010-10-21 Gehrlein, Jan Verfahren sowie Vorrichtung zur Detektion struktureller Veränderungen in oder an einem Festkörper

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012107218A1 *

Also Published As

Publication number Publication date
DE102011010680A1 (de) 2012-08-09
WO2012107218A1 (fr) 2012-08-16

Similar Documents

Publication Publication Date Title
EP1101105B1 (fr) Procede et dispositif pour detecter une fente dans une roue de vehicule ferroviaire
DE19805584C2 (de) System und Verfahren zur Materialüberprüfung von Werkstoffen, sowie Werkstoff und Verfahren zu seiner Herstellung
DE102009047317A1 (de) Verfahren und Vorrichtung zur Ultraschallprüfung
EP2992321B1 (fr) Procédé et dispositif pour l'evaluation des defauts par saft (synthetic aperture focussing technique)
DE19856259A1 (de) Verfahren zur Untersuchung eines erstarrenden und/oder erhärtenden Werkstoffs mittels Ultraschalls
DE3515977A1 (de) Verfahren und vorrichtung zur zerstoerungsfreien pruefung ferromagnetischer koerper
DE2255983A1 (de) Verfahren und vorrichtung zum pruefen und untersuchen von raedern und zum feststellen von fehlern an den raedern
EP2567224A1 (fr) Procédé et dispositif pour une analyse non destructive de matériaux par ultrasons
EP3709014A1 (fr) Agencement de convertisseur pour systèmes de tête de vérification à ultrasons, système de tête de vérification à ultrasons et procédé de vérification
DE102012112121B4 (de) Verfahren und Vorrichtung zur zerstörungsfreien Prüfung eines rotationssymmetrischen Werkstücks, welches Abschnitte verschiedener Durchmesser aufweist
EP3318869A1 (fr) Procédé de contrôle non destructif d'une structure à paroi fine basé sur une analyse tomographique à ultrasons
EP2673630A1 (fr) Procédé de détection de la position d'un défaut dans un corps
DE3218453C2 (de) Elektromagnetischer Ultraschallwandler zur zerstörungsfreien Prüfung von elektrisch leitfähigen Werkstoffen
EP3217159A1 (fr) Procédé de détermination de la température neutre dans des pièces usinées allongées
EP1097374A2 (fr) Procede et dispositifs pour detecter d'une fissure dans une roue de chemin de fer
EP2146204A1 (fr) Procédé destiné à l'évaluation de signaux de réception obtenus lors d'une vérification par ultrasons sans destruction ainsi que dispositif pour une vérification par ultrasons sans destruction sur un corps de vérification
DE10052045C2 (de) Vorrichtung und Verfahren zur Prüfung eines Eisenbahnrades
EP0889322A2 (fr) Procédé de contrÔle non-destructif d'une roue de chemin de fer
DE102012112120A1 (de) Verfahren und Vorrichtung zur oberflächennahen zerstörungsfreien Prüfung eines rotationssymmetrischen Werkstücks mit abschnittsweise wechselndem Durchmesser mittels Ultraschall
DE19803615B4 (de) Verfahren zur Fehlerartklassierung
EP2761791B1 (fr) Procédé de mesure pour analyser la propagation de signaux de navigation électromagnétiques
DE102014104914A1 (de) Vorrichtung und Verfahren zur zerstörungsfreien Prüfung eines Prüflings mittels Ultraschall nach der Vergleichskörpermethode
WO2005119243A1 (fr) Dispositif d'examen acoustique d'un objet a mesurer
DE761975C (de) Verfahren und Einrichtung zur Feststellung von Fehlstellen in festen Werkstuecken mittels Ultraschallwellen
DE102012112119A1 (de) Verfahren und Vorrichtung zur oberflächennahen zerstörungsfreien Prüfung eines rotationssymmetrischen Werkstücks mit abschnittsweise wechselndem Durchmesser mittels Ultraschall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180619