EP1141497B1 - Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung - Google Patents
Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung Download PDFInfo
- Publication number
- EP1141497B1 EP1141497B1 EP99970707A EP99970707A EP1141497B1 EP 1141497 B1 EP1141497 B1 EP 1141497B1 EP 99970707 A EP99970707 A EP 99970707A EP 99970707 A EP99970707 A EP 99970707A EP 1141497 B1 EP1141497 B1 EP 1141497B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel wool
- mass
- component according
- component
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/24—Producing shaped prefabricated articles from the material by injection moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0006—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/012—Discrete reinforcing elements, e.g. fibres
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/02—Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
- E04C5/04—Mats
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0203—Arrangements for filling cracks or cavities in building constructions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/90—Direct application of fluid pressure differential to shape, reshape, i.e. distort, or sustain an article or preform and heat-setting, i.e. crystallizing of stretched or molecularly oriented portion thereof
- Y10S264/904—Maintaining article in fixed shape during heat-setting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24058—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
- Y10T428/24074—Strand or strand-portions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24058—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
- Y10T428/24124—Fibers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24149—Honeycomb-like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24562—Interlaminar spaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24636—Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/24992—Density or compression of components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249932—Fiber embedded in a layer derived from a water-settable material [e.g., cement, gypsum, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- the invention relates to a thin-walled, flat component of high Strength from hydraulically hardened cement stone material as well a process for its manufacture.
- SIMCON Slurry Infiltrated Mat Concrete
- SIFCON Slurry Infiltrated Fiber Concrete
- SIMCOM Standard Infiltrated Mat Concrete
- a stainless steel fiber mat is first placed in a mold and then infiltrated with a cement-based slurry. These steel fiber mats are "pre-woven” and are supplied in large rolls. These mats only have to be cut and inserted into the mold. Because the orientation of the fibers in the fiber mat can be controlled, high tensile forces and ductility can be achieved with a relatively small fiber volume.
- the cement mixtures for a SIMCON slurry have the following components in the proportions listed below: 1 / 0.31 / 0.6 / 0.3 / 0.045 Parts by weight of normal Portland cement / water / Quartz sand with a grain size of 250 mesh / Microsilica / super liquefier.
- a fiber portion can be of 5.25% tensile strengths of 15.9 MPa at 1.1% elongation.
- the SIMCON process provides for the concrete or the slurry mix and soak the stainless steel fiber mats with it, using vibration as an aid.
- SIMCON mortars are e.g. Top layers Components or lost formwork created (ACI Structural Journal / September-October 1997, pp. 502-512). From SIMCON mortars but can only be relatively thick and flat components from minimal e.g. 15 to 20 mm are made because of the Steel fiber mats are relatively thick and completely potted the mats with flowable fresh mortar are relatively difficult is.
- DT 24 09 231 A1 describes a process for the production of strengthened by inorganic binders and with mineral fibers reinforced spatial form bodies known.
- a reinforced glue structure is known from DT 22 17 963.
- the Reinforcement of the "glue structure", in particular a concrete, should be brought about by the fact that the reinforcement in particular Steel wool, steel fibers, steel rings and all other possible Elements with the concrete, for example, in a mixer or to be mixed in a mold.
- the procedure corresponds according to this document the known SIFCON process, wherein but the reinforcement also made of plastic or glass material, Metal shavings or the like should be made.
- the disadvantages corresponds to that of the SIFCON procedure, whereby Usually only particularly short fibers can be used in mixers are, otherwise there are layers, windings or Approaches to the mixing tools comes. You can also use this neither homogeneous distributions nor, according to that in the component introduced tensions, reinforcements in the Reach main stress directions
- US 5,571,628 discloses metal fiber preforms and a method known for producing the same.
- fibers with a length-to-diameter ratio of approx. 50 are introduced into a mold and, if necessary, in this mold a desired fiber content of, for example, 2 to 6% by volume be compressed.
- the fibers by hand or with a Machine After the fibers by hand or with a Machine have been compressed, they are removed from the mold and passed as further pre-treatment steps as preforms, the further treatment steps provide that from the Infiltrate mold removed preform with a cement slurry.
- a disadvantage of this method is that the preforms do not always maintain their shape and their compression strength and - after processing - their fiber content per Volumes are not reproducible.
- preforms which have been produced in this way may possibly be reworked if they are in certain places, such as after molding, are expanded. Furthermore, in this Publication indicated that fiber contents above 10 vol .-% excluded are, because such high fiber contents are no longer infiltrable are.
- the object of the invention is thin-walled, fiber-reinforced components high elasticity with a high fiber content and a very high dimensional stability and accuracy as well as a process to manufacture them with which not only thin-walled, flat, but also arbitrarily curved or angled shapes of thin components can be produced.
- the invention provides to use steel wool mats, wherein these steel wool mats made of steel wool fibers of very small thickness and of great length. These steel wool fiber mats will strongly compressed according to the invention before infiltration. hereby fiber contents can be achieved that according to conventional Process and, according to conventional belief, not infiltrable are. According to the invention, these are pressed together in a mold Steel wool fiber mats with a specially selected cement suspension, namely a fine cement suspension with super plasticizers, injected.
- the stainless steel wool is e.g. made from the material DIN 1.4113 or 1.4793 or alloyed stainless steels.
- different Mats have fibers of different fineness; for example a mat is selected for components ⁇ 5 mm thick, which has an average fiber diameter of 0.08 mm; For Components with a greater thickness are suitable for coarser, medium fiber diameters from e.g. 0.12 mm.
- the fiber lengths are between about 20 mm and several meters; average they several decimeters.
- This long-fiber stainless steel wool is elastic and tough.
- the fibers have length / diameter ratios (L / D ratios) of over 1000. Accordingly, this ratio is far above that critical value at which there is an increase in fiber length still property-improving effects.
- the mats are very flexible or pliable, have a width of up to 1 m and are available rolled up on rolls with basis weights of, for example, 800 g / m 2 to 2000 g / m 2 .
- the mats can be cut with scissors.
- the stainless steel wool is preferably used with basis weights of 900 to 1000 g / m 2 and with average fiber diameters from 0.08 to 0.12 mm.
- Fine cements are very fine-grained hydraulic binders, which by their chemical-mineralogical composition as well steady and graded grain distribution are characterized.
- she generally consist of the usual cement raw materials, such as e.g. ground Portland cement clinker and / or ground slag sand and binding regulators; their production takes place in separate Production plants in cement plants.
- Particularly advantageous is the individual grinding of the mineral raw materials that Separation of their fine components and their targeted composition also with regard to grain sizes and grain distribution.
- Fine cements based on blastfurnace slag or Portland cement with a steady and graded particle size distribution with a maximum particle size d 95 of ⁇ 24 ⁇ m, preferably ⁇ 16 ⁇ m and an average particle size d 50 of ⁇ 7 ⁇ m, preferably ⁇ 5 ⁇ m are used. These are processed into suspensions by mixing them with water and with at least one so-called super liquefier (these are highly effective liquefiers or plasticizers), as well as in particular with microsilica and / or pigments and / or inert minerals, e.g. limestone powder and / or quartz powder and / or fly ash are mixed according to the same or less fineness as the fine cement.
- super liquefier these are highly effective liquefiers or plasticizers
- microsilica and / or pigments and / or inert minerals e.g. limestone powder and / or quartz powder and / or fly ash are mixed according to the same or less fineness as the fine cement.
- Microsilica have very small grain diameters. It is in the range of about 0.1 ⁇ m. Because of this property, they are in able to fill the spaces between the cement grains. This will make the packing density in the cement paste matrix significantly increased. Although the grain diameter of the used Cement is moved in sizes of ⁇ 9.5 ⁇ m he is far surpassed by the microsilica particles, from what the filler effect results.
- microsilica The pozzolanic properties of microsilica are shown in the Mainly determined by two properties. On the one hand they have a certain amount of reactive amorphous silicatic Ingredients that with the resulting calcium hydroxide during of cement hydration react. On the other hand, they have one large specific surface area on which these reactions take place can.
- the effect of microsilica comes to improve the contact zone between surcharge and Cement stone matrix not to wear because the inventive Suspensions do not have a silicate additive.
- microsilica is e.g. in amounts from 10 to 15 % By weight based on the solids content of the suspension in the form added to a dispersion consisting essentially of 50% by weight Microsilica and 50% by weight of water (slurry).
- Fine cement based on blastfurnace slag is particularly advantageous for the suspensions used according to the invention because the very fine cements due to their lower reactivity towards fine cement based on Portland cement to achieve low viscosity Properties lower water levels and lower levels Liquefiers and / or superplasticizers are required.
- Particularly suitable liquefiers or flow agents are e.g. the so-called super plasticizers such as lignin sulfonate, naphthalene sulfonate, Melamine sulfonate, polycarboxylate, which is considered highly effective Dispersing aids are known for the production of fine cement suspensions.
- super plasticizers such as lignin sulfonate, naphthalene sulfonate, Melamine sulfonate, polycarboxylate, which is considered highly effective Dispersing aids are known for the production of fine cement suspensions.
- the following mixtures are used in particular for the preparation of the suspensions used according to the invention: ultrafine 30 to 100, in particular 50 to 80% by mass; Condenser or Plasticizer (liquid) 0.1 to 5, in particular 0.5 to 4.0% by mass; Condenser or superplasticizer (Powder) 0.1 to 2.5, in particular 0.5 to 1.5% by mass; Microsilica (slurry) 0 to 30, in particular 5 to 15 mass%; pigments (Powder) 0 to 5, in particular 1 to 3% by mass; inert minerals 0 to 70, in particular 10 to 30% by mass; Feinstflugasche 0 to 50, in particular 10 to 30% by mass; each based on the solids content of the suspension.
- the low-viscosity suspensions expediently have one Water / solids value between 0.4 and 0.6.
- Your consistency, measured as the Marsh expiry time, is from 35 to 75 Seconds.
- a suspension e.g. the amount of water required placed in a mixing vessel. Then the mixer is in Gear set and liquefier or eluent added. Subsequently the previously weighed dry substances are added. The mixture is then mixed further and homogenized in the process.
- the components according to the invention are made according to a special embodiment the invention made by means of formwork.
- the steel wool mats which are several millimeters thick, suitably to a desired thickness e.g. with the Formwork elements pressed together between the formwork.
- the compression is due to the cotton-like Structure possible and causes a high degree of steel wool filling can be achieved.
- one on top of the other Mats can be of any thickness e.g. also cross reinforcement will be realized.
- the mats are pliable and pliable, they are almost unlimited adaptable and pressable to surface topographies. components or shapes can also be wrapped with it.
- the mats with a fiber orientation according to the expected Voltage curve inserted in a mold or if necessary fixed to the existing component at certain points and by attaching it a formwork or the second half of the formwork with a corresponding one Contact pressure pressed to the desired thickness.
- This procedure follows from Fig. 1.
- the wool 1 is placed in a first formwork part 2 (process sequence a) and compressed with a second formwork part 3 (Arrow P, procedure b).
- the degree of compression of the steel wool means that Degree of reinforcement (volume fraction of steel wool fibers) controlled.
- Steel wool fibers are also present on the surface of the component are, especially in cases where the component exposed to aggressive media, stainless steel wool is used. It It is surprising that even the 10 to 20% of their delivery condition compressed steel wool mats completely and have it safely filled with fine binder suspensions. This is particularly astonishing because with fiber contents from around 6 Vol .-% the mats must be pressed together so strongly that there appears to be an impenetrable felt.
- FIG. 2 Suspension 5 is pressed or injected from below against gravity into the edge-sealed formwork 2, 3 via an inlet 4 until the formwork is filled. The air can escape upwards through the outlet 6. After hardening of the suspension 5 to cement stone is removed.
- the thin-walled component consists essentially of cement stone and several compressed mats 1 made of steel wool. It has unusually high strength, plastic deformation, working capacity, energy absorption until it reaches the fracture state and elasticity, which means that such thin components can be used as self-supporting building materials.
- components with a thickness of less than 10 mm can be produced that have the following properties: thickness 4 to 8 mm flexural strength up to 80 N / mm 2 Compressive strength up to 70 N / mm 2 work capacity very high Tightness also against water very high
- Such casings can optionally be mineral Insulation materials (e.g. foam concrete) can be filled and as highly effective Fire protection clothing serve. By appropriate shaping such plate, shell and molded parts can be used if necessary stiffen.
- the material according to the invention can also be used as a cover layer e.g. for sandwich components.
- sandwich components are fire protection doors.
- the new building material also comes as an outer skin for reinforced concrete components into consideration, this skin being lost Formwork is used. Due to the factory production the thin-walled fiber material is also e.g. in column and Beam formwork a high degree of prefabrication achievable, with spacers already integrated for normal reinforcement could be.
- a particular advantage is that such a lost one Formwork the post-treatment of the filled reinforced concrete makes dispensable, the tightness increases, thereby the rate of carbonation reduced and thus the corrosion protection improved for the reinforcing steel.
- At factory made Formwork elements can be the quality of the surface control far more evenly and better than with in-situ concrete components. Coloring with expensive and complicated to use Pigments are limited to the few millimeters thick Outer skin. A good mechanical connection between the outer skin and filled reinforced concrete could be by pimples or suitable Structuring can be achieved on the inside.
- the building material according to the invention also comes as a repair material into consideration. It can be found on damaged reinforced concrete surfaces complete top coats or local repairs be carried out. To do this, the imperfections and Cavities stuffed with steel wool mats, shelled, sealed and then injected. Cover layers can also be made after Principle of lost formwork applied and by injection be backfilled. Because of the low viscosity of the suspension and the fineness of the binder and due to the filling The formwork under pressure can be even the most complicated Mold surface structures. Therefore, the invention can also used for the production of reliefs and sculptures, which is particularly advantageous if the objects to be manufactured are exposed to particular mechanical stress.
- the method according to the invention is independent of the orientation of the component applicable; therefore are in contrast to the SIMCON process e.g. also overhead applications e.g. on component undersides possible.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Panels For Use In Building Construction (AREA)
- Producing Shaped Articles From Materials (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19848248 | 1998-10-20 | ||
| DE19848248A DE19848248C2 (de) | 1998-10-20 | 1998-10-20 | Dünnwandiges Bauteil aus hydraulisch erhärtetem Zementsteinmaterial sowie Verfahren zu seiner Herstellung |
| PCT/EP1999/006821 WO2000023671A1 (de) | 1998-10-20 | 1999-09-15 | Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1141497A1 EP1141497A1 (de) | 2001-10-10 |
| EP1141497B1 true EP1141497B1 (de) | 2003-04-02 |
Family
ID=7885015
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99970707A Expired - Lifetime EP1141497B1 (de) | 1998-10-20 | 1999-09-15 | Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung |
Country Status (16)
| Country | Link |
|---|---|
| US (1) | US6797370B1 (cs) |
| EP (1) | EP1141497B1 (cs) |
| CN (1) | CN1324426A (cs) |
| AT (1) | ATE236313T1 (cs) |
| BR (1) | BR9914712A (cs) |
| CZ (1) | CZ20011415A3 (cs) |
| DE (2) | DE19848248C2 (cs) |
| ES (1) | ES2193785T3 (cs) |
| HK (1) | HK1038777A1 (cs) |
| HU (1) | HUP0103879A3 (cs) |
| NO (1) | NO20011621L (cs) |
| PL (1) | PL347332A1 (cs) |
| SK (1) | SK5342001A3 (cs) |
| TR (1) | TR200101110T2 (cs) |
| WO (1) | WO2000023671A1 (cs) |
| ZA (1) | ZA200103041B (cs) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19838948A1 (de) | 1998-08-27 | 2000-03-02 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Ansteuerung einer Pumpe eines Bremssystems |
| DE20203291U1 (de) * | 2002-03-03 | 2003-07-24 | P.V.P. Polymer Verarbeitung und Produktions GmbH & Co. KG, 07819 Triptis | Matte oder Stahlarmierung |
| US20040211342A1 (en) * | 2003-04-25 | 2004-10-28 | Mbt Holding Ag | Rheology stabilizer for cementitious compositions |
| DE102004062656A1 (de) * | 2004-12-24 | 2006-07-06 | Metten Stein + Design Gmbh & Co. Kg | Verfahren zum Herstellen von Betonsteinen oder Betonplatten |
| FR2921358B1 (fr) * | 2007-09-25 | 2010-10-01 | Lafarge Sa | Beton a faible teneur en clinker |
| DE102008028030A1 (de) | 2008-06-12 | 2009-12-24 | BSH Bosch und Siemens Hausgeräte GmbH | Verfahren und Einrichtung zum Bestimmen von Schaum in einer Waschmaschine |
| AT513819B1 (de) * | 2012-12-28 | 2015-07-15 | Austrotherm Gmbh | Bauplatte |
| JP6746871B2 (ja) * | 2015-04-01 | 2020-08-26 | 住友電工スチールワイヤー株式会社 | コンクリート補強用成形体、その製造方法、及び繊維補強コンクリートの混練方法 |
| DE202019100581U1 (de) * | 2019-01-31 | 2020-05-04 | Hartmann Hauke | Gebäude mit einer Wand und einer auf dieser Wand aufliegenden Decke, Gebäude mit einer Wand, Bewehrungselement, Bewehrungsbauteil und Bewehrungsbaugruppe |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3637457A (en) * | 1970-06-08 | 1972-01-25 | Monsanto Co | Nylon spun bonded fabric-concrete composite |
| DE2217963A1 (de) * | 1972-04-14 | 1973-10-31 | Koch Karl Heinz | Bewehrtes leimgefuege |
| US4036922A (en) * | 1973-11-24 | 1977-07-19 | Yasuro Ito | Method and apparatus for moulding hydraulic cement or the like material |
| DE2409231A1 (de) * | 1974-02-27 | 1975-09-04 | Heidelberg Portland Zement | Verfahren zur herstellung von durch anorganische bindemittel verfestigten und durch mineralfasern verstaerkten raumformkoerpern |
| SE7907637L (sv) * | 1979-10-29 | 1981-04-30 | Scanovator Handel | Matta av metallisk kort fiber |
| DE3142598C1 (de) * | 1981-10-27 | 1983-06-09 | Fa. Carl Freudenberg, 6940 Weinheim | Formkoerper aus einem abbindenden,mineralischen Werkstoff und darin eingebetteten Verstaerkungsfasern |
| US4617219A (en) * | 1984-12-24 | 1986-10-14 | Morris Schupack | Three dimensionally reinforced fabric concrete |
| JPS61215239A (ja) * | 1985-03-22 | 1986-09-25 | 電気化学工業株式会社 | 超高強度モルタル・コンクリ−ト組成物 |
| DE4218710C1 (de) * | 1992-06-06 | 1993-11-18 | Hochtief Ag Hoch Tiefbauten | Anlage zum Herstellen von Tübbingen für eine Tunnelauskleidung |
| US5571628A (en) * | 1993-07-23 | 1996-11-05 | Ribbon Technology Corporation | Metal fiber preforms and method for making the same |
| JP3608128B2 (ja) * | 1996-02-19 | 2005-01-05 | 清水建設株式会社 | 鋼繊維補強高流動高強度コンクリートの製造方法 |
| US6174595B1 (en) * | 1998-02-13 | 2001-01-16 | James F. Sanders | Composites under self-compression |
-
1998
- 1998-10-20 DE DE19848248A patent/DE19848248C2/de not_active Expired - Fee Related
-
1999
- 1999-09-15 WO PCT/EP1999/006821 patent/WO2000023671A1/de active IP Right Grant
- 1999-09-15 EP EP99970707A patent/EP1141497B1/de not_active Expired - Lifetime
- 1999-09-15 SK SK534-2001A patent/SK5342001A3/sk unknown
- 1999-09-15 AT AT99970707T patent/ATE236313T1/de not_active IP Right Cessation
- 1999-09-15 BR BR9914712A patent/BR9914712A/pt not_active Application Discontinuation
- 1999-09-15 TR TR200101110T patent/TR200101110T2/xx unknown
- 1999-09-15 DE DE59904888T patent/DE59904888D1/de not_active Expired - Fee Related
- 1999-09-15 ES ES99970707T patent/ES2193785T3/es not_active Expired - Lifetime
- 1999-09-15 PL PL34733299A patent/PL347332A1/xx unknown
- 1999-09-15 CN CN99812384A patent/CN1324426A/zh active Pending
- 1999-09-15 HU HU0103879A patent/HUP0103879A3/hu unknown
- 1999-09-15 US US09/807,871 patent/US6797370B1/en not_active Expired - Fee Related
- 1999-09-15 HK HK02100317.4A patent/HK1038777A1/zh unknown
- 1999-09-15 CZ CZ20011415A patent/CZ20011415A3/cs unknown
-
2001
- 2001-03-30 NO NO20011621A patent/NO20011621L/no not_active Application Discontinuation
- 2001-04-12 ZA ZA200103041A patent/ZA200103041B/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| HUP0103879A3 (en) | 2002-02-28 |
| CZ20011415A3 (cs) | 2002-02-13 |
| SK5342001A3 (en) | 2001-12-03 |
| HUP0103879A2 (hu) | 2002-01-28 |
| PL347332A1 (en) | 2002-03-25 |
| WO2000023671A1 (de) | 2000-04-27 |
| EP1141497A1 (de) | 2001-10-10 |
| NO20011621L (no) | 2001-06-18 |
| CN1324426A (zh) | 2001-11-28 |
| DE19848248A1 (de) | 2000-05-18 |
| US6797370B1 (en) | 2004-09-28 |
| ZA200103041B (en) | 2002-01-23 |
| BR9914712A (pt) | 2001-07-31 |
| TR200101110T2 (tr) | 2001-12-21 |
| HK1038777A1 (zh) | 2002-03-28 |
| DE59904888D1 (de) | 2003-05-08 |
| ATE236313T1 (de) | 2003-04-15 |
| ES2193785T3 (es) | 2003-11-01 |
| DE19848248C2 (de) | 2001-08-30 |
| NO20011621D0 (no) | 2001-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69318400T2 (de) | Zement mit gleichzeitiggemahlenen fasern | |
| EP2074074B1 (de) | Verfahren zur herstellung eines lufthärtenden porenbetons aus bindemittelhaltigen gemischen | |
| DE60128930T2 (de) | Hochfester ,hochduktiler faserbeton | |
| DE60110402T2 (de) | Strukturverbaupanele | |
| EP2935145B1 (de) | Baustoffzusammensetzung zur herstellung eines leichtbetons | |
| EP2177681B2 (de) | Beton-Baustoff, Bauelement zur Wärmedämmung und mauersteinförmiges Wärmedämmelement, jeweils unter Verwendung des Beton-Baustoffs | |
| EP0990628B1 (de) | Leichtmauermörtel | |
| EP1141497B1 (de) | Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung | |
| DE102019103763A1 (de) | Betonmischung zur Bildung eines ultrahochfesten Leichtbetons | |
| DE2302915A1 (de) | Verfahren zur herstellung von leichtbeton | |
| EP2028170B1 (de) | Verfahren zur Herstellung von Leichtbeton | |
| EP4223721B1 (de) | Betonmischung sowie verfahren zu deren herstellung, verwendung der betonmischung und verfahren zur herstellung eines betonbauteils und betonbauteil | |
| WO2009065521A1 (de) | Baustein und verfahren zur herstellung eines bausteins | |
| AT394184B (de) | Verfahren zur herstellung von leichtbeton | |
| EP0781733B1 (de) | Leichtmauermörtel und Verfahren zu seiner Herstellung | |
| EP3261811B1 (de) | Dachstein sowie verfahren zur herstellung eines solchen dachsteins | |
| EP4196451B1 (de) | Wärmedämmputzsystem und verfahren zu dessen herstellung | |
| AT394549B (de) | Betonbauteil, verfahren zur herstellung eines betonbauteiles, mischung sowie zement zur herstellung der mischung und des betonbauteiles | |
| DE102023200860A1 (de) | Kombination für die Herstellung einer bewehrten Lagerfugenmörtelschicht eines bewehrten Mauerwerks, derartige Lagerfugenmörtelschicht, bewehrtes Mauerwerk mit einer derartigen Lagerfugenmörtelschicht sowie Verfahren zur Herstellung einer derartigen Lagerfugenmörtelschicht und eines bewehrten Mauerwerks | |
| DE102024109547A1 (de) | Verfahren zur herstellung eines schaumglashaltigen betonbauteils | |
| DE20121241U1 (de) | Fasermischung für Beton | |
| EP3468937A1 (de) | Gips-zement-trockenmischung und daraus hergestellte gebäudefertigteile | |
| DE102022213096A1 (de) | Verfahren zur Herstellung eines aktivierten Materials, Verwendung des Materials in einer Trockenmörtelmischung, Trockenmörtelmischung mit dem Material, Verfahren zur Herstellung der Trockenmörtelmischung und deren Verwendung | |
| DE102020001205A1 (de) | Ultrahochfester Hanftauwerkbeton | |
| DE2245236A1 (de) | Bauelement, insbesondere leichtbauelement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20010410 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20010410;LT PAYMENT 20010410;LV PAYMENT 20010410;MK PAYMENT 20010410;RO PAYMENT 20010410;SI PAYMENT 20010410 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030402 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030402 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030402 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
| REF | Corresponds to: |
Ref document number: 59904888 Country of ref document: DE Date of ref document: 20030508 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BRAUN & PARTNER PATENT-, MARKEN-, RECHTSANWAELTE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030702 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030702 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030702 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030702 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030915 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030916 |
|
| LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20030402 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
| GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20030402 |
|
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2193785 Country of ref document: ES Kind code of ref document: T3 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1141497E Country of ref document: IE |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20040105 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20040910 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040914 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040923 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040928 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040929 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20041015 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20041123 Year of fee payment: 6 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030916 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050915 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050915 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060401 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060401 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060401 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060531 |
|
| BERE | Be: lapsed |
Owner name: *DYCKERHOFF A.G. Effective date: 20050930 |