EP1133662A1 - Dispositif d'equilibrage hydraulique automatique - Google Patents

Dispositif d'equilibrage hydraulique automatique

Info

Publication number
EP1133662A1
EP1133662A1 EP99956115A EP99956115A EP1133662A1 EP 1133662 A1 EP1133662 A1 EP 1133662A1 EP 99956115 A EP99956115 A EP 99956115A EP 99956115 A EP99956115 A EP 99956115A EP 1133662 A1 EP1133662 A1 EP 1133662A1
Authority
EP
European Patent Office
Prior art keywords
orifice
valve
radiator
membrane
balancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99956115A
Other languages
German (de)
English (en)
Other versions
EP1133662B1 (fr
Inventor
Pierre Fridmann
Jacky Leger
Jean-Philippe Robin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comap SA
Original Assignee
Comap SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comap SA filed Critical Comap SA
Publication of EP1133662A1 publication Critical patent/EP1133662A1/fr
Application granted granted Critical
Publication of EP1133662B1 publication Critical patent/EP1133662B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1018Radiator valves

Definitions

  • the present invention relates to a hydraulic balancing device for a heating installation.
  • Such an installation is equipped with a boiler or the like which makes it possible to heat a fluid which is sent via pumping means to heat emitters, in particular radiators, by a network of hydraulic pipes.
  • the device according to the invention also provides thermostatic regulation of a heat emitter.
  • the present invention also relates to hydraulic circuits implementing fan coil units. It adapts both to the heating circuits and to the cold water circuits used to cool the premises.
  • the description below is essentially made with reference to heating circuits but it also applies to cold techniques in which a cold water network, or another fluid, is used.
  • a heating installation in addition to the boiler, the radiators and the pipes, there are also regulating members which have the aim of ensuring a good distribution of the heat-transfer fluid towards the heat emitters by ensuring a sufficient flow through each of these.
  • the heating circuit is balanced.
  • This balancing operation consists in adjusting the various adjustment members so as to obtain flow rates previously calculated under basic conditions chosen to size different pieces of equipment of the installation operating in steady state. Admittedly, an installation hardly ever works in steady state, but this does not change the interest of the hydraulic balancing of a circuit. Indeed, if the flow rates are caused to vary during operation, this must be taken into account at the design stage and, if necessary, provide differential pressure regulators mounted in series or in parallel. This is then the domain of regulation and no longer of hydraulic balancing.
  • balancing devices also called balancing members, which allow hydraulic balancing of a heating installation. These organs are intended to regulate the distribution flows in the different branches of the distribution circuits.
  • non-adjustable balancing members are known. These are diaphragms, that is to say fixed calibrated orifices whose diameter is determined for each of them from knowledge of the flow / pressure drop couple to be created.
  • the use of this type of member implies a complete and meticulous hydraulic calculation of all the circuits of the installation to determine precisely the characteristics of each diaphragm. In case of calculation error, there is only one solution which consists in changing the diaphragm. This solution, a priori relatively inexpensive, is therefore. very rarely used.
  • adjustable balancing members known under the name, for example, of adjustment fittings or balancing valves. These members make it possible to adjust the flow rate in a circuit and therefore to balance it based on prior knowledge of the flow rate / pressure drop couple to be created. This implies a complete hydraulic calculation of the entire heating circuit. These adjustable balancing members allow the adjustment to be easily corrected in the event of an error.
  • adjustable balancing members provided with a flow measurement device.
  • these balancing members are equipped with a pressure tap intended for a differential pressure measurement. This measurement makes it possible to determine the flow of fluid through the balancing member.
  • an electronic differential pressure gauge with microprocessor it is easy and quick to make differential pressure and flow measurements.
  • This type of balancing device has a very significant advantage for the installer.
  • the adjustment of the balancing member can be determined by calculation as for the adjustable balancing members described above, but the setting can also be carried out directly in situ from knowledge of the desired flow rate alone.
  • this type of equipment has no direct relationship with the hydraulic balancing of the installations as defined above.
  • the use of such a flow regulator can be considered as a palliative solution to the insufficiency of calculation by replacing a relatively simple static balancing member by a regulating device comprising moving parts only in order to avoid the surgery initial adjustment according to one of the procedures mentioned above.
  • the use of these flow regulators is limited because, on the one hand its field of application is restricted due to the incompatibility with the thermostatic valves and, on the other hand, because of a cost of investment more higher than that of traditional solutions.
  • FIG. 1 shows radiators 2 provided with traditional valves while in FIG. 2, the radiators 2 are provided with integrated valves.
  • FIG. 1 shows radiators 2 provided with traditional valves while in FIG. 2, the radiators 2 are provided with integrated valves.
  • FIG. 1 and 2 there is each time a main supply line 6 and a main return line 8.
  • the branch circuit is connected at a branch 10 to the main supply line 6 and at the level from a branch 12 to the main return line 8.
  • balancing valve 14 Upstream of the branch 10 allowing the supply of the branched hydraulic circuit, there is a balancing valve 14.
  • Downstream of this branch 10, is generally arranged a valve d isolation 16 which does not play a particular role in balancing the circuit.
  • At the foot of each branch circuit is another balancing valve 21. The latter is adjustable and allows the pressure drop of the branch circuit to be adjusted.
  • each radiator 2 is provided upstream of its supply with a thermostatic valve 18 and upstream of an adjustment fitting 20.
  • the thermostatic valve 18 makes it possible to perform the function of thermostatic regulation of the room temperature in which the radiator 2 is located while the adjustment fitting 20 ensures hydraulic balancing.
  • a hydraulic module 22 allows the supply of a radiator 2 and each radiator 2 is provided with a thermostatic valve 24.
  • the housing of the thermostatic valve 24 houses also an adjustment fitting.
  • a hydraulic module 22 which allows the supply of heat transfer fluid to the radiator 2, a thermostatic valve ensuring thermostatic regulation and an adjustment fitting (not referenced) attached to the thermostatic valve to ensure hydraulic balancing.
  • the document EP-0 677 708 describes in principle a hot water heating installation comprising several radiators hydraulically connected together in at least one line. These radiators each have a valve for controlling the flow of fluid passing through the radiator.
  • the valves associated with the radiators are constituted by differential pressure control valves preferably equipped with a setpoint adjustment device. No concrete embodiment of such a device is revealed by this document.
  • the object of the present invention is therefore to provide an automatic balancing device in order to solve the balancing problems currently encountered with existing balancing members.
  • the device which it proposes is a hydraulic balancing device intended for a heating or air conditioning installation or the like comprising a first calibrated or adjustable orifice, as well as a second orifice situated downstream of the first orifice, in wherein the opening of the second orifice is adjusted by a valve whose position is controlled by means allowing the displacement of the valve as a function of the pressure difference existing between the upstream and downstream of the first orifice.
  • this device is mounted in two separate bodies, connected to each other, a first body corresponding to the first orifice and a second body corresponding to the second orifice.
  • the means allowing the valve to move as a function of the pressure difference at the level of the first orifice include a membrane separating a housing into two chambers, one chamber being in connection with the upstream of the first orifice and the other room being in connection with the downstream of this first orifice.
  • a compensating spring acting on the membrane is advantageously provided.
  • the balancing device preferably also includes means making it possible to carry out a displacement as a function of the temperature of the room in which the device is located, these means acting on the opening and closing either of the first or of the second orifice.
  • the means for carrying out a movement as a function of the temperature of the room in which the device is located advantageously comprise a thermostatic head, of the type of that existing in a thermostatic valve.
  • the means making it possible to carry out a displacement as a function of the temperature of the room in which the device is located act on a second valve disposed at the level of the first orifice.
  • a preferred embodiment provides that the first body comprises the first orifice, a valve controlling the opening and closing of this orifice as well as a thermostatic head acting on the valve, and that the second body comprises a membrane tared possibly by a spring and integral with a valve acting on the second orifice produced inside this second body.
  • one face of the membrane is advantageously connected to the first body by means of a cane or the like and the other face of the membrane is advantageously connected to the first body by a radiator.
  • one face of the membrane is for example connected to the first body by means of a pipe or the like and the other face of the membrane is for example connected to the first body by a radiator and a pipe.
  • the present invention also relates to a hydraulic module intended to supply heat transfer fluid to a heat emitter, in particular a radiator, and to collect the fluid leaving the heat emitter, characterized in that it comprises one of the bodies of a device balancing as described above.
  • a module is more specifically intended for a radiator with integrated valves.
  • This module receives the supply and return pipes for heat transfer fluid, and by means of flexible pipes forming a device generally called a harness, sends the heat transfer fluid to the inlet of the radiator and collects the heat transfer fluid leaving it. .
  • the device balancing can be upstream or downstream of the heat emitter.
  • the invention also relates to a radiator characterized in that it is equipped with a balancing device according to the invention or with a hydraulic module as described above.
  • the automatic balancing device with which it is fitted is located hydraulically either upstream or downstream of the radiator.
  • FIGS. 1 and 2 show circuits derived from a heating installation equipped with balancing members of the prior art
  • FIG. 3 represents two derived circuits provided with balancing members according to the invention
  • FIG. 4 shows a radiator equipped with an independent hydraulic module and a balancing device according to a first embodiment
  • FIG. 5 shows a radiator with an integrated hydraulic module provided with the balancing device of FIG. 4,
  • FIG. 6 shows on an enlarged scale and in section a distributor which can be used for a radiator as shown in FIG. 4,
  • FIG. 7 shows on an enlarged scale and in section a module which can be used for a radiator as shown in FIG. 5,
  • FIG. 8 shows a heating circuit with a centralized distribution equipped with balancing devices according to the invention.
  • FIG 9 shows part of an individual centralized heating circuit equipped with a balancing device according to the invention.
  • Figures 1 and 2 have already been described in the preamble to this patent application.
  • Figure 3 shows two circuits derived from a heating circuit.
  • Each derived circuit also includes two radiators 2 mounted in parallel. In each case, they are radiators with integrated valves. However, the invention can also be applied to radiators with traditional taps. These radiators 2 are supplied with heat transfer fluid by pipes 4.
  • a hydraulic module 26 allows the supply of a radiator 2 with heat transfer fluid. It incorporates a hydraulic balancing device according to the invention.
  • Each branch circuit further comprises at the top and bottom each time an isolation valve 16.
  • FIG. 4 shows in section and schematically a first embodiment of a hydraulic balancing member according to the invention.
  • the latter has a fluid inlet 30 corresponding to a supply line 84 and a fluid outlet 32 corresponding to a return line 86.
  • the device has a first adjustable orifice 34 and a second orifice 36, the opening and closing of which are regulated by a valve 38.
  • the valve 38 has a head 40 and a rod 42.
  • the head 40 is intended to open and close the second orifice 36. Its shape is adapted to the shape of a seat produced at the level of the second orifice 36.
  • the valve rod 42 extends through a chamber 44 produced in a first body 88 of the balancing device and closed by a membrane 46.
  • the body 88 contains the flow control seat 36, the corresponding valve 38, the membrane 46 and a compensating spring 56.
  • One face of the membrane, that opposite to the chamber 44, is subjected to the pressure of the supply line. supply 84.
  • the flow regulation seat 36 is in turn formed between the return of fluid from the radiator 2 and the return line 86.
  • the membrane 46 is therefore subjected on one side to the pressure P1 and on the other side to the pressure P2.
  • the compensating spring 56 is provided on the side where this lowest pressure prevails. This spring 56 surrounds the valve stem 42. It bears on the one hand on the membrane 46 and on the other hand on the body 88 at the passage 54.
  • the membrane 46 is in a middle position for a difference pressure P1 -P2 given and its position varies when the pressure difference P1 -P2 varies.
  • a pressure P3 prevails, itself lower than the pressure P2, taking into account the pressure drop (pressure drop) caused by the second orifice 36 and the associated valve 38.
  • the pressure drops created by the radiator 2 and the rod 92 are small, even negligible, compared to the pressure drop existing between the upstream and downstream of the first orifice 34.
  • a second valve 62 associated with the first orifice 34, controls the opening of the latter.
  • This valve 62 is controlled by a thermostatic head 48.
  • the thermostatic head 48, the valve 62 and the first orifice 34 are mounted in a second body 90 connected to the body 88 by a rod 92, which extends the supply line 84.
  • the valve 62 controls the passage of fluid leaving this rod to enter the radiator 2.
  • the operation of the device is as follows. It is assumed that heat transfer fluid is supplied to the inlet 30 by, for example, a pump not shown.
  • the device according to the invention operates as a flow regulator.
  • the pressure P1 increases, the flow rate through the device will tend to increase.
  • this pressure P1 is transmitted to the right part of the membrane 46.
  • This membrane then tends, under the effect of a higher pressure P1, to move to the left (with reference to FIGS. 4 and 5).
  • This movement of the membrane tends to close the second orifice 36 by means of the valve 38.
  • the increase in flow created by the increase in pressure P1 is therefore countered by the reduction in flow caused by the closing of the valve 38.
  • the thermostatic head 48 will act on the valve 62. This will then modify the opening at the level of the first orifice 34.
  • the valve 62 tends to close the first orifice 34 thus causing a drop in the flow of heat transfer fluid.
  • the thermostatic head acts on the valve 62 in the direction of an opening of the orifice 34.
  • the thermostatic head 48 acts on the second valve 62. If the temperature increases, the valve 62 opens, the pressure P1 remains constant while P2 increases. The first valve 38 therefore also opens, allowing a higher flow rate. On the contrary, if the temperature decreases, the valve 62 closes, the pressure P1 remains constant, the pressure P2 decreases and the valve 38 also closes. The flow through the device is decreased.
  • the balancing device is identical, but in one case there is a body 88 placed in a hydraulic module 26 independent of the radiator 2 (FIG. 4) and in the other case, a body 88 placed in a module 26 integrated into the radiator 2 (FIG. 5).
  • Figure 6 shows another embodiment of a body 88 intended.à equip a radiator, while being independent of this radiator.
  • the body 88 here has a substantially triangular shape. At the heart of this triangle is placed the membrane 46 and the valve 38 which is associated with it. This valve is shown here in the closed position.
  • the body 88 has a first inlet 102 which corresponds to the fluid inlet 30 of FIG. 4, a first fluid outlet 104 which corresponds to the outlet to the rod 92, a second inlet 106 which corresponds to the return of the radiator 2 to the body 88 and a second outlet 108 which corresponds to the outlet 32.
  • a passage 1 10 is provided to directly join the inlet 102 and the outlet 104.
  • One face of the membrane 46 is oriented towards this passage 1 10.
  • the peripheral edge of the membrane 46 rests at the level of a shoulder 1 12. This edge is held by a ring 11 which itself is held in the body by a plug 11 16.
  • An opening has been made in the body 88 facing the membrane 46 to allow the establishment of the valve 38, the membrane 46 and the plug 1 16 closes this opening.
  • valve 38 With this plug 1 16 is associated a support disc 1 18 in which are formed orifices 120 so that the face of the membrane 46 facing the passage 1 10 is subjected to the pressure of the fluid passing through this passage 1 10
  • the valve 38 is placed in a housing 122 in which is also disposed a guide piece 124 for the valve 38.
  • the latter is for example glued to the membrane 46. It has a tubular shape and a longitudinal section of this valve has a T-shaped. The base of the T is oriented towards the second inlet 106.
  • the pressure P2 which also prevails in the radiator 2.
  • Figure 7 shows an embodiment of a hydraulic module corresponding to the module shown in Figure 5.
  • the body 88 has a general shape in H.
  • the central bar of the H houses the membrane 46 and the valve 38.
  • the valve 38 is also a tubular valve provided on the side of the membrane 46 with openings 126. It is also guided in a guide piece 124.
  • the originality here lies in the fact that the body is made in two parts that can pivot one relative to the other.
  • a first part is referenced 88 while the other part is referenced 89.
  • Part 89 carries the first inlet 102 and the second outlet 108 and is connected to the central heating network while the first part 88 is connected at the level of the first outlet 104 and from the second inlet 106 to the radiator 2.
  • the part 89 has a substantially horizontal tubular part from which two tubular legs leave in which the first inlet 102 and the second outlet 108 are made.
  • the substantially horizontal tubular part forms the pivot axis of the body 88 on the second part 89.
  • the body 88 is made in two parts.
  • the junction between these two parts is done at the membrane 46.
  • this membrane is sandwiched between the two parts of the body 88.
  • a fixing flange and screws are provided to allow the fixing of these two parts of the body 88. These flanges and these screws are not shown in the drawing.
  • the membrane 46 seals between the two constituent parts of the body 88.
  • O-rings 128 are provided for sealing between the second body 89 and the body 88.
  • FIG. 8 shows an alternative embodiment for a device according to the invention. While the embodiment of FIGS. 4 and 5 is adapted to a heating circuit in which the distribution is carried out by two tubes (two-pipe distribution), the radiators being mounted in parallel between these two tubes, or in which the distribution is carried out by a tube (distribution-monotube), the radiators then being mounted in series on the tube, the embodiment of Figure 8 is suitable for centralized distribution or octopus.
  • FIG 8 is a schematic view showing a circuit comprising four radiators 2.
  • the distribution of heat transfer fluid is ensured from two collectors.
  • a first collector 94 receives the heat transfer fluid from a boiler or other source and distributes it to the radiators 2.
  • the second collector 96 collects the heat transfer fluid after the latter has passed through the radiators 2.
  • Four pipes 98 leave from the first collector 94 and each connect the latter to a radiator 2, while four other pipes 100 each connect a radiator 2 to the second collector 96.
  • modules 88 ' As seen in Figure 8, near the collectors 94 and 96, there are modules 88 '. These are identical to the bodies 88 of Figures 4 and 5. Therefore, the valve, the membrane and the spring contained in the modules 88 'have not been shown. We find in fact in the modules 88 'exactly the same configuration as in the bodies 88. At each radiator 2, there is a housing 90' identical to the bodies 90 of Figures 4 and 5. For the same reasons, there is the interior of the boxes 90 ′ has not been shown. The pressure drops between the modules 88 ′ and the bodies 90 ′ are greater than between the bodies 88 and 90. However, this pressure drop being substantially constant, it does not prevent flow regulation or thermal regulation.
  • a module 26 as shown in Figures 6 and 7 can also be adapted to a centralized individual heating circuit.
  • a heating circuit there is a primary loop, two sections of tubes 150 of which are shown in FIG. 9.
  • a secondary loop 152 which in the present example comprises two radiators 2 supplied in parallel.
  • the module 26 is mounted between the secondary loop and the primary loop.
  • the secondary loop 152 has, downstream of the hydraulic module 26, a control valve 16 'which allows the supply or cut off of the supply to the secondary loop 152.
  • a thermostatic head 48 is provided at the level of this valve 16' .
  • the hydraulic module 26 associated with the valve 16 ′ and the thermostatic head 48 thus produces a balancing device according to the invention.
  • each heat emitter of the installation is provided with a hydraulic balancing device according to the invention, hydraulic balancing and thermostatic regulation are automatically ensured.
  • hydraulic balancing the devices according to the invention will maintain the chosen flow rate at the given set values. More precisely, each device according to the invention will maintain the flow rate between high and low limit values defined by its proportional band.
  • this device is intended to replace the traditional thermostatic valve by adding an additional function, hydraulic balancing.
  • the dimensioning of a radiator is done differently. Indeed, the flow circulating in the heat emitter is imposed and there is a variable temperature drop between the inlet and the outlet of the radiator. Of course, it is expected to have temperature drops which are within an acceptable range, such as for example an interval ranging from 5 to 20 degrees.
  • the device according to the invention makes compatible the actions of regulating the flow and the temperature, which is not the case with existing equipment. Indeed, in the preamble to this patent application, it is explained why, in the prior art, the flow regulators are incompatible with a heating installation provided with thermostatic valves. By combining these two elements, flow regulator and thermostatic valve, in an original way, the invention makes it possible to carry out both hydraulic balancing automatically and thermostatic regulation.
  • the movement of the valve or valves is controlled by a membrane and / or a thermostatic head. It is quite possible to act on the valve (s) using an electric motor controlled electronically. It is thus possible to measure the pressure difference prevailing on either side of the first orifice of the device according to the invention and to have a temperature probe for measuring the temperature of the room. These measurements are then transformed into electrical signals and, after processing by an electronic unit, a control signal is sent to an electric motor controlling the position of the corresponding valve to determine the opening thereof.
  • a balancing device can be integrated into a hydraulic module which is itself integrated into a radiator. It can also find its place on a radiator in which the valves are not integrated. This device could for example be mounted in place of a thermostatic valve on a traditional radiator.
  • FIG. 3 showing part of a heating circuit is given for information only. Any other configuration of the heating circuit can also be equipped with hydraulic balancing devices according to the invention.
  • thermostatic valve It is enough to have an orifice creating a pressure drop. It may be a predetermined orifice, an adjustable orifice, a tap for example, or else an orifice controlled electrically by functions of various parameters.
  • thermostatic head or other means making it possible to carry out a displacement as a function of the temperature
  • these means can be mounted in series with the means acting as a function of the pressure difference.
  • the means making it possible to carry out a displacement as a function of the temperature could then for example act on the membrane described in the exemplary embodiments described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Temperature-Responsive Valves (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Cyclones (AREA)
  • Transplanting Machines (AREA)
  • Vehicle Body Suspensions (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Centrifugal Separators (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Heat Treatment Of Articles (AREA)
  • Testing Of Balance (AREA)
  • Earth Drilling (AREA)
  • Soil Working Implements (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

Ce dispositif comporte un premier orifice (34) calibré ou réglable, ainsi qu'un second orifice (36) situé en aval du premier orifice (34). L'ouverture du second orifice (36) est réglée d'une part par un clapet (38) dont la position est commandée par des moyens (46, 56) permettant le déplacement du clapet en fonction de la différence de pression (P2-P1) existant entre l'amont et l'aval du premier orifice (34) et d'autre part par des moyens (48) permettant de réaliser un déplacement en fonction de la température du local dans lequel se trouve le dispositif. Ce dispositif est monté dans deux corps (88, 90) distincts, reliés l'un à l'autre, un premier corps (90) correspondant au premier orifice (34) et un second corps (88) correspondant au second orifice (36). Ce dispositif réalise à la fois un équilibrage hydraulique automatique et une régulation thermostatique.

Description

Dispositif d'équilibrage hydraulique automatique
La présente invention concerne un dispositif d'équilibrage hydraulique destiné à une installation de chauffage. Une telle installation est équipée d'une chaudière ou similaire permettant de chauffer un fluide qui est envoyé par l'intermédiaire de moyens de pompage à des émetteurs de chaleur, notamment des radiateurs, par un réseau de conduites hydrauliques. Le dispositif selon l'invention assure également la régulation thermostatique d'un émetteur de chaleur.
La présente invention concerne aussi des circuits hydrauliques mettant en œuvre des ventilo-convecteurs. Elle s'adapte aussi bien aux circuits de chauffage qu'aux circuits d'eau froide utilisés pour climatiser des locaux. La description ci après est essentiellement faite en référence à des circuits de chauffage mais elle s'applique aussi aux techniques du froid dans lesquelles un réseau d'eau froide, ou un autre fluide, est mis en œuvre.
Dans une installation de chauffage, outre la chaudière, les radiateurs et les conduites, on trouve également des organes de réglage qui ont pour but d'assurer une bonne distribution du fluide caloporteur vers les émetteurs de chaleur en assurant un débit suffisant à travers chacun de ceux-ci. Pour un bon fonctionnement de l'installation on réalise l'équilibrage du circuit de chauffage. Cette opération d'équilibrage consiste à régler les différents organes de réglage de façon à obtenir des débits préalablement calculés dans des conditions de base choisies pour dimensionner différents équipements de l'installation fonctionnant en régime permanent. Certes, une installation ne fonctionne pratiquement jamais en régime permanent, mais ceci ne change rien à l'intérêt de l'équilibrage hydraulique d'un circuit. En effet, si les débits sont amenés à varier en cours de fonctionnement, il faut en tenir compte à l'étape de conception et prévoir si nécessaire des régulateurs de pression différentiels montés en série ou en parallèle. Ceci est alors du domaine de la régulation et non plus de l'équilibrage hydraulique.
Il existe plusieurs dispositifs d'équilibrage, appelés aussi organes d'équilibrage, qui permettent de réaliser l'équilibrage hydraulique d'une installation de chauffage. Ces organes sont destinés à régler la répartition des débits dans les différentes branches des circuits de distribution.
On connaît tout d'abord des organes d'équilibrage non réglables. Il s'agit de diaphragmes, c'est-à-dire d'orifices fixes calibrés dont le diamètre est déterminé pour chacun d'entre eux à partir de la connaissance du couple débit/perte de charge à créer. L'utilisation de ce type d'organe implique un calcul hydraulique complet et minutieux de tous les circuits de l'installation pour déterminer précisément les caractéristiques de chaque diaphragme. En cas d'erreur du calcul, il n'existe qu'une seule solution qui consiste à changer le diaphragme. Cette solution, a priori relativement peu coûteuse, est donc. très rarement employée.
Pour éviter le changement de l'organe d'équilibrage en cas d'erreur de calcul, il existe des organes d'équilibrage réglables connus sous le nom par exemple de raccords de réglage ou de robinets d'équilibrage. Ces organes permettent de régler le débit dans un circuit et par conséquent de l'équilibrer à partir de la connaissance préalable du couple débit/perte de charge à créer. Ceci implique un calcul hydraulique complet de tout le circuit de chauffage. Ces organes d'équilibrage réglables permettent de corriger facilement le réglage en cas d'erreur.
Ces dispositifs d'équilibrage sont peu coûteux et très largement utilisés par les installateurs. Toutefois, ils sont rarement réglés convenablement du fait notamment de l'insuffisance ou de l'absence de calcul. L'installation ainsi équipée d'organes mal réglés présente donc un déséquilibre hydraulique.
On connaît également des organes d'équilibrage réglables munis d'un dispositif de mesure de débit. Généralement, ces organes d'équilibrage sont équipés d'une prise de pression destinée à une mesure de pression différentielle. Cette mesure permet de déterminer le débit de fluide à travers l'organe d'équilibrage. Avec l'aide d'un manomètre différentiel électronique à microprocesseur, on peut facilement et rapidement procéder aux mesures de pression différentielle et de débit.
Ce type d'organe d'équilibrage présente pour l'installateur un avantage très appréciable. On peut déterminer le réglage de l'organe d'équilibrage par calcul comme pour les organes d'équilibrage réglables décrits ci-dessus mais le réglage peut aussi être directement réalisé in situ à partir de la seule connaissance du débit souhaité.
En fait, il ne suffit pas, dans la majorité des cas, de régler successivement chacun des organes d'équilibrage pour obtenir des débits souhaités. En effet, les réseaux de distribution sont souvent le siège d'interférences hydrauliques. Ce phénomène oblige à effectuer plusieurs réglages sur chacun des organes d'équilibrage en utilisant par exemple une méthode par approximations successives ou bien à mettre en œuvre une procédure particulière d'équilibrage dont le bon déroulement exige toujours la mise au point d'un plan de travail préalable et de la rigueur dans l'exécution.
Ces organes d'équilibrage réglables avec dispositif de mesure de débit permettent donc de réaliser un bon équilibrage de l'installation lorsque la procédure d'équilibrage est réalisée rigoureusement. Cette méthode est assez complexe à mettre en œuvre et les installateurs souhaiteraient disposer d'une méthode nettement plus simple.
Enfin, il existe également des régulateurs de débit. Un tel régulateur, installé en tête d'un circuit dérivé, maintient le débit constant quelles que soient les fluctuations de pression engendrées dans le circuit principal par l'action des régulations terminales des émetteurs desservis par les autres circuits dérivés. On parvient ainsi à éliminer les interférences de fonctionnement provoquées par les autres circuits dérivés de la même distribution.
L'utilisation de ces régulateurs de débit comme moyens d'équilibrage présente cependant un inconvénient majeur. Si les régulations des émetteurs desservis par le circuit équipé d'un régulateur de débit viennent à se fermer plus ou moins partiellement en entraînant nécessairement une diminution de débit, le régulateur va tenter, en s'ouvrant de s'opposer à cette diminution. Le régulateur fonctionne donc de façon antagoniste vis-à-vis des perturbations hydrauliques en aval du régulateur. L'usage de ces régulateurs de débit est donc incompatible avec, par exemple, celui des robinets thermostatiques largement utilisé aujourd'hui.
En fait, ce type de matériel n'a pas de rapport direct avec l'équilibrage hydraulique des installations tel qu'il a été défini plus haut. L'utilisation d'un tel régulateur de débit peut être considérée comme une solution palliative à l'insuffisance de calcul en remplaçant un organe d'équilibrage statique relativement simple par un appareil régulateur comportant des pièces mobiles uniquement dans le but d'éviter l'opération de réglage initiale selon l'une des procédures mentionnées plus haut. L'utilisation de ces régulateurs de débit est limitée car, d'une part son champ d'application est restreint du fait de l'incompatibilité avec les robinets thermostatiques et, d'autre part, à cause d'un coût d'investissement plus élevé que celui des solutions traditionnelles.
Les figures 1 et 2 représentent chacune un circuit dérivé d'une installation de chauffage muni d'organes d'équilibrage. Sur ces deux figures, on a des radiateurs 2 alimentés en fluide caloporteur par des conduites 4. La figure 1 montre des radiateurs 2 munis d'une robinetterie traditionnelle tandis que sur la figure 2, les radiateurs 2 sont munis d'une robinetterie intégrée. Sur les figures 1 et 2, on a à chaque fois une conduite d'alimentation principale 6 et une conduite principale de retour 8. Le circuit dérivé est connecté au niveau d'une dérivation 10 à la conduite principale d'alimentation 6 et au niveau d'une dérivation 12 à la conduite principale de retour 8. En amont de la dérivation 10 permettant l'alimentation du circuit hydraulique dérivé, se trouve un robinet d'équilibrage 14. En aval de cette dérivation 10, est disposée généralement une vanne d'isolement 16 qui ne joue pas de rôle particulier dans l'équilibrage du circuit. Au pied de chaque circuit dérivé se trouve un autre robinet d'équilibrage 21 . Ce dernier est réglable et permet d'ajuster la perte de charge du circuit dérivé.
Sur la figure 1 , chaque radiateur 2 est muni en amont de son alimentation d'un robinet thermostatique 18 et en amont d'un raccord de réglage 20. Le robinet thermostatique 18 permet d'assurer la fonction de régulation thermostatique de la température du local dans lequel se trouve le radiateur 2 tandis que le raccord de réglage 20 permet d'assurer l'équilibrage hydraulique.
Sur la figure 2, dans le cas de radiateurs 2 à robinetterie intégrée, un module hydraulique 22 permet l'alimentation d'un radiateur 2 et chaque radiateur 2 est muni d'un robinet thermostatique 24. Généralement, le boîtier du robinet thermostatique 24 abrite également un raccord de réglage. On a donc là un module hydraulique 22 qui permet l'alimentation en fluide caloporteur du radiateur 2, un robinet thermostatique assurant la régulation thermostatique et un raccord de réglage (non référencé) accolé au robinet thermostatique pour assurer l'équilibrage hydraulique. Pour réaliser l'équilibrage hydraulique de ces circuits (figures 1 et 2), on rencontre les problèmes évoqués ci-dessus.
Le document EP-0 677 708 décrit dans le principe une installation de chauffage à eau chaude comportant plusieurs radiateurs reliés hydrauliquement entre eux en au moins une ligne. Ces radiateurs présentent chaque fois une soupape pour commander le débit de fluide traversant le radiateur. Afin de garantir des conditions de circulation d'écoulement favorables, les soupapes associées aux radiateurs sont constituées par des soupapes de réglage à pression différentielle équipées de préférence avec un dispositif de réglage de la valeur de consigne. Aucun mode de réalisation concret d'un tel dispositif n'est révélé par ce document.
La présente invention a alors pour but de fournir un dispositif d'équilibrage automatique afin de résoudre les problèmes d'équilibrage rencontrés actuellement avec les organes d'équilibrage existants.
À cet effet, le dispositif qu'elle propose est un dispositif d'équilibrage hydraulique destiné à une installation de chauffage ou de climatisation ou similaire comportant un premier orifice calibré ou réglable, ainsi qu'un second orifice situé en aval du premier orifice, dans lequel l'ouverture du second orifice est réglée par un clapet dont la position est commandée par des moyens permettant le déplacement du clapet en fonction de la différence de pression existant entre l'amont et l'aval du premier orifice.
Selon l'invention, ce dispositif est monté dans deux corps distincts, reliés l'un à l'autre, un premier corps correspondant au premier orifice et un second corps correspondant au second orifice.
Dans une première forme de réalisation, les moyens permettant le déplacement du clapet en fonction de la différence de pression au niveau du premier orifice comportent une membrane séparant un logement en deux chambres, une chambre étant en liaison avec l'amont du premier orifice et l'autre chambre étant en liaison avec l'aval de ce premier orifice. Dans ce cas, un ressort de compensation agissant sur la membrane est avantageusement prévu.
Le dispositif d'équilibrage selon l'invention comporte de préférence également des moyens permettant de réaliser un déplacement en fonction de la température du local dans lequel se trouve le dispositif, ces moyens agissant sur l'ouverture et la fermeture soit du premier, soit du second orifice.
Les moyens permettant de réaliser un déplacement en fonction de la température du local dans lequel se trouve le dispositif comportent avantageusement une tête thermostatique, du type de celle existant dans un robinet thermostatique.
Dans une forme d'exécution avantageuse, les moyens permettant de réaliser un déplacement en fonction de la température du local dans lequel se trouve le dispositif agissent sur un second clapet disposé au niveau du premier orifice. .
Une forme de réalisation préférée prévoit que le premier corps comporte le premier orifice, un clapet commandant l'ouverture et la fermeture de cet orifice ainsi qu'une tête thermostatique agissant sur le clapet, et que le second corps comporte une membrane tarée éventuellement par un ressort et solidaire d'un clapet agissant sur le second orifice réalisé à l'intérieur de ce second corps.
Dans cette forme de réalisation préférée, une face de la membrane est avantageusement reliée au premier corps par l'intermédiaire d'une canne ou similaire et l'autre face de la membrane est avantageusement reliée au premier corps par un radiateur.
Dans le cas d'un circuit de chauffage avec une distribution centralisée, une face de la membrane est par exemple reliée au premier corps par l'intermédiaire d'une canalisation ou similaire et l'autre face de la membrane est par exemple reliée au premier corps par un radiateur et une canalisation.
La présente invention concerne également un module hydraulique destiné à alimenter en fluide caloporteur un émetteur de chaleur, notamment un radiateur, et à collecter le fluide sortant de l'émetteur de chaleur, caractérisé en ce qu'il comporte un des corps d'un dispositif d'équilibrage tel que décrit ci-dessus. Un tel module est plus spécialement destiné à un radiateur dont la robinetterie est intégrée. Ce module reçoit les conduites d'alimentation et de retour de fluide caloporteur, et par l'intermédiaire de conduites souples formant un dispositif généralement appelé harnais, envoie le fluide caloporteur vers l'entrée du radiateur et collecte le fluide caloporteur sortant de celui-ci.
Dans un module hydraulique selon l'invention, le dispositif d'équilibrage peut se trouver en amont ou bien en aval de l'émetteur de chaleur.
L'invention concerne également un radiateur caractérisé en ce qu'il est équipé d'un dispositif d'équilibrage selon l'invention ou d'un module hydraulique tel que décrit ci-dessus.
Dans un tel radiateur, le dispositif d'équilibrage automatique dont il est équipé se trouve hydrauliquement soit en amont, soit en aval du radiateur.
De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé, représentant à titre d'exemples non limitatif plusieurs formes de réalisation d'un dispositif d'équilibrage hydraulique automatique selon l'invention.
Les figures 1 et 2 montrent des circuits dérivés d'une installation de chauffage équipée d'organes d'équilibrage de l'art antérieur, Figure 3 représente deux circuits dérivés munis d'organes d'équilibrage selon l'invention,
Figure 4 montre un radiateur équipé d'un module hydraulique indépendant et d'un dispositif d'équilibrage selon une première forme de réalisation, Figure 5 montre un radiateur à module hydraulique intégré muni du dispositif d'équilibrage de la figure 4,
Figure 6 montre à échelle agrandie et en coupe un distributeur pouvant être utilisé pour un radiateur tel que représenté à la figure 4,
Figure 7 montre à échelle agrandie et en coupe un module pouvant être utilisé pour un radiateur tel que représenté à la figure 5,
Figure 8 montre un circuit de chauffage avec une distribution centralisée équipée de dispositifs d'équilibrage selon l'invention, et
Figure 9 montre une partie d'un circuit de chauffage individuel centralisé équipée d'un dispositif d'équilibrage selon l'invention. Les figures 1 et 2 ont déjà été décrites au préambule de la présente demande de brevet. La figure 3 montre deux circuits dérivés d'un circuit de chauffage. Comme pour les circuits dérivés des figures 1 et 2, on a une conduite d'alimentation principale 6 et une conduite principale de retour 8. Chaque circuit dérivé comporte également deux radiateurs 2 montés en parallèle. Il s'agit à chaque fois de radiateurs à robinetterie intégrée. Toutefois, l'invention peut également s'appliquer à des radiateurs présentant une robinetterie traditionnelle. Ces radiateurs 2 sont alimentés en fluide caloporteur par des conduites 4. Un module hydraulique 26 permet l'alimentation d'un radiateur 2 en fluide caloporteur. Il intègre un dispositif d'équilibrage hydraulique selon l'invention. Chaque circuit dérivé comporte en outre en tête et en pied à chaque fois une vanne d'isolement 16. Ainsi, il est possible d'isoler totalement hydrauliquement un circuit dérivé du reste du circuit de chauffage. Ceci est parfois nécessaire lors d'une intervention sur par exemple un radiateur. La figure 4 montre en coupe et schématiquement une première forme de réalisation d'un organe d'équilibrage hydraulique selon l'invention. Ce dernier présente une entrée de fluide 30 correspondant à une conduite d'alimentation 84 et une sortie de fluide 32 correspondant à une conduite de retour 86. Entre l'entrée 30 et la sortie 32, le dispositif présente un premier orifice réglable 34 et un second orifice 36 dont l'ouverture et la fermeture sont réglées par un clapet 38.
Le clapet 38 présente une tête 40 et une tige 42. La tête 40 est destinée à venir ouvrir et fermer le second orifice 36. Sa forme est adaptée à la forme d'un siège réalisé au niveau du second orifice 36. La tige de clapet 42 s'étend au travers d'une chambre 44 réalisée dans un premier corps 88 du dispositif d'équilibrage et fermée par une membrane 46.
Le corps 88 contient le siège de régulation de débit 36, le clapet 38 correspondant, la membrane 46 et un ressort de compensation 56. Une face de la membrane, celle opposée à la chambre 44, est soumise à la pression de la conduite d'alimentation 84. Le siège de régulation de débit 36 est quant à lui ménagé entre le retour de fluide en provenance du radiateur 2 et la conduite de retour 86.
Au niveau du premier orifice 34, lorsque le fluide caloporteur traverse le dispositif d'équilibrage hydraulique selon l'invention, il se produit une perte de charge qui se traduit par une chute de pression. Ainsi, avant l'orifice 34 règne une pression de fluide P1 tandis qu'après ce premier orifice 34 règne une pression P2. On a l'inégalité P1 > P2. Une face de la membrane 46 est soumise à la pression P1. Sur la figure 4, c'est la face de droite de la membrane 46 qui est soumise à la pression P1. Cette face de droite est la face opposée à la tête de clapet 40. L'autre face de la membrane 46 est soumise à la pression P2. La chambre 44 est en communication avec la zone se trouvant en aval de l'orifice réglage 34 c'est-à-dire l'intérieur du radiateur 2, par un passage 54 prévu pour la tige de clapet 42. La membrane 46 est donc soumise d'un côté à la pression P1 et d'un autre côté à la pression P2. Pour éviter que la membrane 46 soit toujours déformée vers le côté où règne la pression la plus faible, le ressort de compensation 56 est prévu du côté où règne cette plus faible pression. Ce ressort 56 entoure la tige de clapet 42. Il prend appui d'une part sur la membrane 46 et d'autre part sur le corps 88 au niveau du passage 54. Ainsi, la membrane 46 se trouve dans une position médiane pour une différence de pression P1 -P2 donnée et sa position varie lorsque la différence de pression P1 -P2 varie.
En aval du second orifice 36, règne une pression P3, elle-même inférieure à la pression P2, compte tenu de la chute de pression (perte de charge) occasionnée par le second orifice 36 et le clapet 38 associé.
Les pertes de charge créées par le radiateur 2 et la canne 92 sont petites, voire négligeables, par rapport à la perte de charge existant entre l'amont et l'aval du premier orifice 34.
Un second clapet 62, associé au premier orifice 34, commande l'ouverture de celui-ci. Ce clapet 62 est commandé par une tête thermostatique 48. La tête thermostatique 48, le clapet 62 et le premier orifice 34 sont montés dans un second corps 90 relié au corps 88 par une canne 92, qui prolonge la conduite d'alimentation 84. Le clapet 62 contrôle le passage de fluide sortant de cette canne pour entrer dans le radiateur 2. Le fonctionnement du dispositif est le suivant. On suppose que du fluide caloporteur est amené vers l'entrée 30 par, par exemple, une pompe non représentée.
Si la température dans le local ne varie pas et que la consigne donnée à la tête thermostatique 48 n'est pas modifiée, le dispositif selon l'invention fonctionne comme un régulateur de débit. En effet, si la pression P1 augmente, le débit à travers le dispositif aura tendance à augmenter. Toutefois, cette pression P1 est transmise à la partie droite de la membrane 46. Cette membrane a alors tendance, sous l'effet d'une pression P1 plus importante, à se déplacer vers la gauche (en référence aux figures 4 et 5). Ce mouvement de la membrane tend à fermer le second orifice 36 par l'intermédiaire du clapet 38. De ce fait, le débit à travers le dispositif selon l'invention est diminué. L'augmentation de débit créée par l'augmentation de la pression P1 est donc contrée par la diminution de débit provoquée par la fermeture du clapet 38.
Maintenant, dans le cas où les pressions restent sensiblement constantes et que la température dans le local ou la consigne de température varie, la tête thermostatique 48 va agir sur le clapet 62. Ceci va alors modifier l'ouverture au niveau du premier orifice 34. Lorsque la température augmente, le clapet 62 a tendance à fermer le premier orifice 34 causant ainsi une baisse du débit de fluide caloporteur. Au contraire, lorsque la température diminue, la tête thermostatique agit sur le clapet 62 dans le sens d'une ouverture de l'orifice 34. Ainsi, le débit de fluide caloporteur à travers le dispositif d'équilibrage selon l'invention augmente. La plus grande quantité de fluide caloporteur traversant alors le radiateur 2 permet de réchauffer le local pour revenir à la température de consigne réglée dans la tête thermostatique 48.
Lorsque la température varie, ou bien lorsque la consigne de température varie, l'action du second clapet 62 modifie la chute de pression au niveau de l'orifice 34, entraînant de ce fait une action sur le premier clapet 38. Ainsi, à température et à consigne de température constantes, si P1 augmente, le débit aura tendance à augmenter, mais la variation de P1 agit aussi sur la membrane 46 et le clapet 38 dans le sens de la fermeture de celui-ci. Le débit est ainsi régulé.
À pression constante mais à température ou consigne de température variable, la tête thermostatique 48 agit sur le second clapet 62. Si la température augmente, le clapet 62 s'ouvre, la pression P1 reste constante tandis que P2 augmente. Le premier clapet 38 s'ouvre donc aussi, permettant un débit plus important. Au contraire, si la température diminue, le clapet 62 se ferme, la pression P1 reste constante, la pression P2 diminue et le clapet 38 se ferme également. Le débit à travers le dispositif est diminué.
On pourrait également faire circuler le fluide de la gauche vers la droite sur les figures 4 et 5, contrairement au sens des flèches de ces figures. Il suffirait alors de placer le ressort de compensation 56 de l'autre côté de la membrane 46 par rapport à la représentation des figures 4 et 5, de telle sorte que ce ressort 56 se trouve du côté de la membrane exposé à la pression la moins importante. Le fonctionnement resterait alors identique. Il est alors préférable dans ce cas de parler de siège thermostatique 34 pour le premier orifice et de siège de régulation de débit 36 pour le second orifice. Sur les figures 4 et 5, le dispositif d'équilibrage est identique, mais on a dans un cas un corps 88 placé dans un module hydraulique 26 indépendant du radiateur 2 (figure 4) et dans l'autre cas, un corps 88 placé dans un module 26 intégré au radiateur 2 (figure 5).
La figure 6 montre une autre forme de réalisation d'un corps 88 destiné.à équiper un radiateur, tout en étant indépendant de ce radiateur.
Le corps 88 présente ici une forme sensiblement triangulaire. Au cœur de ce triangle, est placée la membrane 46 et le clapet 38 qui lui est associé. Ce clapet est représenté ici en position fermée.
Le corps 88 présente une première entrée 102 qui correspond à l'entrée de fluide 30 de la figure 4, une première sortie de fluide 104 qui correspond à la sortie vers la canne 92, une seconde entrée 106 qui correspond au retour du radiateur 2 vers le corps 88 et une deuxième sortie 108 qui correspond à la sortie 32. Un passage 1 10 est ménagé pour rejoindre directement l'entrée 102 et la sortie 104. Une face de la membrane 46 est orientée vers ce passage 1 10. Le bord périphérique de la membrane 46 repose au niveau d'un épaulement 1 12. Ce bord est maintenu par une bague 1 14 qui elle-même est maintenue dans le corps par un bouchon 1 16. Une ouverture a été réalisée dans le corps 88 face à la membrane 46 pour permettre la mise en place du clapet 38, de la membrane 46 et le bouchon 1 16 vient fermer cette ouverture. A ce bouchon 1 16 est associé un disque d'appui 1 18 dans lequel sont ménagés des orifices 120 de telle sorte que la face de la membrane 46 orientée vers le passage 1 10 soit soumise à la pression du fluide passant dans ce passage 1 10. Le clapet 38 est placé dans un logement 122 dans lequel est également disposé une pièce de guidage 124 pour le clapet 38. Ce dernier est par exemple collé à la membrane 46. Il présente une forme tubulaire et une section longitudinale de ce clapet présente une forme en T. La base du T est orientée vers la seconde entrée 106. Ainsi, il règne à l'intérieur du clapet 38 la pression P2 qui règne également dans le radiateur 2. De manière à ce que cette pression P2 soit également exercée sur l'autre face de la membrane 46, c'est-à-dire la face opposée au passage 1 10, la partie du clapet se trouvant du côté de la membrane 46 présente des ouvertures mettant en communication l'intérieur du clapet 38 avec l'extérieur. Le passage de la seconde entrée 106 vers la seconde sortie 108 est commandé par le clapet 38.
La figure 7 montre une forme de réalisation d'un module hydraulique correspondant au module représenté sur la figure 5. Ici, le corps 88 présente une forme générale en H. La barre centrale du H loge la membrane 46 et le clapet 38. On retrouve comme pour la forme de réalisation de la figure 6 une première entrée 102, une première sortie 104, une seconde entrée 106 et une seconde sortie 108. Le clapet 38 est également un clapet tubulaire muni du côté de la membrane 46 d'ouvertures 126. Il est également guidé dans une pièce de guidage 124. On retrouve ici sensiblement les mêmes caractéristiques que celles expliquées en référence à la figure 6 avec une forme globale du corps 88 différente.
L'originalité réside ici dans le fait que le corps est réalisé en deux parties pouvant pivoter l'une par rapport à l'autre. Une première partie est référencée 88 tandis que l'autre partie porte la référence 89. La partie 89 porte la première entrée 102 et la seconde sortie 108 et est raccordée au réseau de chauffage central tandis que la première partie 88 est reliée au niveau de la première sortie 104 et de la seconde entrée 106 au radiateur 2. La pièce 89 présente une partie tubulaire sensiblement horizontale de laquelle partent deux pattes tubulaires dans lesquelles sont réalisées la première entrée 102 et la seconde sortie 108. La partie tubulaire sensiblement horizontale forme l'axe de pivotement du corps 88 sur la seconde pièce 89. Pour permettre le montage des deux pièces 88 et 89, le corps 88 est réalisé en deux parties. La jonction entre ces deux parties se fait au niveau de la membrane 46. Ainsi, cette membrane est prise en sandwich entre les deux parties du corps 88. Une bride de fixation et des vis sont prévues pour permettre la fixation de ces deux parties du corps 88. Ces brides et ces vis ne sont pas représentées au dessin. La membrane 46 assure l'étanchéité entre les deux pièces constitutives du corps 88. Des joints toriques 128 sont prévus pour l'étanchéité entre le second corps 89 et le corps 88.
La réalisation en plusieurs pièces du module 26 présente l'avantage de pouvoir s'adapter à quasiment toutes les situations de montage. Quelles que soient les orientations relatives des tuyaux d'arrivée d'eau et des tuyaux de branchement du radiateur, le module 26 pourra s'adapter à la situation. La figure 8 montre une variante de réalisation pour un dispositif selon l'invention. Tandis que la forme de réalisation des figures 4 et 5 est adaptée à un circuit de chauffage dans lequel la distribution est réalisée par deux tubes (distribution bitube), les radiateurs étant montés en parallèle entre ces deux tubes, ou dans lequel la distribution est réalisée par un tube (distribution- monotube), les radiateurs étant alors montés en série sur le tube, la forme de réalisation de la figure 8 est adaptée à une distribution centralisée ou en pieuvre.
La figure 8 est une vue schématique montrant un circuit comportant quatre radiateurs 2. La distribution de fluide caloporteur est assurée à partir de deux collecteurs. Un premier collecteur 94 reçoit le fluide caloporteur d'une chaudière ou d'une autre source et le distribue vers les radiateurs 2. Le second collecteur 96 rassemble le fluide caloporteur après que ce dernier a traversé les radiateurs 2. Quatre canalisations 98 partent du premier collecteur 94 et relient chacune celui-ci à un radiateur 2, tandis que quatre autres canalisations 100 relient chacune un radiateur 2 au second collecteur 96.
Comme on le voit sur la figure 8, à proximité des collecteurs 94 et 96, se trouvent des modules 88'. Ceux-ci sont identiques aux corps 88 des figures 4 et 5. De ce fait, le clapet, la membrane et le ressort contenus dans les modules 88' n'ont pas été représentés. On retrouve en effet dans les modules 88' exactement la même configuration que dans les corps 88. Au niveau de chaque radiateur 2, se trouve un boîtier 90' identique aux corps 90 des figures 4 et 5. Pour les mêmes raisons, il n'a pas été représenté l'intérieur des boîtiers 90'. Les pertes de charges entre les modules 88' et les corps 90' sont plus importantes qu'entre les corps 88 et 90. Toutefois, cette perte de charge étant sensiblement constante, elle n'empêche pas la régulation de débit ni la régulation thermique. On constate que si un corps 88, calibré pour réguler un débit donné dans une configuration correspondant à la figure 4 ou 5 est utilisé dans un montage selon la figure 8, le débit régulé sera alors moindre compte tenu de la perte de charge. Un module 26 tel que représenté sur les figures 6 et 7 peut également s'adapter à un circuit de chauffage individuel centralisé. Dans un tel circuit de chauffage, on a une boucle primaire dont deux tronçons de tubes 150 sont représentés sur la figure 9. Sur cette boucle primaire est raccordée une boucle secondaire 152 qui comporte dans le présent exemple deux radiateurs 2 alimentés en parallèle. Le module 26 est monté entre la boucle secondaire et la boucle primaire. La boucle secondaire 152 présente, en aval du module hydraulique 26, une vanne de commande 16' qui permet l'alimentation ou la coupure de l'alimentation de la boucle secondaire 152. Une tête thermostatique 48 est prévue au niveau de cette vanne 16' . Le module hydraulique 26 associé à la vanne 16' et à la tête thermostatique 48 réalise ainsi un dispositif d'équilibrage selon l'invention.
Lorsque dans une installation de chauffage chaque émetteur de chaleur de l'installation est muni d'un dispositif d'équilibrage hydraulique selon l'invention, l'équilibrage hydraulique et la régulation thermostatique sont automatiquement assurés. En ce qui concerne l'équilibrage hydraulique, les dispositifs selon l'invention vont maintenir le débit choisi aux valeurs de consigne données. Plus précisément chaque dispositif selon l'invention va maintenir le débit entre des valeurs limites hautes et basses définies par sa bande proportionnelle.
Une fois l'installation réalisée, il suffit de régler la consigne de température intérieure pour que le dispositif selon l'invention soit opérationnel. Ainsi, ce dispositif est destiné à se substituer au robinet thermostatique traditionnel en lui ajoutant une fonction supplémentaire, l'équilibrage hydraulique.
Pour le dimensionnement des radiateurs, avec des organes d'équilibrage de l'art antérieur, on impose une chute de température du fluide caloporteur entre l'entrée et la sortie de l'émetteur de chaleur. Avec cette chute de température, on calcule le débit nécessaire de fluide caloporteur dans l'émetteur de chaleur.
Avec un dispositif d'équilibrage selon l'invention, le dimensionnement d'un radiateur se fait différemment. En effet, on impose le débit circulant dans l'émetteur de chaleur et on a une chute de température variable entre l'entrée et la sortie du radiateur. Bien entendu, on prévoit d'avoir des chutes de température qui se trouvent dans une gamme acceptable, comme par exemple un intervalle allant de 5 à 20 degrés.
Le dispositif selon l'invention rend compatible les actions de régulation du débit et de la température, ce qui n'est pas le cas avec les matériels existants. En effet, au préambule de la présente demande de brevet, il est expliqué pourquoi, dans l'art antérieur, les régulateurs de débit sont incompatibles avec une installation de chauffage munie de robinets thermostatiques. En combinant ces deux éléments, régulateur de débit et robinet thermostatique, d'une manière originale, l'invention permet de réaliser à la fois un équilibrage hydraulique de manière automatique et une régulation thermostatique.
Comme il va de soi, l'invention ne se limite pas aux formes de réalisation représentées schématiquement au dessin ; elle en embrasse au contraire toutes les variantes dans le cadre des revendications ci-après.
Ainsi par exemple, le déplacement du clapet ou des clapets est commandé par une membrane et/ou une tête thermostatique. Il est tout à fait envisageable d'agir sur le ou les clapet(s) à l'aide d'un moteur électrique commandé électroniquement. Il est ainsi envisageable de mesurer la différence de pression régnant de part et d'autre du premier orifice du dispositif selon l'invention et d'avoir une sonde de température pour mesurer la température du local. Ces mesures sont alors transformées en signaux électriques et, après traitement par un boîtier électronique, un signal de commande est envoyé à un moteur électrique commandant la position du clapet correspondant pour déterminer l'ouverture de celui ci.
Un dispositif d'équilibrage selon l'invention peut être intégré à un module hydraulique se trouvant lui-même intégré dans un radiateur. Il peut également trouver sa place sur un radiateur dans lequel la robinetterie n'est pas intégrée. Ce dispositif pourrait par exemple être monté à la place d'un robinet thermostatique sur un radiateur traditionnel.
Le schéma de la figure 3 montrant une partie d'un circuit de chauffage est donné à titre tout à fait indicatif. Toute autre configuration de circuit de chauffage peut également être équipée de dispositifs d'équilibrage hydraulique selon l'invention.
On pourrait également avoir un dispositif ne mettant pas en œuvre de robinet thermostatique. Il suffit d'avoir un orifice créant une perte de charge. Il peut s'agir d'un orifice prédéterminé, un orifice réglable, un robinet par exemple, ou bien un orifice commandé électriquement en fonctions de divers paramètres.
Si on a une tête thermostatique, ou d'autres moyens permettant de réaliser un déplacement en fonction de la température, ces moyens peuvent être montés en série avec les moyens agissant en fonction de la différence de pression. Les moyens permettant de réaliser un déplacement en fonction de la température pourraient alors par exemple agir sur la membrane décrite dans les exemples de réalisation décrits ci-dessus.

Claims

REVENDICATIONS
1. Dispositif d'équilibrage hydraulique destiné à une installation de chauffage, de climatisation ou similaire, comportant un premier orifice (34) calibré ou réglable, ainsi qu'un second orifice (36) situé en aval du premier orifice (34), dans lequel l'ouverture du second orifice (36) est réglée par un clapet (38) dont la position est commandée par des moyens (46,56) permettant le déplacement du clapet en fonction de la différence de pression (P2-P1 ) existant entre l'amont et l'aval du premier orifice (34), caractérisé en ce qu'il est monté dans deux corps (88,90 ;
88', 90') distincts, reliés l'un à l'autre, un premier corps (90,90') correspondant au premier orifice (34) et un second corps (88,88') correspondant au second orifice (36).
2. Dispositif d'équilibrage selon la revendication 1 , caractérisé en ce que les moyens permettant le déplacement du clapet en fonction de la différence de pression au niveau du premier orifice (34) comportent une membrane (46) séparant un logement (44) en deux chambres, une chambre étant en liaison avec l'amont du premier orifice (34) et l'autre chambre étant en liaison avec l'aval de ce premier orifice (34).
3. Dispositif d'équilibrage selon la revendication 2, caractérisé en ce qu'un ressort de compensation (56) agit sur la membrane (46).
4. Dispositif d'équilibrage selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte également des moyens permettant de réaliser un déplacement en fonction de la température du local dans lequel se trouve le dispositif, ces moyens agissant sur l'ouverture et la fermeture soit du premier, soit du second orifice.
5. Dispositif d'équilibrage selon la revendication 4, caractérisé en ce que les moyens permettant de réaliser un déplacement en fonction de la température comportent une tête thermostatique (48), du type de celle existant dans un robinet thermostatique.
6. Dispositif d'équilibrage selon l'une des revendications 4 ou 5, caractérisé en ce que les moyens (48) permettant de réaliser un déplacement en fonction de la température du local dans lequel se trouve le dispositif agissent sur un second clapet (62) disposé au niveau du premier orifice (34).
7. Dispositif selon la revendication 1 , caractérisé en ce que le premier corps (90,90') comporte le premier orifice (34), un clapet (62) commandant l'ouverture et la fermeture de cet orifice ainsi qu'une tête thermostatique (48) agissant sur le clapet (62), et en ce que le second corps (88,88') comporte une membrane (46) tarée éventuellement par un ressort (56) et solidaire d'un clapet (38) agissant sur le second orifice (36) réalisé à l'intérieur de ce second corps (88,88').
8. Dispositif selon la revendication 7, caractérisé en ce qu'une face de la membrane (46) est reliée au premier corps (90) par l'intermédiaire d'une canne (92) ou similaire et en ce que l'autre face de la membrane (46) est reliée au premier corps (90) par un radiateur (2).
9. Dispositif selon la revendication 8, caractérisé en ce qu'une face de la membrane (46) est reliée au premier corps (90') par l'intermédiaire d'une canalisation (98) ou similaire et en ce que l'autre face de la membrane (46) est reliée au premier corps (90') par un radiateur (2) et une canalisation (100).
10. Module hydraulique (26) destiné à alimenter en fluide caloporteur un émetteur de chaleur, notamment un radiateur (2), et à collecter le fluide sortant de l'émetteur de chaleur, caractérisé en ce qu'il comporte un corps de dispositif d'équilibrage selon l'une des revendications 1 à 9.
11. Radiateur (2), caractérisé en ce qu'il est équipé d'un dispositif d'équilibrage selon l'une des revendications 1 à 9.
12. Radiateur (2), caractérisé en ce qu'il est équipé d'un module hydraulique (26) selon la revendication 10.
13. Radiateur (2) selon la revendication 12, caractérisé en ce que le module hydraulique est intégré au radiateur.
EP99956115A 1998-11-25 1999-11-22 Dispositif d'equilibrage hydraulique automatique Expired - Lifetime EP1133662B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9815007 1998-11-25
FR9815007A FR2786257B1 (fr) 1998-11-25 1998-11-25 Dispositif d'equilibrage hydraulique destine a une installation de chauffage
PCT/FR1999/002873 WO2000031475A1 (fr) 1998-11-25 1999-11-22 Dispositif d'equilibrage hydraulique automatique

Publications (2)

Publication Number Publication Date
EP1133662A1 true EP1133662A1 (fr) 2001-09-19
EP1133662B1 EP1133662B1 (fr) 2003-05-02

Family

ID=9533310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99956115A Expired - Lifetime EP1133662B1 (fr) 1998-11-25 1999-11-22 Dispositif d'equilibrage hydraulique automatique

Country Status (15)

Country Link
US (1) US6394361B1 (fr)
EP (1) EP1133662B1 (fr)
JP (1) JP2002530624A (fr)
KR (1) KR100729349B1 (fr)
CN (1) CN1161565C (fr)
AT (1) ATE229160T1 (fr)
AU (1) AU1279100A (fr)
BE (1) BE1012415A3 (fr)
CA (1) CA2352112C (fr)
DE (2) DE69904360T3 (fr)
FR (1) FR2786257B1 (fr)
GB (1) GB2344163B (fr)
NL (1) NL1013665C2 (fr)
PL (2) PL348726A1 (fr)
WO (1) WO2000031475A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK174076B1 (da) 2000-01-21 2002-05-21 Flowcon Int As Reguleringsindsats til anbringelse i ventiler og ventilenhed
DE10057416A1 (de) * 2000-11-20 2002-05-29 Albert Bauer Zentralheizung für zu beheizende Räume
DE10114157A1 (de) 2001-03-22 2002-09-26 Deutsche Telekom Ag Verfahren zur rechnergestützten Erzeugung von öffentlichen Schlüsseln zur Verschlüsselung von Nachrichten und Vorrichtung zur Durchführung des Verfahrens
US7028915B2 (en) * 2001-04-27 2006-04-18 Electro-Motive Diesel, Inc. Layover heating system for a locomotive
DE10121539B4 (de) * 2001-05-03 2007-03-22 Deutsche Telekom Ag Druckregler für Thermostatventile in Warmwasser-Heizungsanlagen
DE10210436A1 (de) * 2002-03-09 2003-10-02 Michael Licht Verfahren und Vorrichtung zur zerstörungsfreien spektroskopischen Bestimmung von Analytkonzentrationen
DE10256021B4 (de) * 2002-11-30 2010-02-04 Danfoss A/S Wärmetauscher-Ventilanordnung, insbesondere Heizkörper-Ventilanordnung
DE10256035B3 (de) * 2002-11-30 2004-09-09 Danfoss A/S Wärmetauscher-Ventilanordnung, insbesondere Heizkörper-Ventilanordnung
US7458520B2 (en) * 2005-04-19 2008-12-02 Masco Corporation Of Indiana Electronic proportioning valve
GB0603233D0 (en) * 2006-02-17 2006-03-29 Heat Energy And Associated Tec A method and apparatus for commissioning a central heating system
GB2452043C2 (en) * 2007-08-21 2023-07-26 Chalmor Ltd Thermostatic control device
FR2931226B1 (fr) * 2008-05-19 2013-08-16 Acome Soc Coop Production Procede et systeme de controle d'un circuit hydraulique a plusieurs boucles d'echange de chaleur
US8109289B2 (en) * 2008-12-16 2012-02-07 Honeywell International Inc. System and method for decentralized balancing of hydronic networks
US20130256423A1 (en) * 2011-11-18 2013-10-03 Richard G. Lord Heating System Including A Refrigerant Boiler
US9534795B2 (en) * 2012-10-05 2017-01-03 Schneider Electric Buildings, Llc Advanced valve actuator with remote location flow reset
BR112018008605B1 (pt) * 2015-11-04 2022-11-29 E.On Sverige Ab Conjunto de consumidores de energia térmica locais e método para controlar um permutador de calor de consumidor de energia térmica
EP3165831A1 (fr) * 2015-11-04 2017-05-10 E.ON Sverige AB Système de distribution d'énergie thermique de district
US10578318B2 (en) * 2016-09-01 2020-03-03 Computime Ltd. Single thermostat with multiple thermostatic radiator valve controllers
CN111561574A (zh) * 2020-05-19 2020-08-21 福建省海洋阀门科技有限公司 双调节温控阀门

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840177A (en) * 1973-08-13 1974-10-08 Fluidtech Corp Fluidically-controlled air-conditioning system
US4025041A (en) * 1973-11-01 1977-05-24 Robertshaw Controls Company Safety valve
US4089461A (en) * 1976-07-06 1978-05-16 Braukmann Armaturen A.G. Thermostatic radiator valve
DE2755464A1 (de) * 1977-12-13 1979-06-21 Daimler Benz Ag Thermostatisches regelventil
US4410133A (en) * 1981-02-16 1983-10-18 Toyota Jidosha Kabushiki Kaisha Two way fluid switchover valve with crossover protection
US4535931A (en) * 1983-09-14 1985-08-20 Kenneth W. Scott Energy conserving water heater control system
GB2184208A (en) * 1985-12-16 1987-06-17 Polyventions Fluid flow control valve
FR2651554B1 (fr) * 1989-09-07 1992-04-24 Bourgin Alain Dispositif a soupape(s) de securite, fusible, immerge, suppleant l'organe thermostat defaillant dans un moteur.
US5018665A (en) * 1990-02-13 1991-05-28 Hale Fire Pump Company Thermal relief valve
AT401571B (de) * 1994-04-12 1996-10-25 Landis & Gyr Tech Innovat Warmwasserheizung mit einer differenzdruckregelung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0031475A1 *

Also Published As

Publication number Publication date
EP1133662B1 (fr) 2003-05-02
DE69904360D1 (de) 2003-01-16
WO2000031475A1 (fr) 2000-06-02
CA2352112C (fr) 2007-10-09
CN1161565C (zh) 2004-08-11
DE19956819A1 (de) 2000-05-31
KR100729349B1 (ko) 2007-06-15
PL336735A1 (en) 2000-06-05
PL348726A1 (en) 2002-06-03
US6394361B1 (en) 2002-05-28
KR20010080552A (ko) 2001-08-22
FR2786257A1 (fr) 2000-05-26
DE69904360T3 (de) 2009-10-01
GB9927611D0 (en) 2000-01-19
PL192078B1 (pl) 2006-08-31
JP2002530624A (ja) 2002-09-17
NL1013665C2 (nl) 2000-05-30
CN1328630A (zh) 2001-12-26
GB2344163B (en) 2003-05-21
CA2352112A1 (fr) 2000-06-02
GB2344163A (en) 2000-05-31
FR2786257B1 (fr) 2001-01-12
ATE229160T1 (de) 2002-12-15
BE1012415A3 (fr) 2000-10-03
AU1279100A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
EP1133662B1 (fr) Dispositif d'equilibrage hydraulique automatique
EP0258129A1 (fr) Perfectionnements aux dispositifs mélangeurs thermostatiques, en particulier pour la distribution d'eau
FR3011619A1 (fr) Injecteur de carburant pour une turbomachine
FR2547396A1 (fr) Procede d'equilibrage d'une installation de chauffage central de type bitube et installation pour la mise en oeuvre de ce procede
EP1754005B1 (fr) Procede d'equilibrage des emetteurs d'une installation de chauffage
EP2655946A1 (fr) Dispositif de commande du débit d'un fluide de refroidissement
EP0063530A1 (fr) Procédé de réglage du débit du fluide circulant dans une installation de chauffage central, et matériel destiné à sa mise en oeuvre
FR2541434A1 (fr) Chauffe-eau instantane a gaz
FR2486194A1 (fr) Dispositif de raccordement pour tuyauteries de circulation de fluides et dispositif de commande de la circulation de fluides comportant un tel dispositif de raccordement
EP0615099B1 (fr) Réseau de distribution de fluide à dispositif de régulation
FR2667408A1 (fr) Procede et dispositif pour la regulation automatique du debit de fluide dans un reseau de distribution de fluide en fonction des variations de pression.
EP0024967B1 (fr) Installation de chauffage munie d'un robinet à actionnement manométrique
EP0924465B1 (fr) Générateur d'eau chaude à commande eau
FR2550605A1 (fr) Bloc de derivation pour circuit hydraulique, notamment de chauffage
BE634878A (fr)
FR2538083A1 (fr) Mecanisme de reglage de puissance pour chaudieres a gaz a bruleur fractionne
FR2675598A1 (fr) Dispositif de regulation du debit d'un fluide dans un reseau de distribution de fluide.
EP1321323B1 (fr) Régulateur automatique de débit de fluide d'un conduit aller d'un circuit de fluide
EP0370863A1 (fr) Perfectionnements aux dispositifs pour commander et régler l'alimentation en gaz du brûleur d'une chaudière ou analogue
FR3128008A1 (fr) Perfectionnement apporté à un dispositif et à un procédé associé pour économiser l’énergie calorifique et l’eau dans une installation sanitaire.
FR2667136A1 (fr) Module de chauffage et de production d'eau chaude sanitaire, et installation de chauffage collectif equipee de tels modules.
CH622607A5 (en) Combined central heating installation
FR2740867A1 (fr) Dispositif de raccordement d'un radiateur a une alimentation d'eau chaude en monotube
BE507643A (fr)
FR2555299A2 (fr) Ensemble de raccordement entre un generateur de chaleur principal et un generateur d'appoint ou de remplacement, parcourus par un meme fluide caloporteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20011130

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 229160

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69904360

Country of ref document: DE

Date of ref document: 20030116

PUAC Information related to the publication of a b1 document modified or deleted

Free format text: ORIGINAL CODE: 0009299EPPU

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: RECTIFICATION.

DB1 Publication of patent cancelled
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030314

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030502

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030502

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030502

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20021204

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4C

Free format text: THE DATE OF GRANT IS NOW THE 20030502 WHICH WILL BE PUBLISHED IN THE EUROPEAN PATENT BULLETIN 03/18.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030813

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1133662E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REF Corresponds to:

Ref document number: 69904360

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091120

Year of fee payment: 11

Ref country code: DE

Payment date: 20091116

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091124

Year of fee payment: 11

Ref country code: FR

Payment date: 20091126

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091221

Year of fee payment: 11

BERE Be: lapsed

Owner name: *COMAP

Effective date: 20101130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110601

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101122

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69904360

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 69904360

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101123

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101122