EP1133503A1 - Verfahren zur aufreinigung von metallocenen - Google Patents

Verfahren zur aufreinigung von metallocenen

Info

Publication number
EP1133503A1
EP1133503A1 EP99958064A EP99958064A EP1133503A1 EP 1133503 A1 EP1133503 A1 EP 1133503A1 EP 99958064 A EP99958064 A EP 99958064A EP 99958064 A EP99958064 A EP 99958064A EP 1133503 A1 EP1133503 A1 EP 1133503A1
Authority
EP
European Patent Office
Prior art keywords
indenyl
methyl
zirconium dichloride
fluorine
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99958064A
Other languages
English (en)
French (fr)
Inventor
Carsten Bingel
Patrik MÜLLER
Hans-Herbert Brintzinger
Hans-Robert-Hellmuth Damrau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999100585 external-priority patent/DE19900585A1/de
Application filed by Basell Polyolefine GmbH filed Critical Basell Polyolefine GmbH
Priority to EP03015009A priority Critical patent/EP1361226A3/de
Publication of EP1133503A1 publication Critical patent/EP1133503A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a process for the purification of metallocenes, wherein a poorly soluble metallocene halide is converted into a readily soluble and easily crystallizable metallocene by replacing at least one halide ligand with an alternative negatively charged ligand, which is then purified by crystallization.
  • Metallocenes can, optionally in combination with one or more co-catalysts, as a catalyst component for the
  • halogen-containing metallocenes are used as catalyst precursors, which can be converted, for example, by an aluminoxane into a polymerization-active cationic metallocene complex (EP-A-129368).
  • cyclopentadienyl metal compounds can be reacted with halides of transition metals such as titanium, zirconium and hafnium.
  • the metallocene dihalides formed generally the metallocene dichlorides, are, in the case of the technically interesting racemic ansa-bis-indenyl metallocenes,
  • the catalysts prepared with the metallocenes purified in this way often show inadequate activity or the proportion of undesirable low molecular weight polyolefins, so-called extra - Shares here are too large. If purified metallocenes are used as the catalyst component as a result of repeated recrystallization, it is possible to avoid the disadvantages just mentioned during the polymerization. However, because of the poor solubility of the technically relevant Ansa-bisindenyl-metallocene dichloride, large amounts of solvents are required. The simple recrystallization of the metallocene dichlorides thus represents an uneconomical process step.
  • the task was therefore to find an economical purification process in order to be able to provide metallocenes with the required quality.
  • the present invention thus relates to a process for the purification of compounds of the formula (Ia)
  • M is a metal of III., IV., V. or VI.
  • Subgroup of the periodic table of the elements in particular Ti, Zr or Hf, particularly preferably zirconium,
  • R 1 are identical or different and is a radical Si (R 12 ) 3 , in which R 12, identical or different, represents a hydrogen atom or a group containing C 1 -C 40 carbon, preferably C 1 -C 4 alkyl, C 1 -C 4 fluoroalkyl, C ⁇ -C ⁇ 0 alkoxy, C 6 -C 20 aryl, C 6 -C ⁇ 0 -Fluoraryl, C ⁇ -Cio-aryloxy, C 2 -C ⁇ 0 alkenyl, C 7 -C 40 arylalkyl, C 7 - C 40 alkylla or C 8 -C 4 o-arylalkenyl,
  • R 1 is a -C-C 30 - carbon-containing group, preferably -C-C 25 alkyl, such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C -C 5 alkenyl, C 3 -C 5 alkylalkenyl, C 6 -C 24 aryl, C 5 -C 4 heteroaryl, C 7 -C 3 o-arylalkyl, C 7 -C 3 n-alkylaryl, fluorine-containing C 1 -C 2 s-alkyl, fluorine-containing C 6 - C 24 aryl, fluorine-containing C 7 -C 3 o-arylalkyl, f fluorine-containing C _C 3 o-alkylaryl or -C -CC alkoxy,
  • radicals R 1 can be linked to one another in such a way that the radicals R 1 and the atoms of the cyclopentadienyl ring connecting them form a C 4 -C 4 ring system, which in turn can be substituted,
  • R 2 are the same or different and radical Si (R 12 ) 3 , in which R 12 is the same or different is a hydrogen atom or a group containing C C-C o-carbon, preferably C 20 -C 20 alkyl, Ci-Cio-fluoroalkyl, C ⁇ -C ⁇ 0 alkoxy, C 6 -C ⁇ aryl, C 6 -C ⁇ 0 -Fluoraryl, C 6 -C ⁇ 0 aryloxy, C 2 -C ⁇ 0 alkenyl, C 7 -C 40 arylalkyl, C 7 -C 40 -alkylaryl or C 8 -C 4 o-arylalkenyl, or R 2 is a C ⁇ -C 3 o - carbon-containing group, preferably C ⁇ -C 25 alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C 2 -C 25 alkenyl,
  • radicals R 2 can be bonded to one another in such a way that the radicals R 2 and the atoms of the cyclopentadienyl ring connecting them form a C 4 -C ring system, which in turn can be substituted,
  • X is a halogen atom, in particular chlorine,
  • n 1 to 4, preferably 2,
  • B denotes a bridging structural element between the two cyclopentadienyl rings
  • M 1 is a cation or cation fragment, in particular Li, Na, K, MgCl, MgBr, Mgl, or the ammonium cation corresponding to an amine,
  • R 3 is hydrogen or a C 1 -C 8 - carbon-containing group, preferably C 1 -C 25 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, tert-butyl, cyclohexyl or octyl, C -C 2 5-alkenyl, C 3 -C 5 alkylalkenyl, C ⁇ -C 24 aryl, C 5 -C 2 heteroaryl such as pyridyl, furyl or Quinolyl, C 7 -C 30 arylalkyl, C -C 30 alkylaryl, fluorine-containing C 1 -C 5 alkyl, f fluorine-containing C 6 -C 2 aryl, f fluorine-containing C 7 -C 3 o-arylalkyl or f fluorine-containing C 7 _C 0 is alkylaryl,
  • Y is an element of the 6th main group of the periodic table of the
  • a metallocene of the formula (Ia) is converted into a metallocene of the formula (I) and then recrystallized.
  • the compound of the formula (Ia) and (I) represents the compounds
  • M is a metal of III., IV., V. or VI.
  • Subgroup of the periodic table of the elements in particular Ti, Zr or Hf, particularly preferably zirconium,
  • R 1 are the same or different and is a radical Si (R 12 ) 3 , in which R 12 is identical or different to a hydrogen tom or a C 1 -C 4 o -carbon-containing group, preferably C 1 -C 2 -alkyl, Ci-Cio- fluoroalkyl, C ⁇ -C ⁇ 0 alkoxy, C 6 -C 2 o-aryl, C 6 -C ⁇ 0 -Fluoraryl, C ⁇ -Cio-aryloxy, C 2 -C ⁇ 0 alkenyl, C 7 -C 40 arylalkyl, C 7 -C 40 alkyl laryl or C 8 -C 4 o-arylalkenyl,
  • R 1 is a C ⁇ ⁇ C 3 o - carbon-containing group, preferably C ⁇ -C 25 alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C 2 -C 25 alkenyl, C 3 -C ⁇ 5 -Alkylalkenyl , C 6 -C 24 aryl, C 5 -C 4 heteroaryl, C 7 -C 30 arylalkyl, C -C 30 alkylaryl, fluorine-containing C ⁇ -C 25 alkyl, fluorine-containing C 6 -C 2 aryl f is fluorine-containing C 7 -C 30 arylalkyl, fluorine-containing C 7 _C 30 alkylaryl or C 1 -C 2 alkoxy,
  • R 1 can be connected to one another in such a way that the radicals R 1 and the atoms of the cyclopentadienyl ring which connect them form a C 4 -C 24 ring system which in turn can be substituted,
  • R 2 are identical or different and radical Si (R 12 ); wherein R 12, identical or different Wasserstof f atom or a C ⁇ -C o-4 CARBON f containing group, preferably C ⁇ -C 2 o-alkyl, Ci-Cio-fluoroalkyl, C ⁇ -C ⁇ 0 alkoxy, C 6 - C 14 aryl, C 6 -C 10 fluoroaryl, C 6 -C ⁇ 0 aryloxy, C 2 -C ⁇ 0 alkenyl, C 7 -C 40 arylalkyl, C 7 -C 40 alkylla ryl or Ca-C 4 o-arylalkenyl,
  • R 2 is a C 1 -C 3 - carbon-containing group, preferably C 1 -C 25 alkyl, such as methyl, ethyl, tert. Butyl, cyclohexyl or octyl, C 2 -C 25 alkenyl, C 3 -Ci 5 alkylalkenyl, C6-C 2 aryl,
  • radicals R 2 can be linked to one another in such a way that the radicals R 2 and the atoms of the cyclopentadienyl ring connecting them form a C 4 -C ring system, which in turn can be substituted,
  • R 3 is hydrogen or a C 1 -C 4 - carbon-containing group, preferably C 1 -C 5 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, tert-butyl, cyclohexyl or octyl, C 2 - C 25 alkenyl, C 3 -C 5 alkylalkenyl, C 6 -C 24 aryl, C 5 ⁇ C 4 heteroaryl such as pyridyl, furyl or quinolyl,
  • X is a halogen atom, in particular chlorine,
  • n 1 to 4, preferably 2,
  • B denotes a bridging structural element between the two cyclopentadienyl rings.
  • Examples of B are groups M 3 R 13 R 14 , in which M 3 is carbon, silicon, germanium or tin and R 13 and R 14 are identical or different to a C 1 -C 20 -hydrocarbon-containing group such as Ci-Cio-Al- kyl, C 6 -C 4 aryl or trimethylsilyl.
  • B is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ), C (CH 3 ) 2 , (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (CH 3 ) 2 Sn, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si, Si (CH 3 ) (SiR 20 R 1 R 22 ), (C 6 H 5 ) 2 Ge, (C 6 H 5 ) 2 Sn, (CH 2 ) 4 Si, CH 2 Si (CH 3 ) 2 , oC 6 H 4 or 2, 2 '- (C 6 H 4 ) 2 •
  • R 20 R 21 R 22 identically or differently, mean a C 2 -C 8 -hydrocarbon-containing group such as C 1 -C 8 alkyl or C 6 -C aryl.
  • B can also form a mono- or polycyclic ring system with one or more radicals R 1 and / or
  • metal ocogen halides of the formula (Ia) are reacted directly with a ligand exchange component in one reaction step to give metallocenes of the formula (I) which, owing to their good solubility, are crystallized in a high space-time yield in the required purity can be obtained.
  • a purification process is preferred in which a bridged metallocene of the formula (I) is formed from a bridged metallocene of the formula (Ia), in particular those bridged metallocenes in which k is 1 and so or one or both cyclopentadienyl rings are substituted are that they represent an indenyl ring.
  • the indenyl ring is preferably substituted, in particular in the 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 or 2, 4, 5, 6-position, with -C-C 2 o _ carbon-containing groups, such as Ci-Ci ⁇ -alkyl or C ⁇ -Ci ⁇ -aryl, where two or more substituents of the indeyl ring together can form a ring system.
  • a purification process is particularly preferred, a bridged metallocene of the formula (II) being formed from a bridged metallocene of the formula (Ha), wherein
  • M is Ti, Zr or Hf, particularly preferably zirconium,
  • R 3 is the same or different hydrogen or a C ⁇ -C 3 o - carbon-containing group, preferably C ⁇ -C ⁇ o-alkyl, such as methyl, ethyl, n-propyl, iso-propyl, tert-butyl, cyclohexyl or octyl, C 2 -C ⁇ 6 alkenyl, C 6 -C 2 _ aryl, C 5 -C 4 heteroaryl such as pyridyl, furyl or quinolyl, C 7 -C 30 arylalkyl, C 7 -C 30 alkylaryl, fluorine-containing Is C 6 -C 2 aryl, fluorine-containing C - C 3 o-arylalkyl or fluorine-containing C 7 _C 30 -alkyl aryl,
  • R 4 , R 6 are the same or different and are a hydrogen atom, a C 1 -C 2 - carbon-containing group, preferably C 1 -C 6 -alkyl, such as methyl, ethyl, n-butyl, cyclohexyl or octyl, C 2 -C 0 -alkenyl , C 3 -C 5 alkylalkenyl, C 6 -C 8 aryl, C 5 -C 8 heteroaryl such as pyridyl, furyl or quinolyl, C 7 -C 2 o-arylalkyl, C 7 -C 2 _-alkylaryl, fluorine-containing C 1 -C 2 alkyl, fluorine-containing C 6 -C 8 aryl, f fluorine-containing C 7 -C c .
  • R 5 , R 7 are identical or different and are a hydrogen atom, a C X -C 2 ⁇ carbon-containing group, preferably Ci-Ci ⁇ -alkyl, such as methyl, ethyl, n-butyl, cyclohexyl or octyl, C 2 -C ⁇ 0 - Alkenyl, C 3 -C 5 alkylalkenyl, C 6 -C 8 aryl, c 5 ⁇ C 8 heteroaryl such as pyridyl, furyl or quinolyl, C 7 -C 2 o-arylalkyl, C 7 -C o-alkylaryl, fluorine-containing C 1 -C 2 alkyl, fluorine-containing C 6 -C 8 aryl, f fluorine-containing C 7 -C 2 o-arylalkyl or fluorine-containing C 7 __C 2 o "alkylaryl,
  • R 8 and R 9 are the same or different and mean a hydrogen atom, halogen atom or a -C-C 20 - carbon-containing group, preferably a linear or branched Ci-Cis-alkyl group, such as methyl, ethyl, tert-butyl, cy- clohexyi or octyl, C 2 -C ⁇ o-alkenyi, C 3 -C ⁇ s alkylalkenyl, a C ß -Cis aryl group which may optionally be substituted, in particular phenyl, tolyl, xylyl, tert-butylphenyl, ethylphenyl, di- tert.
  • Ci-Cis-alkyl group such as methyl, ethyl, tert-butyl, cy- clohexyi or octyl, C 2 -C ⁇ o-alkenyi, C 3 -C ⁇
  • X is a halogen atom, in particular chlorine,
  • Y is an element of the 6th main group of the periodic table of the
  • 1, 1 ' identical or different, are an integer between zero and 4, preferably 1 or 2, particularly preferably equal to 1,
  • Examples of B are groups M 3 R 13 R 14 , in which M 3 is carbon, silicon, germanium or tin, preferably carbon and silicon, and R 13 and R 14 are identical or different hydrogen, a C 1 -C 2 -hydrocarbon f-containing group such as -CC alkyl, C 6 -C aryl or trimethylsilyl mean.
  • B is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , C (CH 3 ) 2 , (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (CH 3 ) 2 Sn, (C 6 H 5 ) 2 C, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si,
  • a purification process is very particularly preferred, a bridged metallocene of the formula (II) being formed from a bridged metallocene of the formula (Ila), in which
  • R 3 is the same or different hydrogen or a -C-C 3 o - carbon-containing group, preferably -C-C ⁇ c-alkyl, such as methyl, ethyl, n-propylene, isopropyl, tert-butyl, cyclohexyl or octyl, C -C 2 -Alkenyl, C 6 -C 24 aryl, C 5 -C 24 heteroaryl such as pyridyl, furyl or quinolyl, C -C 30 arylalkyl, C 7 -C 30 alkylaryl, fluorine-containing C 6 -C 4 -aryl, fluorinated C 7 -C 3 o ⁇ f luor restrooms arylalkyl or C 7 _C 30 -Alky- is laryl,
  • R 4 , R 6 are identical or different and are a hydrogen atom or a C 1 -C 4 -alkyl group, preferably an alkyl group such as methyl, ethyl, n-butyl, or octyl, particularly preferably methyl or ethyl,
  • R 5 , R 7 are hydrogen atoms
  • R 8 and R 9 are identical or different and are a hydrogen atom
  • Halogen atom or a -C-C 2 o ⁇ carbon-containing group preferably a linear or branched Ci-Cs-alkyl group, such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C -C 6 alkenyl, C 3 -C. 6-alkylalkenyl, a C 6 ⁇ C_ 8 aryl group which may optionally be substituted, in particular phenyl, tolyl, xylyl, tert. -Butylphenyl, ethylphenyl, di-tert.
  • Ci-Cs-alkyl group such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C -C 6 alkenyl, C 3 -C. 6-alkylalkenyl, a C 6 ⁇ C_ 8 aryl group which may optionally be substituted
  • Y is an element of the 6th main group of the periodic table of the
  • 1, 1 ' is an integer between zero and 4, preferably 1 or 2, particularly preferably equal to 1,
  • indenyl radicals B preferably being (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si, CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , CH 2 , C (CH 3 ) 2 , (C 5 H) 2 C, particularly preferably (CH 3 ) 2 Si, Is CH 2 and CH 2 CH 2 .
  • the metallocenes of the formulas I and II obtained in the purification process according to the invention are distinguished in that they are compared to the corresponding metallocenes of the formulas
  • (la) and (Ila) show a significantly better solubility in inert organic solvents.
  • a significantly better solubility is said to mean that the molar concentrations in organic solvents at least double, preferably more than fourfold and very particularly preferably more than eightfold.
  • Inert organic solvents for metallocenes are usually aliphatic or aromatic hydrocarbons, but also halogen-containing, oxygen-containing or nitrogen-containing ones
  • Hydrocarbons used are heptane, toluene, dichlorobenzene, methylene chloride, tetrahydrofuran or triethylamine.
  • Metallocenes of the formulas (Ia) and (Ila), ie racemic metallocene dichlorides, are preferably used in the purification process according to the invention, as described in EP-A-0485823, EP-A-0549900, EP-A-0576970, WO 98/22486 and WO 98/40331 may be mentioned. These are part of the present description.
  • the metallocenes of the formulas (Ia) and (Ila) used in the purification process according to the invention can be used in the same way as they result directly from the metallocene synthesis together with the inorganic, organometallic and organic by-products, or how they can be obtained after separation of a large part of the by-products according to one of the known purification processes mentioned above.
  • metallocenes of the formula (Ia) or (Ila) which can be used in the purification process according to the invention are:
  • Dirnethylsilanediylbis (indenyl) zirconium dichloride Dirnethylsilanediylbis (2-methyl-indenyl) zirconium dichloride Methylidenbis (2-methyl-indenyl) -zirconium dichloride 4-naphthyl-indenyl) zirconium dichloride Dirnethylsilandiylbis (2-methyl-4- (1-naphthyl) -indenyl) zirconium dichloride
  • Methylidenebis (2-methyl-4- (1-naphthyl) -indenyl) zirconium dichloride
  • Isopropylidenebis (2-methyl-4- (1-naphthyl) -indenyl) zirconium dichloride
  • Dirnethylsilanediylbis (2-methyl-4- (2-naphthyl) - indenyl) zirconium dichloride
  • Methylidenebis (2-methyl-4-phenyl-indenyl) zirconium dichloride Isopropylidenebis (2-methyl-4-phenyl-indenyl) zirconium dichloride Dimethylsilanediylbis (2-methyl-4-t-butyl-indenyl) zirconium dichloride Dime hylsilanediylbis (2-methyl-4-isopropyl-ndenyl) zirconium dichloride
  • Dimethylsilanediylbis (2-n-propyl-4-phenyl) -indenyl) zirconium dichloride Dimethylsilanediylbis (2-n-propyl-4- (4'-methyl-phenyl) -indenyl) zirconium dichloride
  • At least one metallocene halide of the formula (Ia) or (Ila) is reacted with at least one ligand exchange component U ⁇ -YR 3 , the metallocenes of the formula (I) or (II) being formed.
  • the ligand exchange component serves to introduce the ligand YR 3 . Because of their good solubility, the metallocenes of the formulas (I) and (II) can be obtained in the required quality by crystallization in good space-time yields.
  • the salts formed during the ligand exchange can be removed, for example, by known filtration techniques.
  • M 1 is equal to a cation or cation fragment such as Li, Na, K, MgCl, MgBr, Mgl or the ammonium cation corresponding to an amine, and the remaining radicals are as defined above.
  • metallocene halides are first reacted with salts of the formula M ⁇ YR 3 in an inert solvent or solvent mixture in a temperature range from 0 ° C. to + 200 ° C., preferably in a temperature tur range from 40 ° C to 140 ° C, particularly preferably at a temperature between 60 ° C and 110 ° C.
  • the compound M 1 -YR 3 used in the purification process according to the invention can be, for example, by deprotonation of the acidic compound
  • M 1 -YR 3 is a commercially available metal organyl such as a lithium organyl , for example methyl lithium, an aluminum organyl such as trimethyl aluminum, or a Grignard compound such as benzyl magnesium chloride.
  • a suitable base such as butyllithium, methyl lithium, sodium hydride, potassium hydride, sodium, potassium, Gri - grard compounds or amines in an inert solvent or solvent mixture
  • M 1 -YR 3 is a commercially available metal organyl such as a lithium organyl , for example methyl lithium, an aluminum organyl such as trimethyl aluminum, or a Grignard compound such as benzyl magnesium chloride.
  • Non-limiting examples of suitable solvents are hydrocarbons, which can be halogenated, such as benzene, toluene, xylene, mesitylene, ethylbenzene, chlorobenzene, dichlorobenzene, fluorobenzene, decalin, tetralin, pentane, hexane, cyclohexane, ethers such as diethyl ether, di-n- Butyl ether, tert.
  • hydrocarbons which can be halogenated, such as benzene, toluene, xylene, mesitylene, ethylbenzene, chlorobenzene, dichlorobenzene, fluorobenzene, decalin, tetralin, pentane, hexane, cyclohexane, ethers such as diethyl ether, di-n- Butyl ether, tert.
  • MTBE tetrahydrofuran
  • DME 1, 2-dimethoxyethane
  • anisole triglyme, dioxane
  • amides such as dimethylformamide (DMF), dimethylacetamide, N-methyl-2-pyrrolidinone (NMP), Sulfoxides such as dimethyl sulfoxide (DMSO), phosphoramides such as hexamethylphosphoric triamide, urea derivatives such as 1, 3-dimethyltetrahydro-2 (1H) pyrimidinone, ketones such as acetone, ethyl methyl ketone, esters such as ethyl acetate, nitriles such as acetonitrile and any mixtures of jeton Fabrics.
  • DMF dimethylformamide
  • NMP N-methyl-2-pyrrolidinone
  • Sulfoxides such as dimethyl sulfoxide (DMSO)
  • phosphoramides such as hexamethylphosphoric triamide
  • Solvents or solvent mixtures are preferred, in which the subsequent reaction with the metallocene dichloride can likewise be carried out directly.
  • Non-limiting examples include toluene, hexane, heptane, xylene, tetrahydrofuran (THF), dimethoxyethane (DME), toluene / THF, heptane / DME or toluene / DME.
  • the compounds of type HYR 3 are, for example, the substance classes of alcohols, phenols, carboxylic acids, alkyl and arylsulfonic acids, primary and secondary amines, primary and secondary anilines, carboxylic acid amides, sulfonic acid amides and dialkyl - Or diarylphosphines and the dialkyl or diarylphosphine oxides.
  • Examples of CH-acidic, enolizable compounds HYR 3 are malonic esters, cyanoacetic esters, acetoacetic esters, 1,3-diketones, enolizable esters and enolizable ketones.
  • Compounds of type HYR 3 preferably contain only one functional group HY and the radical R 3 is defined as described above.
  • 2-tert-butyl-4-ethylphenol 2, 6-diisopropylphenol; 4-octylphenol; 4- (1, 1, 3, 3-tetramethylbutyl) phenol; 2,6-di-tert. -butyl-4-ethylphenol; 4-sec. -Butyl-2, 6-di-tert. -butylphenol; 4-dodecylphenol; 2, 4, 6-tri-tert. -butylphenol; 3- (pentadecyl) phenol;
  • the molar ratio of reagent M 1 -YR 3 to the metallocene halide, in particular to the metallocene dichloride is generally between 5: 1 to 0.8: 1, preferably between 2.5: 1 and 0.9: 1.
  • the concentration of metallocene dichloride (e.g. of the formula Ila) or of reagent M ⁇ YR 3 in the reaction mixture is generally in the range between 0.001 mol / 1 and 8 mol / 1, preferably in the range between 0.01 and 3 mol / 1, particularly preferably in the range between 0.05 mol / 1 and 2 mol / 1.
  • the duration of the reaction of the metallocene dichloride (for example of the formula Ila) with the reagent M i -YR 3 is generally in the range from 5 minutes to 1 week, preferably in the range from 15 minutes to 48 hours.
  • insoluble constituents such as, for example, the salts or metal oxyhalides formed are preferably separated off before the new metallocenes are crystallized out.
  • a solution or suspension of the new metallocenes in the inert solvent or solvent mixture which was already used in the ligand exchange reaction is preferably filtered and extracted.
  • the recrystallization is preferably carried out in aprotic hydrocarbons, in particular polar, aprotic hydrocarbons.
  • Toluene, hexane, heptane, xylene, tetrahydrofuran (THF), dimethoxyethane (DME), toluene / THF, heptane / DME or toluene / DME are particularly preferred.
  • the solvent or solvent mixture used in the extraction has a temperature between 20 ° C. and the boiling point of the solvent or solvent mixture.
  • the extraction is preferably carried out in a temperature range of 0-20 ° C. below the boiling temperature.
  • the solution of the new metallocene obtained in this way is possibly concentrated, and then the new metallocene crystallizes out.
  • the crystallization is carried out in the temperature range from -78 ° C. to 200 ° C., preferably in the range from -30 ° C. to 110 ° C., particularly preferably in the range from -15 ° C. to 30 ° C.
  • the purified metallocene obtained by crystallization can in turn be isolated from the mother liquor by filtration techniques.
  • the metallocenes of the formulas I and II which can be obtained in the purification process according to the invention are highly active catalyst components for olefin polymerization. Depending on the substitution pattern of the ligands, the metallocenes can be obtained as a mixture of isomers. The metallocenes are preferably used isomerically pure for the polymerization.
  • the pseudo-rac isomeric metallocenes of the formula II are preferably used.
  • the metallocenes of the formulas I and II obtainable in the purification process according to the invention are particularly suitable as a constituent of catalyst systems for the production of polyolefins by polymerizing at least one olefin in the presence of a catalyst which comprises at least one cocatalyst and at least one metallocene.
  • the term polymerization is understood to mean homopolymerization as well as copolymerization.
  • olefins examples include 1-olefins having 2 to 40, preferably 2 to 10, carbon atoms, such as ethene, propene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene or 1-octene, Styrene, dienes such as 1,3-butadiene, 1,4-hexadiene, vinyl norbornene, norbornadiene, ethyl norbornadiene and cyclic ole- fine like norbornene, tetracyclododecene or methylnorbornene.
  • 1-olefins having 2 to 40, preferably 2 to 10, carbon atoms, such as ethene, propene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene or 1-octene, Styrene, dienes such as 1,3-butadiene, 1,4-hexadiene, vinyl norbornene, norborn
  • Ethylene or propylene are preferably homopolymerized, or ethylene is copolymerized with one or more cyclic olefins, such as norbornene, and / or one or more dienes having 4 to 20 carbon atoms, such as 1,3-butadiene or 1,4-hexadiene.
  • cyclic olefins such as norbornene
  • dienes having 4 to 20 carbon atoms, such as 1,3-butadiene or 1,4-hexadiene.
  • Examples of such copolymers are ethylene / norbornene copolymers, ethylene / propylene copolymers and ethylene / propylene / 1,4-hexadiene copolymers.
  • the metallocenes of the formulas I and II obtained in the purification process according to the invention show at least equivalent, but in some cases higher, activities in the polymerization of olefins than the dihalogen compounds, and the polyolefins obtained show a reduction in the undesirable low molecular weight extractables.
  • the polymerization is carried out at a temperature of from -60 to 300 ° C., preferably from 50 to 200 ° C., very particularly preferably from 50 to 80 ° C.
  • the pressure is 0.5 to 2000 bar, preferably 5 to 64 bar.
  • the polymerization can be carried out in solution, in bulk, in suspension or in the gas phase, continuously or batchwise, in one or more stages.
  • a preferred embodiment is gas phase and bulk polymerization.
  • the catalyst used preferably contains one of the metallocene compounds obtainable in the purification process according to the invention. Mixtures of two or more metalocene compounds can also be used, eg. B. for the production of polyolefins with broad or multimodal molecular weight distribution.
  • the cocatalyst which together with a metallocenes of the formulas I and II which can be obtained in the purification process according to the invention, forms the catalyst system, contains at least one compound of the type of an aluminoxane or a Lewis acid or an ionic compound, which by reaction with a metallocene in this transferred a cationic compound.
  • a compound of the general formula (VII) is preferred as the aluminoxane
  • aluminoxanes can e.g. B. cyclic as in formula (VI)
  • radicals R in the formulas (IV), (V), (VI) and (VII) can be identical or different and a C 1 -C 2 -hydrocarbon group such as a C 1 -C 6 alkyl group, a C 6 - C 8 aryl group, benzyl or hydrogen, and p is an integer from 2 to 50, preferably 10 to 35.
  • the radicals R are preferably the same and are methyl, isobutyl, n-butyl, phenyl or benzyl, particularly preferably methyl. If the radicals R are different, they are preferably methyl and hydrogen, methyl and isobutyl or methyl and n-butyl, with hydrogen or isobutyl or n-butyl preferably containing 0.01-40% (number of the radicals R).
  • the aluminoxane can be prepared in various ways by known methods.
  • One of the methods is, for example, that an aluminum-hydrocarbon compound and / or a hydrodaluminium-hydrocarbon compound is reacted with water (gaseous, solid, liquid or bound - for example as water of crystallization) in an inert solvent (such as, for example, toluene).
  • the Lewis acid used is preferably at least one organoboron or organoaluminum compound which contains C 1 -C 8 carbon-containing groups, such as branched or unbranched alkyl or haloalkyl, such as e.g. Methyl, propyl, isopropyl, isobutyl, trifluoromethyl, unsaturated groups, such as aryl or haloaryl, such as phenyl, tolyl, benzyl groups, p-fluorophenyl, 3, 5-difluorophenyl, pentachlorophenyl, pentafluorophenyl, 3,4,5 trifluorophenyl and 3.5 di (trifluoromethyl) phenyl.
  • organoboron or organoaluminum compound which contains C 1 -C 8 carbon-containing groups, such as branched or unbranched alkyl or haloalkyl, such as e.g. Methyl, propyl, isoprop
  • Lewis acids are trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tributyl aluminum, trifluoroborane, triphenylborane,
  • Tris (4-fluorophenyl) borane tris (3, 5-difluorophenyl) borane, tris (4-fluoromethylphenyldborane, tris (pentafluorophenyl) borane, tris (tolyl) borane, tris (3, 5-dimethylphenyl) borane, tris (3, 5-difluorophenyl) borane, [(C 6 F 5 ) 2 B0] 2 A1-Me, [(C 6 F 5 ) 2 BO] 3 A1 and / or tris (3, 4, 5-trifluorophenyl) borane, particularly preferred is tris (pentafluorophenyl) borane.
  • Compounds which contain a non-coordinating anion such as, for example, tetrakis (pentafluorophenyl) borates, tetraphenylborates, are preferably used as ionic cocatalysts.
  • SbF ⁇ ", CFS0 3 " or C10 " ionic cocatalysts.
  • Protonated Lewis bases such as methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n- are used as the cationic counterion.
  • Trimethylammonium tetra (tolyl) borate Trimethylammonium tetra (tolyl) borate
  • Triphenylcarbenium tetrakis (pentafluorophenyl) borate Triphenylcarbenium tetrakis (pentafluorophenyl) borate
  • Triphenylcarbenium tetrakis (phenyl) aluminate Triphenylcarbenium tetrakis (phenyl) aluminate
  • Ferrocenium tetrakis (pentafluorophenyl) borate and / or ferrocenium tetrakis (pentafluorophenyl) aluminate are ferrocenium tetrakis (pentafluorophenyl) aluminate.
  • N, N-Dimethylanilinium tetrakis (pentafluorophenyl) borate N, N-Dimethylanilinium tetrakis (pentafluorophenyl) borate.
  • Mixtures of at least one Lewis acid and at least one ionic compound can also be used.
  • Borane or carborane compounds such as e.g.
  • the carrier component of the catalyst system according to the invention can be any organic or inorganic, inert solid, in particular a porous carrier such as talc, inorganic oxides and finely divided polymer powders (e.g. polyolefins).
  • Suitable inorganic oxides can be found in groups 2,3,4,5,13,14,15 and 16 of the periodic table of the elements.
  • oxides preferred as carriers include silicon dioxide, aluminum oxide, and mixed oxides of the two elements and corresponding oxide mixtures.
  • Other inorganic oxides that can be used alone or in combination with the last-mentioned preferred oxide carriers are, for example, MgO, Zr0 2 , Ti0 2 or B 2 0 3 , to name just a few.
  • the carrier materials used have a specific surface area in the range from 10 to 1000 m 2 / g, a pore volume in the range from 0.1 to 5 ml / g and an average particle size from 1 to 500 ⁇ m.
  • Carriers with a specific surface area in the range from 50 to 500 m 2 / g, a pore volume in the range between 0.5 and 3.5 ml / g and an average particle size in the range from 5 to 350 ⁇ m are preferred.
  • Carriers with a specific surface area in the range from 200 to 400 m 2 / g, a pore volume in the range between 0.8 to 3.0 ml / g and an average particle size of 10 to 200 ⁇ m are particularly preferred.
  • the carrier material used naturally has a low moisture content or residual solvent content, dehydration or drying can be avoided before use. If this is not the case, as with the use of silica gel as a carrier material, dehydration or drying is recommended.
  • the thermal dehydration or drying of the carrier material can take place under vacuum and at the same time inert gas blanket (eg nitrogen).
  • the drying temperature is in the range between 100 and 1000 ° C, preferably between 200 and 800 ° C. In this case, the pressure parameter is not critical.
  • the drying process can take between 1 and 24 hours. Shorter or longer drying times are possible, provided that under the chosen conditions the equilibrium can be established with the hydroxyl groups on the support surface, which normally requires between 4 and 8 hours.
  • Dehydration or drying of the carrier material is also possible chemically by reacting the adsorbed water and the hydroxyl groups on the surface with suitable inerting agents.
  • suitable inerting agents As a result of the reaction with the inerting reagent, the hydroxyl groups can be completely or partially converted into a form which does not lead to any negative interaction with the catalytically active centers.
  • Suitable inerting agents are, for example, silicon halides and silanes, such as silicon tetrachloride, chlorotrimethylsilane, dimethylaminotrichlorosilane or organometallic compounds of aluminum, boron and magnesium, such as, for example, trimethylaluminium, triethylaluminium, triisobutylaluminum, triethylborane, di-butylmagnesium.
  • the chemical dehydration or inertization of the carrier material takes place, for example, by reacting a suspension of the carrier material in a suitable solvent with the inerting reagent in pure form or dissolved in a suitable solvent with exclusion of air and moisture.
  • Suitable solvents are, for example, aliphatic or aromatic hydrocarbons such as pentane, hexane, heptane, toluene or xylene.
  • the inerting takes place at temperatures between 25 ° C and 120 ° C, preferably between 50 and 70 ° C. Higher and lower temperatures are possible.
  • the duration of the reaction is between 30 minutes and 20 hours, preferably 1 to 5 hours.
  • the support material is isolated by filtration under inert conditions, washed one or more times with suitable inert solvents as described above and then dried in an inert gas stream or in vacuo.
  • Organic carrier materials such as finely divided polyolefin powders (eg polyethylene, polypropylene or polystyrene) can also be used and should also be freed of moisture, solvent residues or other contaminants by appropriate cleaning and drying operations before use.
  • the catalyst system is produced by mixing at least one metallocene as a rac-meso isomer mixture, at least one cocatalyst and at least one inertized support.
  • the supported catalyst system At least one of the above-described metallocene components obtainable in the purification process according to the invention is brought into contact with at least one cocatalyst component in a suitable solvent, a soluble reaction product, an adduct or a mixture preferably being obtained.
  • the preparation thus obtained is then mixed with the dehydrated or inertized carrier material, the solvent is removed and the resulting supported metallocene catalyst system is dried to ensure that the solvent is completely or largely removed from the pores of the carrier material.
  • the supported catalyst is obtained as a free flowing powder.
  • a method for producing a free-flowing and optionally prepolymerized supported catalyst system comprises the following steps:
  • Preferred solvents for the production of the metallocene / cocatalyst mixture are hydrocarbons and hydrocarbon mixtures which are liquid at the chosen reaction temperature and in which the individual components dissolve preferentially.
  • the solubility of the individual components is not a prerequisite if it is ensured that the reaction product of metallocene and cocatalyst components is soluble in the chosen solvent.
  • suitable solvents include alkanes such as pentane, isopentane, hexane, heptane, octane, and nonane; Cycioalkanes such as cyclopentane and cyclohexane; and aromatics such as benzene, toluene. Ethylbenzene and diethylbenzene. Toluene is very particularly preferred.
  • a molar ratio of aluminum to transition metal in the metallocene of 10: 1 to 1000: 1 is preferably set, very particularly preferably a ratio of 50: 1 to 500: 1.
  • the metallocene is dissolved in the form of a solid in a solution of the aluminoxane in a suitable solvent. It is also possible to dissolve the metallocene separately in a suitable solvent and then to combine this solution with the aluminoxane solution. Toluene is preferably used.
  • the preactivation time is 1 minute to 200 hours.
  • the preactivation can take place at room temperature (25 ° C).
  • room temperature 25 ° C
  • the use of higher temperatures can shorten the time required for preactivation and cause an additional increase in activity.
  • a higher temperature means a range between 50 and 100 ° C.
  • the preactivated solution or the metallocene / cocatalyst mixture is then combined with an inert carrier material, usually silica gel, which is in the form of a dry powder or as a suspension in one of the abovementioned solvents.
  • the carrier material is preferably used as a powder.
  • the order of addition is arbitrary.
  • the preactivated metallocene cocatalyst solution or the metallocene cocatalyst mixture can be metered into the support material provided, or the support material can be introduced into the solution presented.
  • the volume of the preactivated solution or of the metallocene / cocatalyst mixture can exceed 100% of the total pore volume of the support material used or can be up to 100% of the total pore volume.
  • the temperature at which the preactivated solution or the metal-locene-cocatalyst mixture is brought into contact with the support material can vary in the range between 0 and 100 ° C. However, lower or higher temperatures are also possible.
  • the solvent is then removed completely or for the most part from the supported catalyst system, and the mixture can be stirred and optionally also heated. Both the visible portion of the solvent and the portion in the pores of the carrier material are preferably removed.
  • the solvent can be removed in a conventional manner using vacuum and / or purging with inert gas. During the drying process, the mixture can be heated until the free solvent has been removed, which usually requires 1 to 3 hours at a temperature of between 30 and 60 ° C., which is preferably chosen.
  • the free solvent is the visible proportion of solvent in the mixture. Residual solvent is the proportion that is enclosed in the pores.
  • the supported catalyst system can also be dried only to a certain residual solvent content, the free solvent having been removed completely.
  • the supported catalyst system can then be washed with a low-boiling hydrocarbon such as pentane or hexane and dried again.
  • the supported catalyst system shown can either be used directly for the polymerization of olefins or prepolymerized with one or more olefinic monomers before it is used in a polymerization process.
  • the prepolymerization of supported catalyst systems is described, for example, in WO 94/28034.
  • an olefin preferably an ⁇ -olefin (for example styrene or phenyldimethylvinylsilane) as an activity-increasing component, or for example an antistatic agent
  • an olefin preferably an ⁇ -olefin (for example styrene or phenyldimethylvinylsilane)
  • an antistatic agent for example an antistatic agent
  • a mixture of a metal salt of medialanic acid, a metal salt of anthranilic acid and a polyamine is usually used as the antistatic.
  • antistatic agents are described, for example, in ⁇ P-A-0, 636, 636.
  • the molar ratio of additive to metallocene component compound (I) is preferably between I: 1000 to 1000: 1, very particularly preferably 1:20 to 20: i.
  • the present invention also relates to a process for the preparation of a polyolefin by polymerizing one or more olefins in the presence of the catalyst system, comprising at least one transition metal component of the formula I or II, which can be obtained in the purification process according to the invention.
  • the term polymerisation is understood to mean homopolymerization as well as copolymerization.
  • the metallocenes of the formulas I and II obtained in the purification process according to the invention show at least equivalent, but in some cases higher, activities in the polymerization of olefins than the dihalogen compounds, and the polyolefins obtained show a reduction in the undesirable low molecular weight extractables.
  • the catalyst system shown can be used as the only catalyst component for the polymerization of olefins having 2 to 20 carbon atoms, or preferably in combination with at least one alkyl compound of the elements from I. to III.
  • Main group of the periodic table e.g. an aluminum, magnesium or lithium alkyl or an aluminoxane.
  • the alkyl compound is added to the monomers or the suspending agent and is used to purify the monomers from substances which can impair the catalyst activity. The amount of alkyl compound added depends on the quality of the monomers used.
  • hydrogen is added as a molecular weight regulator and / or to increase the activity.
  • the antistatic can be metered into the polymerization system together with or separately from the catalyst system used.
  • the polymers represented by the catalyst system which contains at least one of the metallocenes of the formulas I and II obtained in the purification process according to the invention have a uniform grain morphology and no fine grain split up. No deposits or caking occur during the polymerization with the catalyst system.
  • TT triad tacticity
  • RI proportion of 2-1-inserted propene units
  • RI (%) 0.5 I ⁇ , ß (l ⁇ , ⁇ + I ⁇ , ß + I ⁇ , ⁇ ) • 100,
  • l ⁇ , ⁇ mean the intensity of the resonance signal at ⁇ 37.08 ppm.
  • the isotactic polypropylene which was produced with the catalyst system, is characterized by a proportion of 2-1-inserted propene units RI ⁇ 0.5% with a triad tacticity TT> 98.0% and a melting point> 153 ° C, where M w / M n of the polypropylene according to the invention is between 2.5 and 3.5.
  • copolymers which can be prepared with the catalyst system are distinguished by a significantly higher molar mass than in the prior art. At the same time, such copolymers can be produced with high productivity and technically relevant process parameters without deposit formation by using the catalyst system.
  • the polymers produced by the process are particularly suitable for producing tear-resistant, hard and rigid moldings such as fibers, filaments, injection molded parts, foils, plates or large hollow bodies (for example pipes).
  • the invention is illustrated by the following examples which, however, do not restrict the invention.
  • organometallic compounds were manufactured and handled with the exclusion of air and moisture under an argon protective gas (Schlenk technique or glove box). All required solvents were flushed with argon before use and absoluteized using a molecular sieve.
  • Example 1 Dimethylsilanediylbis (2-methyl-4,5-benzoindonyl) zirconium monochloro-mono- (2,4-di-tert-butylphenolate) (1)
  • Example la Catalyst representation with (1) and polymerization:
  • a dry 2 reactor was first flushed with nitrogen and then with propylene and filled with 1.5 l of liquid propylene. 2 ml of TEA (20% in Varsol) were added and the mixture was stirred for 15 minutes. The catalyst system prepared above (0.886 g) was then resuspended in 20 ml of heptane and rinsed with 15 ml of heptane. The reaction mixture was heated to the polymerization temperature of 60 ° C. and polymerized for 1 hour. The polymerization was stopped by venting the remaining propylene. The polymer was dried in a vacuum drying cabinet. The result was 470 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 0.53 kg PP / g catalyst x h.
  • a dry 21 reactor was first flushed with nitrogen and then with propylene and filled with 1.5 l of liquid propylene. 2 ml of TEA (20% in Varsol) were added and the mixture was stirred for 15 minutes. The catalyst system prepared above (0.897 g) was then resuspended in 20 ml of heptane and rinsed with 15 ml of heptane. The reaction mixture was heated to the polymerization temperature of 60 ° C. and polymerized for 1 hour. The polymerization was stopped by venting the remaining propylene. The polymer was dried in a vacuum drying cabinet. The result was 410 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 0.46 kg PP / g catalyst x h.
  • Example 5 Dimethylsilanediylbis (2-methyl-indenyl) zirconium monochloro-mono- (2, 4-dimethylphenolate) (5) 5 1.0 g (8.2 mmol) of 2, -di-methylphenol in 20 ml of toluene / 2 ml of THF was mixed with 3.0 ml (8.2 mmol) of a 20% solution of butyllithium in toluene at room temperature. The mixture was stirred at 60 ° C for 1 h. 1.9 g (4.0 mmol) of dimethylsilane-5 diyl-bis (2-methyl-indenyl) zirconium dichloride were added as a solid at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Aufreinigung von Metallocenen, wobei ein schlecht lösliches Metallocenhalogenid durch Austausch mindestens eines Halogenidliganden durch einen alternativen negativ geladenen Liganden in ein gut lösliches und gut kristallisierbares Metallocen umgewandelt wird, welches anschließend durch Kristallisation aufgereinigt wird.

Description

Verfahren zur Aufreinigung von Metallocenen
Beschreibung 5
Die vorliegende Erfindung betrifft ein Verfahren zur Aufreinigung von Metallocenen, wobei ein schlecht lösliches Metallocenhaloge- nid durch Austausch mindestens eines Halogenidliganden durch einen alternativen negativ geladenen Liganden in ein gut lösliches 10 und gut kristallisierbares Metallocen umgewandelt wird, welches anschließend durch Kristallisation aufgereinigt wird.
Metallocene können, gegebenenfalls in Kombination mit einem oder mehreren Co-Katalysatoren, als Katalysatorkomponente für die
15 Polymerisation und Copolymerisation von Olefinen verwendet werden. Insbesondere werden als Katalysatorvorstufen halogenhaltige Metallocene eingesetzt, die sich beispielsweise durch ein Alumin- oxan in einen polymerisationsaktiven kationischen Metallocenkom- plex überführen lassen (EP-A-129368) .
20
Die Herstellung von Metallocenen ist an sich bekannt (US 4,752,597; US 5,017,714; EP-A-320762; EP-A-416815; EP-A-537686 ; EP-A- 669340; H.H. Brintzinger et al.; Angew. Chem., 107 (1995), 1255; H.H. Brintzinger et al., J. Organomet. Chem. 232 (1982),
25 233) . Dazu können zum Beispiel Cyclopentadienyl-Metall-Verbindun- gen mit Halogeniden von Übergangsmetallen wie Titan, Zirkonium und Hafnium umgesetzt werden. Die gebildeten Metallocendihaloge- nide, in der Regel die Metallocendichloride, sind im Falle der technisch interessanten racemischen Ansa-Bis-indenyl-Metallocene,
30 die für die Herstellung von isotaktischem Polypropylen benötigt werden (EP 0485823, EP 0549900, EP 0576970, WO 98/40331), in der Regel schwer lösliche Verbindungen. Die bei den Synthesen gebildeten Rohprodukte enthalten neben den gewünschten Metallocenen, erhebliche Mengen an anorganischen Nebenprodukten (z. B. Salze), 5 metallorganischen Nebenprodukten (z. B. Isomere) und organischen Nebenprodukten (z. B. nicht umgesetzte substituierte Cyclopenta- dienylliganden) . Bei der Verwendung von Metallocenen als Katalysatorkomponente, sowohl in homogenen als auch in heterogenisier- ten Katalysatorsystemen, beeinträchtigen die Nebenprodukte die 0 Katalysatoraktivität bei der Olefinpolymerisation.
Für die Aufreinigung der Rohprodukte, die gewünschtes racemisches Ansa-Bis-indenyl-Metallocen enthalten, sind Methoden bekannt, durch deren Anwendung anorganische, metallorganische und organi- 5 sehe Nebenprodukte vom gewünschten Metallocen abgetrennt werden können. In US 5,455,366 und EP 576970 werden die racemischen Metallocene durch Extraktion mit Methylenchlorid und anschließen- der Kristallisation vom Lithiumchlorid, dem Meso-Isomer und organischen Verunreinigungen befreit. In DE 19547247 und DE 19547248 werden die Rohprodukte aus der Metallocensynthese durch Behandlung mit polaren und/oder protischen Lösungsmitteln von den uner- wünschten Nebenprodukten befreit. In US 5,556,997 wird ein mit Tetrahydrofuran-haltigen Nebenprodukten verunreinigtes Metallocen durch Behandlung mit Tetrahydrofuran weiter aufgereinigt.
Obwohl mit den bekannten Methoden der größte Teil der Nebenpro- dukte von dem jeweils gewünschten racemischen Metallocen abgetrennt werden kann, zeigen die mit den so aufgereinigten Metallocenen hergestellten Katalysatoren, insbesondere geträgerte Katalysatoren, häufig eine unzureichende Aktivität oder der Anteil an unerwünschten niedermolekularen Polyolefinen, sogenannte extra - hierbare Anteile, ist zu groß. Werden durch eine nochmalige Um- kristallisation aufgereinigte Metallocene als Katalysatorkomponente eingesetzt, gelingt es, die eben genannten Nachteile bei der Polymerisation zu vermeiden. Wegen der Schwerlöslichkeit der technisch relevanten Ansa-Bisindenyl-metallocendichloride werden jedoch große Mengen Lösungsmittel benötigt. Somit stellt die einfache Umkristallisation der Metallocendichloride einen unwirtschaftlichen Prozeßschritt dar.
Es bestand also die Aufgabe, ein wirtschaftliches Aufreinigungs- verfahren zu finden, um Metallocene mit der geforderten Qualität bereitstellen zu können.
Es wurde nun überraschenderweise gefunden, daß durch ein einfaches Verfahren die der Erfindung zugrunde liegende Aufgabe gelöst wird, wobei die schwerlöslichen, unzureichend aufgereinigten Me- tallocenhalogenide durch Austausch mindestens eines Halogenidliganden in besser lösliche und gut kristallisierbare Metallocene umgewandelt werden, und die so hergestellten neuen Metallocene nach Abtrennung von unlöslichen Bestandteilen durch Kristallisa- tion aufgereinigt erhalten werden.
Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Aufreinigung von Verbindungen der Formel (Ia)
worin
M ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf , besonders bevorzugt Zirkonium,
R1 gleich oder verschieden sind und ein Rest Si(R12)3 ist, worin R12 gleich oder verschieden ein Wasserstoff atom oder eine Cι-C40-kohlenstof f haltige Gruppe, bevorzugt Cχ-C o-Alkyl, Ci-Cio-Fluoralkyl, Cι-Cι0-Alkoxy, C6-C20-Aryl, C6-Cι0-Fluoraryl, Cβ-Cio-Aryloxy, C2-Cι0-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkyla- ryl oder C8-C4o-Arylalkenyl,
oder R1 eine Cι-C30 - kohlenstoffhaltige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C -C 5-Alkenyl, C3-Cι5-Alkylalkenyl, C6-C24-Aryl, C5-C 4-Heteroaryl, C7-C3o-Arylalkyl, C7-C3n-Alkylaryl, fluor- haltiges C1-C2s-Alkyl, f luorhaltiges C6-C24-Aryl, fluorhalti- ges C7-C3o-Arylalkyl, f luorhaltiges C _C3o-Alkylaryl oder Cι-Cι -Alkoxy ist,
oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C 4-Ringsystem bilden, welches seinerseits substituiert sein kann,
R2 gleich oder verschieden sind und Rest Si(R12)3 ist, worin R12 gleich oder verschieden ein Wasserstoff atom oder eine Cχ-C o-kohlenstoff haltige Gruppe, bevorzugt Cι-C20-Alkyl, Ci-Cio-Fluoralkyl, Cι-Cι0-Alkoxy, C6-Cι -Aryl, C6-Cι0-Fluoraryl, C6-Cι0-Aryloxy, C2-Cι0-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkyla- ryl oder C8-C4o-Arylalkenyl, oder R2 eine Cι-C3o - kohlenstoffhaltige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Cι5-Alkylalkenyl, C6-C24-Aryl, C5-C 4-Heteroaryl, C7-C3o_Arylalkyl, C7-C3o-Alkylaryl, fluor- haltiges Cι-C25-Alkyl, fluorhaltiges C6-C24-Aryl, f luorhaltiges C -C3o-Arylalkyl, fluorhaltiges C7_C3o-Alkylaryl oder Cι~Cι -Alkoxy ist,
oder zwei oder mehrere Reste R2 können so miteinander verbun- den sein, daß die Reste R2 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C -Ringsystem bilden, welches seinerseits substituiert sein kann,
X ein Halogenatom, insbesondere Chlor, ist,
n gleich 1 bis 5 für k = 0, und n gleich 0 bis 4 für k = 1 ist,
n' gleich 1 bis 5 für k = 0, und n' gleich 0 bis 4 für k = 1 ist,
m gleich 1 bis 4 ist, bevorzugt 2,
k gleich Null oder 1 ist, wobei für k = 0 ein unverbrücktes Metallocen, für k = 1 ein verbrücktes Metallocen vorliegt, wobei k = 1 bevorzugt ist, und
B ein verbrückendes Strukturelement zwischen den beiden Cyclo- pentadienylringen bezeichnet, bedeutet
umfassend die Schritte:
a) Umsetzung der Verbindung der Formel (la) mit einer Ligan- denaustausch-komponente
M^-YR3
worin
M1 ein Kation oder Kationfragment, insbesondere Li, Na, K, MgCl, MgBr, Mgl, oder das mit einem Amin korrespondierende Ammoniumskation ist,
R3 gleich oder verschieden Wasserstoff oder eine Cι~C o - kohlenstoffhaltige Gruppe, bevorzugt Cι,-C25-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Cyclohexyl oder Octyl, C -C25-Alkenyl , C3-Cι5-Alkylalkenyl, Cδ-C24-Aryl, C5-C2 -Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C -C30-Alkylaryl , fluorhaltiges Cι-C_5-Alkyl, f luorhaltiges C6-C2 -Aryl, f luorhaltiges C7-C3o-Arylalkyl oder f luorhaltiges C7_C 0-Alkylaryl ist,
Y ein Element der 6. Hauptgruppe des Periodensystems der
Elemente, insbesondere Sauerstoff oder Schwefel, oder ein Fragment CR3 2, NR3, NR3(CO)-, NR3(S02)-, PR 3 , (=0)R3, O(CO)- oder 0(S02)- ist.
unter Ausbildung der Verbindung der Formel (I)
worin
M, R1, R2, R3, X, Y, n, n' , m, k, B und R12 die vorstehende Bedeutung haben und
m' gleich 1 bis 4 ist, bevorzugt 1 oder 2,
wobei die Verbindung der Formel M1X, wobei M1 und X die vorstehenden Bedeutungen haben, abgespalten wird, in einem inerten Lösungsmittel oder Lösungsmittelgemisch,
b) gegebenenf lls Abtrennung von festen Rückständen der Formel M!χ
c) gegebenenfalls Abtrennen des inerten Lösungsmittels oder Lösungsmittelgemisches,
d) Umkristallisation der Verbindung der Formel (I) in einem aprotischen Kohlenwasserstoff,
e) Abtrennen der Verbindung der Formel (I) von der Mutterlauge. Bei dem erfindungsgemaßen Aufreinigungsverfahren, wird ein Metallocen der Formel (la) in ein Metallocen der Formel (I) überführt und anschließend umkristallisiert.
Bei dem erfindungsgemäßen Verfahren steht die Verbindung der Formel (la) und (I) für die Verbindungen
worin
M ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf, be- sonders bevorzugt Zirkonium,
R1 gleich oder verschieden sind und ein Rest Si(R12)3 ist, worin R12 gleich oder verschieden ein Wasserstoff tom oder eine Cι-C4o-kohlenstoffhaltige Gruppe, bevorzugt Cι-C2_-Alkyl , Ci-Cio-Fluoralkyl, Cι-Cι0-Alkoxy, C6-C2o-Aryl, C6-Cι0-Fluoraryl, Cδ-Cio-Aryloxy, C2-Cι0-Alkenyl , C7-C40-Arylalkyl, C7-C40-Alky- laryl oder C8-C4o-Arylalkenyl,
oder R1 eine Cι~C3o - kohlenstoffhaltige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Cι5-Alkylalkenyl, C6-C24-Aryl, C5-C 4-Heteroaryl, C7-C30-Arylalkyl, C -C30-Alkylaryl, fluor- haltiges Cχ-C25-Alkyl, fluorhaltiges C6-C2 -Aryl, f luorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7_C30-Alkylaryl oder Cι-Ci2-Alkoxy ist,
oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann, R2 gleich oder verschieden sind und Rest Si (R12) ; ist , worin R12 gleich oder verschieden ein Wasserstof f atom oder eine Cι-C4o-kohlenstof f haltige Gruppe , bevorzugt Cι-C2o-Alkyl , Ci-Cio-Fluoralkyl , Cι-Cι0-Alkoxy, C6-C14-Aryl , C6-C10-Fluoraryl , C6-Cι0-Aryloxy, C2-Cι0-Alkenyl , C7-C40-Arylalkyl , C7-C40-Alkyla - ryl oder Ca-C4o-Arylalkenyl ,
oder R2 eine Cι-C3o - kohlens tof fhaltige Gruppe , bevorzugt Cι-C25-Alkyl , wie Methyl , Ethyl , tert . -Butyl , Cyclohexyl oder Octyl , C2-C25-Alkenyl , C3-Ci5-Alkylalkenyl , C6-C2 -Aryl ,
C5-C24-Heteroaryl , C7-C3o-Arylalkyl , C7-C3o-Alkylaryl , f luor haltiges C1-C25-Alkyl , f luorhaltiges C6-C24-Aryl , f luorhal tiges C7-C30-Arylalkyl , f luorhaltiges C _C30-Alkylaryl oder Cι-Cχ2-Alkoxy ist ,
oder zwei oder mehrere Reste R2 können so miteinander verbunden sein, daß die Reste R2 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C -Ringsystem bilden, welches seinerseits substituiert sein kann,
R3 gleich oder verschieden Wasserstoff oder eine Cι-C4o - kohlenstoffhaltige Gruppe, bevorzugt Cι~C 5-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Cι5-Alkylalkenyl, C6-C24-Aryl, C5~C4-Heteroaryl wie Pyridyl, Furyl oder Chinolyl,
C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluorhaltiges C1-C25-Alkyl, fluorhaltiges C6-C24-Aryl, f luorhaltiges C7-C o-Arylalkyl oder fluorhaltiges C7_C3o_Alkylaryl ist,
X ein Halogenatom, insbesondere Chlor, ist,
Y ein Element der 6. Hauptgruppe des Periodensystems der Elemente, insbesondere Sauerstoff oder Schwefel, oder ein Fragment CR3 2, NR3, NR3(CO)-, NR (S02)-, PR 3 , P(=0)R3, 0(CO)- oder 0(S02)- ist.
n gleich 1 bis 5 für k = 0, und n gleich 0 bis 4 für k = 1 ist,
n' gleich 1 bis 5 für k = 0 , und n' gleich 0 bis 4 für k = 1 ist,
m gleich 1 bis 4 ist, bevorzugt 2,
m' gleich 1 bis 4 ist, bevorzugt 1 oder 2, k gleich Null oder 1 ist, wobei für k = 0 ein unverbrücktes Metallocen, für k = 1 ein verbrücktes Metallocen vorliegt, wobei k = 1 bevorzugt ist, und
B ein verbrückendes Strukturelement zwischen den beiden Cyclo- pentadienylringen bezeichnet.
Beispiele für B sind Gruppen M3R13R14, worin M3 Kohlenstoff, Silizium, Germanium oder Zinn ist und R13 und R14 gleich oder ver- schieden eine Cι-C2o~kohlenwasserstoffhaltige Gruppe wie Ci-Cio-Al- kyl, C6-Cι4-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist B gleich CH2, CH2CH2, CH(CH3)CH2, CH (C4H9) C (CH3) , C(CH3)2, (CH3)2Si, (CH3)2Ge, (CH3)2Sn, (C6H5)2Si, (C6H5) (CH3) Si, Si (CH3) (SiR20RlR22) , (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2, o-C6H4 oder 2, 2' - (C6H4) 2 • Wobei R20R21R22 gleich oder verschieden eine Cι-C2o~kohlenwasserstoff-haltige Gruppe wie Cι-Cιo-Alkyl oder C6-Cι -Aryl bedeuten. B kann auch mit einem oder mehreren Resten R1 und/oder R2 ein mono- oder polycyclisches Ringsystem bilden.
Bei dem erfindungsgemäßen Aufreinigungsverfahren werden Metall - ocenhalogenide der Formel (la) durch Umsetzung mit einer Ligan- daustauschkomponente in einem Reaktionsschritt direkt zu Metallocenen der Formel (I) umgesetzt, welche auf Grund ihrer guten Löslichkeit durch Kristallisation in hoher Raum-Zeit-Ausbeute in der benötigten Reinheit erhalten werden.
Bevorzugt wird ein Aufreinigungsverfahren, wobei aus einem ver- brückten Metallocen der Formel (la) ein verbrücktes Metallocen der Formel (I) gebildet wird, insbesondere solche verbrückten Me- tallocene, in denen k gleich 1 ist und einer oder beide Cyclopen- tadienylringe so substituiert sind, daß sie einen Indenylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2, 4 , 5 , 6-Stellung, mit Cι-C2o_kohlenstoffhaltigen Gruppen, wie Ci-Ciβ-Alkyl oder Cβ-Ciβ-Aryl, wobei auch zwei oder mehrere Substituenten des Inde- nylrings zusammen ein Ringsystem bilden können.
Besonders bevorzugt wird ein Aufreinigungsverfahren, wobei aus einem verbrückten Metallocen der Formel (Ha) ein verbrücktes Me- tallocen der Formel (II) gebildet wird, worin
M gleich Ti, Zr oder Hf ist, besonders bevorzugt Zirkonium,
R3 gleich oder verschieden Wasserstoff oder eine Cχ-C3o - kohlenstoffhaltige Gruppe, bevorzugt Cι-Cιo-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Cyclo- hexyl oder Octyl, C2-Cι6-Alkenyl, C6-C2_-Aryl, C5-C 4-Hete- roaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylal- kyl, C7-C30-Alkylaryl, fluorhaltiges C6-C2 -Aryl, fluorhaltiges C--C3o-Arylalkyl oder f luorhaltiges C7_C30-Alkyl- aryl ist,
R4, R6 gleich oder verschieden sind und ein Wasserstoffatom, eine Cι-C2o - kohlenstoffhaltige Gruppe, bevorzugt Ci-Ciβ-Alkyl, wie Methyl, Ethyl, n-Butyl, Cyclohexyl oder Octyl, C2-Cι0-Alkenyl, C3-Cι5-Alkylalkenyl, C6-Cι8-Aryl, C5-Cι8-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C2o-Arylalkyl, C7-C2_-Alkylaryl, fluorhaltiges Cι-Cι2-Alkyl, fluorhaltiges C6-Cι8-Aryl, f luorhaltiges C7-C c.-Arylalkyl oder fluorhaltiges C7_C2o-Alkylaryl ist,
R5, R7 gleich oder verschieden sind und ein Wasserstoffatom, eine CX-C2. ~ kohlenstoffhaltige Gruppe, bevorzugt Ci-Ciβ-Alkyl, wie Methyl, Ethyl, n-Butyl, Cyclohexyl oder Octyl, C2-Cι0-Alkenyl, C3-Cι5-Alkylalkenyl, C6-Cι8-Aryl, c 5~Cι8-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C2o-Arylälkyl, C7-C o-Alkylaryl , fluorhaltiges Cι-Cι2-Alkyl, fluorhaltiges C6-Cι8-Aryl, f luorhaltiges C7-C2o-Arylalkyl oder fluorhaltiges C7__C2o"-Alkylaryl ist,
R8 und R9 gleich oder verschieden sind und ein Wasserstoffatom, Halogenatom oder eine Cι-C20 - kohlenstoffhaltige Gruppe bedeuteten, bevorzugt eine lineare oder verzweigte Ci-Cis-Alkylgruppe, wie Methyl, Ethyl, tert.-Butyl, Cy- clohexyi oder Octyl, C2-Cιo-Alkenyi, C3-Cιs-Alkylalkenyl, eine Cß-Cis-Arylgruppe, die gegebenenfalls substituiert sein kann, insbesondere Phenyl, Tolyl, Xylyl, tert.-Bu- tylphenyl, Ethylphenyl, Di-tert. -butyi-phenyl, Naphthyl, Acenaphthyl, Phenanthrenyl oder A thracenyl, C5-Cι8-Hete- roaryl wie Pyridyl, Furyl oder Chinolyl, C7-C2_-Arylal- kyl, C7-C2o-Alkylaryl, f luorhaltiges Cι-Cι2-Alkyl, fluorhaltiges C6-Cι8-Aryl, fluorhaltiges C -C o-Arylalkyl oder f luorhaltiges C7_C2o~Alkylaryl sind, und zwei Reste R8 oder R9 ein mono- oder polycyclisches Ringssystem bilden können, das seinerseits gegebenenfalls substituiert sein kann,
X ein Halogenatom, insbesondere Chlor, ist,
Y ein Element der 6. Hauptgruppe des Periodensystems der
Elemente, insbesondere Sauerstoff oder Schwefel, oder ein Fragment CR3 2, NR3, NR3(CO)-, NR3(S02)-, PR 3 , P(=0)R3, O(CO)- oder 0(S02)- ist,
1, 1' gleich oder verschieden eine ganze Zahl zwischen Null und 4, bevorzugt 1 oder 2, besonders bevorzugt gleich 1 sind,
m' gleich 1 oder 2 ist,
B ein verbrückendes Strukturelement zwischen den beiden
Indenylresten bezeichnet.
Beispiele für B sind Gruppen M3R13R14, worin M3 Kohlenstoff, Sili- zium, Germanium oder Zinn ist, bevorzugt Kohlenstoff und Silizium, und R13 und R14 gleich oder verschieden Wasserstoff, eine Cι-C2o~kohlenwasserstof fhaltige Gruppe wie Cι-Cιo-Alkyl, C6-Cι -Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist B gleich CH2, CH2CH2, CH(CH3)CH2, CH (C4H9 ) C (CH3 ) 2 , C(CH3)2, (CH3)2Si, (CH3)2Ge, (CH3)2Sn, (C6H5)2C, (C6H5)2Si, (C6H5) (CH3) Si,
Si(CH3) (SiR20R21R22), (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2, o-C6H4 oder 2 , 2 ' - (C6H4) . Wobei R20R21R22 gleich oder verschieden eine Cι-C2o_kohlenwasserstof f-haltige Gruppe wie Cι-Cι0-Alkyl oder C6-Cι -Aryl bedeuten.
Ganz besonders bevorzugt wird ein Auf reinigungsverf ahren, wobei aus einem verbrückten Metallocen der Formel (Ila) ein verbrücktes Metallocen der Formel (II) gebildet wird, worin
M gleich Zirkonium ist, R3 gleich oder verschieden Wasserstoff oder eine Cι-C3o - kohlenstoffhaltige Gruppe, bevorzugt Cι-Cιc-Alkyl, wie Methyl, Ethyl, n-Propyi, iso-Propyl, tert.-Butyl, Cyclohexyl oder Octyl, C -Cι2-Alkenyl, C6-C24-Aryl, C5-C24-Hete- roaryl wie Pyridyl, Furyl oder Chinolyl, C -C30-Arylal- kyl, C7-C30-Alkylaryl, f luorhaltiges C6-C 4-Aryl, fluorhaltiges C7-C3o~Arylalkyl oder f luorhaltiges C7_C30-Alky- laryl ist,
R4, R6 gleich oder verschieden sind und ein Wasserstoffatom oder eine Cι-Cι -Alkylgruppe, bevorzugt eine Alkylgruppe wie Methyl, Ethyl, n-Butyl, oder Octyl sind, besonders bevorzugt Methyl oder Ethyl ist,
R5, R7 gleich Wasserstoffatome sind,
R8 und R9 gleich oder verschieden sind und ein Wasserstoffatom,
Halogenatom oder eine Cι-C2o ~ kohlenstoffhaltige Gruppe bedeuten, bevorzugt eine lineare oder verzweigte Ci-Cs-Alkylgruppe, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C -C6-Alkenyl, C3-C.6-Alkylalkenyl, eine C6~C_8-Arylgruppe, die gegebenenfalls substituiert sein kann, insbesondere Phenyl, Tolyl, Xylyl, tert. -Butylphe- nyl, Ethylphenyl, Di-tert. -butyl-phenyl, Naphthyl, Ace- naphthyl, Phenanthrenyl oder Anthracenyl, C5-Cι8-Hetero- aryl wie Pyridyl, Furyl oder Chinolyl, C7-Cι2-Arylalkyl C7-Cι2-Alkylaryl, fluorhaltiges Cι-C8-Alkyl, fluorhaltiges c 6-Cι8"~Aryl, fluorhaltiges C7-Cι2-Arylalkyl oder fluorhal- tiges C7_Cι2-Alkylaryl ist,
Chlor ist,
Y ein Element der 6. Hauptgruppe des Periodensystems der
Elemente, insbesondere Sauerstoff oder Schwefel, oder ein Fragment CR3 2, NR3, NR3(CO)-, NR3(S02)-, PR3, P(=0)R3,
O(CO)- oder 0(S02)- ist,
1, 1' gleich oder verschieden eine ganze Zahl zwischen Null und 4, bevorzugt 1 oder 2, besonders bevorzugt gleich 1 ist,
m' gleich 1 oder 2 ist , bevorzugt 1 , und
B ein verbrückendes Strukturelement zwischen den beiden
Indenylresten bezeichnet , wobei bevorzugt B gleich (CH3 ) 2Si , (CH3 ) 2Ge, (C6H5 ) 2Si , (C6H5 ) (CH3 ) Si , CH2CH2 , CH(CH3)CH2, CH(C4H9)C(CH3)2, CH2 , C(CH3)2, (C5H )2C ist, besonders bevorzugt (CH3)2Si, CH2 und CH2CH2 ist.
Im Falle, daß Y = Sauerstoff und R3 gleich Alkenyl, können im Alkenylrest einzelne CH2-Einheiten durch C=0, C(0)0 oder C(0)NR3 substituiert sein.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren erhaltenen Metallocene der Formeln I und II zeichnen sich dadurch aus, daß sie im Vergleich zu den entsprechenden Metallocen der Formeln
(la) und (Ila) eine deutlich bessere Löslichkeit in inerten organischen Lösungsmitteln zeigen. Eine deutlich besser Löslichkeit soll bedeutet, daß sich die molaren Konzentrationen in organischen Lösungsmitteln mindestens verdoppeln, bevorzugt mehr als vervierfachen und ganz besonders bevorzugt mehr als verachtfachen.
Als inerte organische Lösungsmittel für Metallocene werden für gewöhnlich aliphatische oder aromatische Kohlenwasserstoffe, aber auch halogenhaltige, Sauerstoffhaltige oder stickstoffhaltige
Kohlenwasserstoffe eingesetzt. Nicht einschränkende Beispiele für die einzelnen Lösungsmittelklassen sind Heptan, Toluol, Dichlor- benzol, Methylenchlorid, Tetrahydrofuran oder Triethylamin.
Bevorzugt werden bei dem erfindungsgemäßen Aufreinigungsverfahren Metallocene der Formeln (la) und (Ila) , also racemische Metallo- cendichloride, eingesetzt, wie sie in EP-A-0485823, EP-A-0549900, EP-A-0576970, WO 98/22486 und WO 98/40331 genannt werden. Diese sind Bestandteil der vorliegenden Beschreibung.
Es können aber auch beliebige Gemische aus dem racemischen Metallocendichlorid der Formel (lila) mit dem entsprechenden meso-Metallocendichlorid der Formel (Illb) bei dem erfindungsgemäßen Aufreinigungsverfahren eingesetzt werden, wobei die Symbole und Indices wie bei Formel (Ila) definiert sind.
pseudo-rac pseudo-meso
Die in dem erfindungsgemäßen Aufreinigungsverfahren eingesetzten Metallocene der Formeln (la) und (Ila) , bevorzugt die Metallocene der Formel (Ila) , können so eingesetzt werden, wie sie direkt aus der Metallocen-Synthese zusammen mit den anorganischen, metallorganischen und organischen Nebenprodukten entstehen, oder wie sie nach Abtrennung eines Großteils der Nebenprodukte gemäß einem der oben genannten bekannten Aufreinigungsverfahren erhalten werden können .
Erläuternde, jedoch nicht einschränkende Beispiele für die bei dem erfindungsgemäßen Aufreinigungsverfahren einsetzbaren Metallocene der Formel (la) oder (Ila) sind:
Dirnethylsilandiylbis (indenyl) -zirkoniumdichlorid Dirnethylsilandiylbis (2-methyl-indenyl) -zirkoniumdichlorid Methylidenbis (2-methyl-indenyl) -zirkoniumdichlorid Isopropylidenbis (2-methyl-indenyl) -zirkoniumdichlorid Dirnethylsilandiylbis (2-methyl-benzo-indenyl) -zirkoniumdichlorid Dirnethylsilandiylbis (4-naphthyl-indenyl) -zirkoniumdichlorid Dirnethylsilandiylbis (2-methyl-4- (1-naphthyl) -indenyl) -zirkonium- dichlorid
Methylidenbis (2-methyl-4- (1-naphthyl) -indenyl) -zirkoniumdichlorid Isopropylidenbis (2-methyl-4- (1-naphthyl) -indenyl ) -zirkoniumdichlorid Dirnethylsilandiylbis (2-methyl-4- (2-naphthyl) -indenyl) -zirkonium- dichlorid
Dirnethylsilandiylbis (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid
Methylidenbis (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid Isopropylidenbis (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4-t-butyl-indenyl) -zirkoniumdichlorid Dime hylsilandiylbis (2-methyl-4-isopropyl- ndenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4-ethyl-indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2 , 4-dimethyl-indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-ethyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4-ethyl-indenyi ) -zirkoniumdichlorid Dimethylsilandiylbis (2-ethyl-4 -phenyl-indenyl) -zirkoniumdichlorid Dimethylsilandiybis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid Methylidenbis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid Isopropylidenbis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4 , 6 diisopropyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl- , 5 diisopropyl-indenyl) -zirkonium- dichlorid
Dimethylsilandiylbis (2,4, 6-trimethyl-indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2,5, 6-trimethyl-indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2,4, 7-trimethyl-indenyi) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-5-isobutyl-indenyl) -zirkoniumdich- lorid
Dimethylsilandiylbis (2-methyl-5- t-butyl-indenyl) -zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-4 , 6 diisopropyl-indenyl) -zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4-isopropyl-indenyl) -zirkoniumdichlorid
Methyl (phenyl) silandiylbis (2-methyl-4 , 5-benzo-indenyl) -zirkonium- dichlorid
Methyl (phenyl) silandiylbis (2-methyl-indenyl) -zirkoniumdichlorid Methyl (phenyl) silandiylbis (2-methyl-5-isobutyl-indenyl) -zirkoniumdichlorid
1, 2-Ethandiylbis (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid 1, 4-Butandiylbis (2-methyi-4-phenyl-indenyl) -zirkoniumdichlorid 1, 2-Ethandiylbis (2-methyl- , 6 diisopropyl-indenyl) -zirkoniumdichlorid
1, 4-Butandiylbis (2-methyl-4-isopropyl-indenyl) -zirkoniumdichlorid 1, 4-Butandiylbis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid 1, 2-Ethandiylbis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid 1, 2-Ethandiylbis (2,4, 7-trimethyl-indenyl) -zirkoniumdichlorid 1, 2-Ethandiylbis (2-methyl-indenyl) -zirkoniumdichlorid 1, 4-Butandiylbis (2-methyl-indenyl) -zirkoniumdichlorid [4- (η5-Cyclopentadienyl) -4,6, 6-trimethyl- (η5-4, 5-tetrahydropenta- len) ] - zirkoniumdichlorid
[4- (η5-3'-Trimethylsilyl-cyclopentadienyl) -4,6, 6-trimethyl- (η5-4 , 5-tetrahydropentalen) ] -zirkoniumdichlorid [4- (η5-3 ' -Isopropyl-cyclopentadienyl) -4,6, 6-trimethyl- (5-4 , 5-te- trahydropentalen) ] - zirkoniumdichlorid
[4- (η5-Cyclopentadienyl) -4 , 7 , 7-trimethyl- (η5-4 ,5,6, 7-tetrahydroin- denyl) ] - zirkoniumdichlorid [4- (η5-3' -tert.Butyl-cyclopentadienyl) -4,7, 7-trimethyl- (η5-4 ,5,6, 7-tetrahydroindenyl ) ] - zirkoniumdichlorid 4- (η5-3' -Methylcyclopentadienyl) -4,7, 7-trimethyl- (5-4, 5, 6, 7-tetra- hydroindenyl ) ] - zirkoniumdichlorid
4- (η5-3' -Trimethylsilyl-cyclopentadienyl) -2-trimethylsi- lyl-4, 7, 7-trimethyl- (η5-4, 5,6, 7-tetrahydroindenyl) ] - zirkoniumdichlorid
Dimethylsilandiylbis (tetrahydroindenyl) -zirkoniumdichlorid Isopropyliden-bisindenyl-zirkoniumdichlorid
Isopropyliden-cyclopentadienyl-9-fluorenyl-zirkoniumdichlorid Isopropyliden-cyclopentadienyl-indenyl-zirkoniumdichlorid
Diphenylmethyliden- (cyclopentadienyl) - (9-fluorenyl) -zirkoniumdichlorid
Diphenylmethyliden- (3-methyl-cyclopentadienyl) - (9-fluorenyl) -zirkoniumdichlorid Diphenylmethyliden- (3-isopropyl-cyclopentadienyl) - (9-fluorenyl) - zirkoniumdichlorid
Diphenylmethyliden- (3-tert . -butyl-cyclopentadienyl) - (9-fluorenyl ) -zirkoniumdichlorid
Dimethylsilandiyl-cyclopentadienyl-9-fluorenyl-zirkoniumdichlorid Diphenylsilandiyl-cyclopentadienyl-9-fluorenyl-zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4- (tert-butyl-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4-trifluormethyl-phenyl-in- denyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4- (4-methoxy-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-methyl-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-ethyl-phenyl-indenyl) -zirkoni- umdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-trifluormethyl-phenyl-indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4-methoxy-phenyl-indenyl ) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (3' , 5' -di-ter .-butyl-phenyl) -indenyl) -zirkoniumdichlorid
Methylidenbis (2-methyl-4- (4' -tert . -butyl-phenyl) -indenyl) -zirko- niumdichlorid
Isopropylidenbis (2-methyl-4- (4 ' -tert . -butyl-phenyl ) -indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4- (4 ' -methyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -ethyl-phenyl) -indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-methyl-4- (4 ' -n-propyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -iso-propyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -n-butyl-phenyl) -indenyl) -zir- koniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -hexyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-methyl-4- (4 ' -sec-butyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-ethyl-4-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -methyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -ethyl-phenyl) -indenyl) -zirko- niumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -n-propyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -iso-propyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-ethyl-4- (4 ' -n-butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -hexyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -pentyl-phenyl ) -indenyl) -zirko- niumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4 ' -cyclohexyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (4' -sec-butyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-ethyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-ethyl-4- (3' , 5' -di-tert. -butyl-phenyl) -indenyl) -zirkoniumdichlorid
Methylidenbis (2-ethyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) -zirkoni- umdichlorid
Isopropylidenbis (2-ethyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4-phenyl) -indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-n-propyl-4- (4 ' -methyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-n-propyl-4- (4 ' -ethyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4 ' -n-propyl-phenyl) -indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-n-propyl-4- (4 ' -iso-propyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyi-4- (4 ' -n-butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4 ' -hexyl-phenyl) -indenyl) -zir- koniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4 ' -cyclohexyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (4' -sec-butyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-n-propyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-propyl-4- (3 ' , 5' -di-tert . -butyl-phenyl) - indenyl) -zirkoniumdichlorid
Methylidenbis (2-n-propyl-4- (4' -tert. -butyl-phenyl) -indenyl) -zir- koniumdichlorid
Isopropylidenbis (2-n-propyl-4- (4 ' -tert .-butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4-phenyl) -indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-n-butyl-4- (4' -methyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -ethyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -n-propyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -iso-propyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4' -n-butyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-n-butyl-4- (4' -hexyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -cyclohexyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4 ' -sec-butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-n-butyl-4- (4' -tert . -butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl- -phenyl) -indenyl) zirkoniumdichlorid Dimethylsilandiylbis (2-hexyl-4- (4' -methyl-phenyl) -indenyl) -zirko- niumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -ethyl-phenyl) -indenyl) -zirkoniumdichlorid Dimethylsilandiylbis (2-hexyl-4- (4' -n-propyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4 ' -iso-propyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylsilandiylbis (2-hexyl-4- (4' -n-butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyi-4- (4 ' -hexyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4' -cyclohexyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4' -sec-butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiylbis (2-hexyl-4- (4' -tert . -butyl-phenyl) -indenyl) - zirkoniumdichlorid Dimethylgermandiylbis (2-ethyl-4- (4' -tert . -butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylgermandiylbis (2-methyl-4- ( ' -tert. -butyl-phenyl) -indenyl)- zirkoniumdichlorid
Ethylidenbis (2-ethyl-4-phenyl) -indenyl) -zirkoniumdichlorid Ethylidenbis (2-ethyl-4- (4' -tert. -butyl-phenyl) -indenyl) -zirkoniumdichlorid
Ethylidenbis (2-n-propyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) -zirkoniumdichlorid
Ethylidenbis (2-methyl- - (4 ' -tert .-butyl-phenyl) -indenyl) -zirkoni- umdichlorid
Methylethylidenbis (2-ethyl-4- (4 ' -tert. -butyl-phenyl) -indenyl) - zirkoniumdichlorid
Dimethylsilandiyl (2-methylazapentalen) (2-methyl-indenyl) -zirkoniumdichlorid Dimethylsilandiyl (2-methylazapentalen) (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-methylazapentalen) (2-methyl-4 , 5-benzo- indenyl)
-zirkoniumdichlorid Dimethylsilandiyl (2-methylazapentalen) (2-ethyl-4- (4' -tert-butyl- phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-methylazapentalen) (2-methyl-4- (4 ' -tert .-butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-methylazapentalen) (2-n-propyl-4- (4 ' -tert . -bu- tyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-ethylazapentalen) (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-ethylazapentalen) (2-methyl-4-phenyl-indenyl) - zirkoniumdichlorid Dimethylsilandiyl (2-ethylazapentalen) (2-methyl-4, 5-benzo-indenyl) -zirkoniumdichlorid Dimethylsilandiyl (2-ethylazapentalen) (2-ethyl-4- (4 ' -tert-butyl- phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-ethylazapentalen) (2-methyl-4- (4' -tert . -butyl- phenyl) -indenyl) -zirkoniumdichlorid Dimethylsilandiyl (2-ethylazapentalen) (2-n-propyl- - (4' -tert. - butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-methylthiapentalen) (2-methyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-methylthiapentalen) (2-methyl-4-phenyl-inde- nyl)
-zirkoniumdichlorid
Dimethylsilandiyl (2-methylthiapentalen) (2-methyl-4 , 5-benzo-inde- nyl)
-zirkoniumdichlorid Dimethylsilandiyl (2-methylthiapentalen) (2-ethyl-4- (4 ' -tert . - butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-methylthiapentalen) (2-n-propyl-4- (4' -tert. - butyl-phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-ethylthiapentalen) (2-methyl-indenyl) -zirkoni- umdichlorid
Dimethylsilandiyl (2-ethylthiapentalen) (2-methyl-4-phenyl-indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-ethylthiapentalen) (2-methyl-4, 5-benzo-inde- nyl) -zirkoniumdichlorid Dimethylsilandiyl (2-ethylthiapentalen) (2-ethyl-4- (4 ' -tert. -butyl- phenyl) -indenyl) -zirkoniumdichlorid
Dimethylsilandiyl (2-ethylthiapentalen) (2-n-propyl-4- (4 ' -tert .- butyl-phenyl) -indenyl) -zirkoniumdichlorid
Bei dem erfindungsgemäßen Aufreinigungsverfahren wird mindestens ein Metallocenhalogenid der Formel (la) oder (Ila) mit mindestens einer Ligandaustauschkomponente U^-YR3 umgesetzt, wobei die Metallocene der Formel (I) oder (II) entstehen. Dabei dient die Ligandaustauschkomponente zur Einführung des Liganden Y-R3. Die Metallo- cene der Formel (I) und (II) lassen sich auf Grund ihrer guten Löslichkeit mit guten Raum-Zeit-Ausbeuten durch Kristallisation in der benötigten Qualität gewinnen. Die bei dem Ligandaustausch entstehenden Salze lassen sich beispielsweise durch bekannte Filtrationstechniken entfernen.
Dabei ist M1 gleich einem Kation oder Kationfragment wie beispielsweise Li, Na, K, MgCl, MgBr, Mgl oder das mit einem Amin korrespondierende Ammoniumkation, und die übrigen Reste sind wie oben definiert.
Der Austausch der Halogenidliganden in Metallocenhalogeniden durch andere Liganden ist im Prinzip bekannt. Insbesondere der Austausch von Chloridliganden durch andere Anionen, die als Liganden am Zirkonocen dienen können, ist beschrieben worden (z. B. : Austausch Chlorid gegen Aryloxid: T. Repo et al., J. Organo- met. Chem. 541 (1997), 363 und dort zitierte Literatur; B. Khera et al., Polyhedron 3 (5), (1984), 611 und dort zitierte Literatur; B. Khera et al . , Polyhedron 2 (11), (1983), 1177; Austausch Chlorid gegen Alkyl oder Aryl : E.W. Abel, F.G. Stone, G. Wilkin- son, Comprehensive Organometallic Chemistry II, Volume 4, Else- vier Science Ltd., S. 573, 575, 577; Austausch Chlorid gegen Car- boxylat: E.W. Abel, F.G. Stone, G. Wilkinson, Comprehensive Organometallic Chemistry II, Volume 4, Elsevier Science Ltd., S. 525; Austausch Chlorid gegen verschiedene weitere Anionen: E.W. Abel, F.G. Stone, G. Wilkinson, Comprehensive Organometallic Chemistry II, Volume 4, Elsevier Science Ltd., Kapitel 5, 10 und 11)
Bei dem erfindungsgemäßen Aufreinigungsverfahren werden zunächst Metallocenhalogenide mit Salzen der Formel M^Y-R3 in einen inerten Lösungsmittel oder Lösungsmittelgemisch in einem Temperatur - bereich von 0°C bis +200°C umgesetzt, bevorzugt in einem Tempera - turbereich von 40°C bis 140°C, besonders bevorzugt bei einer Temperatur zwischen 60°C und 110°C.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren eingesetzte Verbindung M1-Y-R3 läßt sich beispielsweise durch Deprotonierung der aciden Verbindung
H-Y-R3 mit einer geeigneten Base, wie zum Beispiel Butyllithium, Methyllithium, Natriumhydrid, Kaliumhydrid, Natrium, Kalium, Gri - gnardverbindungen oder auch Aminen in einem inerten Lösungsmittel oder Lösungsmittelgemisch herstellen, oder M1-Y-R3 ist ein kommerziell erhältliches Metallorganyl wie ein Lithiumorganyl, zum Beispiel Methyllithium, ein Aluminiumorganyl , wie zum Beispiel Tri- methylaluminium, oder eine Grignardverbindung, wie zum Beispiel Benzylmagnesiumchlorid.
Nichteinschränkende Beispiele für geeignete Lösungsmittel sind Kohlenwasserstoffe, die halogeniert sein können, wie Benzol, Toluol, Xylol, Mesitylen, Ethylbenzol, Chlorbenzol, Dichlorben- zol, Fluorbenzol, Dekalin, Tetralin, Pentan, Hexan, Cyclohexan, Ether wie Diethylether, Di-n-Butylether, tert. -Butyl-methylether (MTBE) , Tetrahydrofuran (THF) , 1, 2-Dimethoxyethan (DME) , Anisol, Triglyme, Dioxan, Amide wie Dimethylformamid (DMF) , Dimethylacet- amid, N-Methyl-2-pyrrolidinon (NMP) , Sulfoxide wie Dimethylsulf - oxid (DMSO) , Phosphoramide wie Hexamethylphosphorsäuretriamid, Harnstoff-Derivate wie 1, 3-Dimethyltetrahydro-2 (1H) -pyrimidinon, Ketone wie Aceton, Ethylmethylketon, Ester wie Essigsäureethyl- ester, Nitrile wie Acetonitril sowie beliebige Gemische aus jenen Stoffen. Bevorzugt werden Lösungsmittel oder Lösungsmittelgemi - sehe in denen ebenfalls direkt die anschließende Umsetzung mit dem Metallocendichlorid durchgeführt werden kann. Nichteinschränkende Beispiele hierfür sind Toluol, Hexan, Heptan, Xylol, Tetrahydrofuran (THF) , Dimethoxyethan (DME) , Toluol/THF, Heptan/DME oder Toluol/DME.
Bei den Verbindungen des Typs H-Y-R3 handelt es sich beispielsweise um die Stoffklassen der Alkohole, der Phenole, der Carbonsäuren, der Alkyl- und Arylsulfonsäuren, der primären und sekundären Amine, der primären und sekundären Aniline, der Carbonsäure amide, der Sulfonsäureamide, der Dialkyl- oder Diarylphosphine und der Dialkyl- oder Diarylphosphinoxide. Beispiele für CH- aeide, enolisierbare Verbindungen H-Y-R3 sind Malonsäureester, Cyanessigester, Acetessigester, 1, 3-Diketone, enolisierbare Ester und enolisierbare Ketone. Bevorzugt enthalten Verbindungen des Typs H-Y-R3 nur eine funktioneile Gruppe H-Y und der Rest R3 ist wie oben beschrieben definiert.
Erläuternde, jedoch nicht einschränkende Beispiele für die erfindungsgemäß einsetzbaren Verbindungen der Formel K-Y-R3 sind:
2, 4-Di-tert. -butyl-phenol; 2 , 6-Di-tert . -butyl-phenol; 3,5-Di- tert . -butyl-phenol; 2, 6-Di-sec. -butyl-phenol; 2, 4-Dimethylphenol; 2, 3-Dimethylphenol; 2, 5-Dimethylphenol; 2 , 6-Dimethylphenol;
3, 4-Dimethylphenol; 3, 5-Dimethylphenol; Phenol; 2-Methylphenol; 3-Methylphenol; 4-Methylphenol ; 2-Ethylphenol; 3-Ethylphenol; 4-Ethylphenol; 2-sec.-Butylphenol; 2-tert . -Butylphenol ; 3-tert. - Butylphenol; 4-sec. -Butylphenol; 4-tert. -Butylphenol; 2-Isopro- pyl-5-methylphenol; 4-Isopropyl-3-methylphenol; 5-Isopropyl-2-me- thylphenol; 5-Isopropyl-3-methylphenol; 2, 4-Bis- (2-methyl-2-bu- tyl) -phenol; 2, 6-Di-tert . -butyl-4-methylphenol; 4-Nonylphenol;
2-Isopropylphenol; 3-Isopropylphenol; 4-Isopropylphenol; 2-Pro- pylphenol; 4-Propylphenol; 2 , 3 , 5-Trimethylphenol; 2,3,6-Trime- thylphenol; 2 , 4, 6-Trimethylphenol; 3, 4, 5-Trimethylphenol;
2-tert. -Butyl-4-methylphenol; 2-tert. -Butyl-5-methylphenol;
2-tert .-Butyl-6-methylphenol ; 4- (2-Methyl-2-butyl) -phenol;
2-tert.-Butyl-4-ethylphenol; 2, 6-Diisopropylphenol; 4-Octylphe- nol; 4- (1 , 1, 3 , 3-Tetramethylbutyl) -phenol; 2 , 6-Di-tert . -bu- tyl-4-ethylphenol; 4-sec. -Butyl-2 , 6-di-tert. -butylphenol; 4-Dode- cylphenol; 2, 4, 6-Tri-tert . -butylphenol; 3- (Pentadecyl) -phenol;
2-Methyl-l-naphthol;
1-Naphthol; 2-Naphthol; 1-Acenaphthenol; 2-Hydroxybiphenyl; 3-Hy- droxybiphenyl; 4-Hydroxybiphenyl ; Hydroxypyridine; Hydroxychino- line; 2-Hydroxycarbazol; Hydroxychinaldine; 8-Hydroxychinazolin; 2-Hydroxychinoxalin; 2-Hydroxydibenzofuran; 2-Hydroxydiphenylme- than, 1-Hydroxyisochinoline, 5, 6 , 7 , 8-Tetrahydro-l-naphthol; Me- thanol; Ethanol; Propanol; Isopropanol; Butanol; tert-Butanol; Isobutanol; 2-Butanol; Hexanol; Cyclohexanol; Octadecanol; Benzy- lalkohol; 2-Methylbenzylalkohol ; 3-Methylbenzylalkohol; 4-Methyl- benzylalkohol; Anilin; N-Methylanilin; o-Toluidin; 2 , 3-Dimethyla- nilin; 2, 4-Dimethylanilin; 2 , 5-Dimethylanilin; 2, 6-Dimethylani- lin; N-Ethylanilin; 2-Ethylanilin; N-Ethyl-o-toluidin; N-Ethyl- m-toluidin; 2-Isopropylanilin; 2-Propylanilin; 2 , 4 , 6-Trimethyla- nilin; 2-tert. -Butylanilin; 2 , 3-Dimethyl-N-ethylanilin; Isopropy- lamin; tert . -Butylamin; Diethylamin; N-Methylisopropylamin; N-Ethylisopropylamin; Diisopropylamin; N-Methyl-tert. -butyl-amin; N-Benzylmethylamin; 2-Methylbenzylamin; 3-Methylbenzylamin; 4-Me- thylbenzylamin; 1-Phenylethylamin; 2-Phenylethylamin; Essigsäure; Propionsäure; Buttersäure; Phenylessigsäure; Benzoesäure; Tolyl- säure; Dimethylbenzoesäure; 4-tert . -Butylbenzoesäure; Methansul- fonsäure; Trifluormethansulfonsäure; p-Toluolsulfonsäure; N-Me- thylacetamid; N-Methylpropionsäureamid; Benzamid; Diphenyl- phosphin; Malonsäuredimethylester; Malonsäurediethylester; Me- thylmalonsäuredimethylester; Methylmalonsäurediethylester; Ethyl - malonsäurediethylester; Acetessigsäuremethylester; Acetessigsäu- reethylester ; 2-Ethyl-acetessigsäureethylester; 1, 3-Pentandion; Dibenzoylmethan; Phenylessigsäuremethylester; Isobuttersäure- methylester; Acetophenon; tert .-Butylmethylketon und Phenylace- ton.
Das molare Verhältnis von Reagenz M1-Y-R3 zum Metallocenhalogenid, insbesondere zum Metallocendichlorid (z. B. der Formel III) liegt im allgemeinen zwischen 5 : 1 bis 0.8 : 1 bevorzugt zwischen 2.5 : 1 bis 0.9 : 1.
Die Konzentration an Metallocendichlorid (z. B. der Formel Ila) bzw. an Reagenz M^Y-R3 in der Reaktionsmischung liegt im allgemeinen im Bereich zwischen 0,001 mol/1 und 8 mol/1, bevorzugt im Bereich zwischen 0,01 und 3 mol/1, besonders bevorzugt im Bereich zwischen 0,05 mol/1 und 2 mol/1.
Die Dauer der Umsetzung des Metallocendichlorids (z. B. der Formel Ila) mit dem Reagenz Mi-Y-R3 liegt im allgemeinen im Bereich zwischen 5 Minuten und 1 Woche, bevorzugt im Bereich zwischen 15 Minuten und 48 Stunden.
Nach Umwandlung der Metallocene der Formeln (la) und (Ila) in die Metallocene der Formeln (I) und (II), werden vor dem Auskristal- lisieren der neuen Metallocene bevorzugt unlösliche Bestandteile wie zum Beispiel die gebildeten Salze oder Metalloxyhalogenide abgetrennt. Bevorzugt wird dazu eine Lösung oder Suspension der neuen Metallocene in dem inerten Lösungsmittel oder Lösungsmittelgemisch, das schon bei der Ligandaustauschreaktion eingesetzt wurde, filtriert und extrahiert. Bevorzugt wird die Umkristallisation in aprotischen Kohlenwasserstoffen, insbesondere polaren, aprotischen Kohlenwasserstoffen, durchgeführt. Besonders bevorzugt sind Toluol, Hexan, Heptan, Xylol, Tetrahydrofuran (THF), Dimethoxyethan (DME), Toluol/THF, Heptan/DME oder Toluol/DME.
Das bei der Extraktion eingesetzte Lösungsmittel bzw. Lösungsmittelgemisch hat eine Temperatur zwischen 20°C und der Siedetemperatur des Lösungsmittels bzw. des Lösungsmittelgemisches. Bevorzugt wird bei der Extraktion in einem Temperaturbereich 0-20°C unter- halb der Siedetemperatur gearbeitet. Die so gewonnene Lösung des neuen Metallocens wird eventuell eingeengt, und anschließend kristallisiert das neue Metallocen aus. Die Kristallisation wird im Temperaturbereich von -78°C bis 200°C durchgeführt, bevorzugt im Bereich von -30°C bis 110°C, besonders bevorzugt im Bereich von -15°C bis 30° C.
Das durch Kristallisation anfallende aufgereinigte Metallocen kann wiederum durch Filtrationstechniken von der Mutterlauge isoliert werden.
Mit Hilfe des erfindungsgemäßen Verfahrens kann in vorhandenen Apparaturen mindestens doppelt soviel Metallocen aufgereinigt werden wie bisher. In bevorzugten Ausführungsformen wird dieser Faktor noch deutlich übertroffen, so daß kostspielige Kapazitä - serweiterungen vermieden werden können.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren erhältlichen Metallocene der Formeln I und II sind hochaktive Katalysatorkomponenten für die Olefinpolymerisation. Je nach Substitutionsmu- ster der Liganden können die Metallocene als Isomerengemisch anfallen. Die Metallocene werden für die Polymerisation bevorzugt isomerenrein eingesetzt.
Bevorzugt werden die pseudo-rac isomeren Metallocene der Formel II eingesetzt.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren erhältlichen Metallocene der Formeln I und II eignen sich insbesondere als Bestandteil von Katalysatorsystemen zur Herstellung von Polyolefi- nen durch Polymerisation von mindestens einem Olefin in Gegenwart eines Katalysators, der mindestens einen Cokatalysator und mindestens ein Metallocen enthält. Unter dem Begriff Polymerisation wird eine Homopolymerisation wie auch eine Copolymerisation verstanden.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren erhältlichen Metallocene der Formeln I und II, insbesondere der Formel II, können zur Polymerisation eines oder mehrerer Olefine der Formel Rα-CH=CH-Rß verwendet werden, worin Rα und R^ gleich oder ver- schieden sind und ein Wasserstoffatom oder einen Kohlenwasserstoff mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen, bedeuten, und R und R^ zusammen mit den sie verbindenden Atomen einen oder mehrere Ringe bilden können. Beispiele für solche Olefine sind 1-Olefine mit 2 - 40, vorzugsweise 2 bis 10 C-Atomen, wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 4-Methyl-l-penten oder 1-Octen, Styrol, Diene wie 1 , 3-Butadien, 1, 4-Hexadien, Vi - nylnorbornen, Norbornadien, Ethylnorbornadien und cyclische Ole- fine wie Norbornen, Tetracyclododecen oder Methylnorbornen. Bevorzugt werden Ethylen oder Propylen homopolymerisiert, oder Ethylen mit einem oder mehreren cyclischen Olefinen, wie Norbornen , und/oder einem oder mehreren Dienen mit 4 bis 20 C-Atomen, wie 1,3-Butadien oder 1, 4-Hexadien, copolymerisiert . Beispiele solcher Copolymere sind Ethylen/Norbornen-Copolymere, Ethylen/ Propylen-Copolymere und Ethylen/Propylen/1, 4-Hexadien-Copolymere.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren erhaltenen Metallocene der Formeln I und II, zeigen gegenüber den Dihalogen- Verbindungen zumindest gleichwertige, zum Teil jedoch höhere Aktivitäten in der Polymerisation von Olefinen, und die erhaltenen Polyolefine zeigen eine Verminderung der unerwünschten niedermolekularen extrahierbaren Anteile.
Die Polymerisation wird bei einer Temperatur von - 60 bis 300 °C , bevorzugt 50 bis 200 °C, ganz besonders bevorzugt 50 - 80 °C durchgeführt. Der Druck beträgt 0,5 bis 2000 bar, bevorzugt 5 bis 64 bar.
Die Polymerisation kann in Lösung, in Masse, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig durchgeführt werden. Eine bevorzugte A sführungform ist die Gasphasen- und Massepolymerisation.
Bevorzugt enthält der eingesetzte Katalysator eine der bei dem erfindungsgemäßen Aufreinigungsverfahren erhältlichen Metallocen- verbindungen. Es können auch Mischungen zweier oder mehrerer Me- tallocenverbindungen eingesetzt werden, z. B. zur Herstellung von Polyolefinen mit breiter oder multimodaler Molmassenverteilung.
Der Cokatalysator, der zusammen mit einem bei dem erfindungsgemäßen Aufreinigungsverfahren erhältlichen Metallocene der Formeln I und II das Katalysatorsystem bildet, enthält mindestens eine Ver- bindung vom Typ eines Aluminoxans oder einer Lewis-Säure oder einer ionischen Verbindung, die durch Reaktion mit einem Metallocen dieses in eine kationische Verbindung überführt.
Als Aluminoxan wird bevorzugt eine Verbindung der allgemeinen Formel (VII)
(R A10)n (VII)
verwendet . Weitere geeignete Aluminoxane können z . B . cyclisch wie in Formel (VI )
oder linear wie in Formel (IV)
oder vom Cluster-Typ wie in Formel (V)
sein. Derartige Aluminoxane werden beispielsweise in JACS 117 (1995), 6465-74, Organometallics 13 (1994), 2957-2969, beschrie- ben.
Die Reste R in den Formeln (IV), (V), (VI) und (VII) können gleich oder verschieden sein und eine Cι-C2.-Kohlenwasserstoff - gruppe wie eine Cι-C6-Alkylgruppe, eine C6-Cι8-Arylgruppe, Benzyl oder Wasserstoff bedeuten, und p eine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeuten.
Bevorzugt sind die Reste R gleich und bedeuten Methyl, Isobutyl, n-Butyl, Phenyl oder Benzyl, besonders bevorzugt Methyl. Sind die Reste R unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff, Methyl und Isobutyl oder Methyl und n-Butyl, wobei Wasserstoff bzw. Isobutyl oder n-Butyl bevorzugt zu 0,01 - 40 % (Zahl der Reste R) enthalten sind.
Das Aluminoxan kann auf verschiedene Arten nach bekannten Verfahren hergestellt werden. Eine der Methoden ist beispielsweise, daß eine Aluminium-kohlenwasserstoffVerbindung und/oder eine Hydri- doaluminium-kohlenwasserstoffVerbindung mit Wasser (gasförmig, fest, flüssig oder gebunden - beispielsweise als Kristallwasser) in einem inerten Lösungsmittel (wie z. B. Toluol) umgesetzt wird.
Zur Herstellung eines Aluminoxans mit verschiedenen Alkylgruppen R werden entsprechend der gewünschten Zusammensetzung und Reaktivität zwei verschiedene Aluminiumtrialkyle (AIR3 + AIR'3) mit Wasser umgesetzt (vgl. S. Pasynkiewicz , Polyhedron 9 (1990) 429 und EP-A-0,302,424) .
Unabhängig von der Art der Herstellung ist allen Aluminoxanlösun- gen ein wechselnder Gehalt an nicht umgesetzter Aluminiumaus- gangsverbindung, die in freier Form oder als Addukt vorliegt, gemeinsam.
Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die Cι-Co-kohlenstoffhaltige Gruppen enthalten, wie verzweigte oder unverzweigte Alkyl- oder Halogenalkyl, wie z.B. Methyl, Propyl, Isopropyl, Isobutyl, Trifluormethyl, ungesättigte Gruppen, wie Aryl oder Halogenaryl, wie Phenyl, Tolyl, Benzylgruppen, p-Fluorophenyl, 3, 5-Difluoro- phenyl, Pentachlorophenyl, Pentafluorophenyl, 3,4,5 Trifluorophe- nyl und 3,5 Di (trifluoromethyl) phenyl .
Beispiele für Lewis-Säuren sind Trimethylaluminium, Triethylalu- minium, Triisobutylaluminium, Tributylaluminium, Trifluoroboran, Triphenylboran,
Tris (4-fluorophenyl)boran, Tris (3, 5-difluorophenyl)boran, Tris (4-fluoromethylphenyDboran, Tris (pentafluorophenyl)boran, Tris (tolyl)boran, Tris (3, 5-dimethylphenyl)boran, Tris (3, 5-difluorophenyl )boran, [ (C6F5)2B0] 2A1-Me, [ (C6F5) 2BO] 3A1 und/oder Tris (3 , 4 , 5-trifluorophenyl )boran. Insbesondere bevorzugt ist Tris (pentafluorophenyl ) boran .
Als ionische Cokatalysatoren werden bevorzugt Verbindungen eingesetzt, die ein nicht koordinierendes Anion enthalten, wie beispielsweise Tetrakis (pentafluorophenyl )borate, Tetraphenylborate, SbFε", CFS03" oder C10". Als kationisches Gegenion werden proto- nierte Lewis-Basen wie z.B. Methylamin, Anilin, Dimethylamin, Diethylamin, N-Methylanilin, Diphenylamin, N,N-Dimethylanilin, Trimethylamin, Triethylamin, Tri-n-butylamin, Methyldiphenylamin, Pyridin, p-Bromo-N, N-dimethylanilin, p-Nitro-N, N-dimethylanilin, Triethylphosphin, Triphenylphosphin, Diphenylphosphin, Tetrahy- drothiophen oder das Triphenylcarbenium eingesetzt.
Beispiele für solche ionische Verbindungen sind
Triethylammoniumtetra (phenyl)borat,
Tributylammoniumtetra (phenyl)borat,
Trimethylammoniumtetra (tolyl)borat ,
Tributylammoniumtetra (tolyl) borat, Tributylammoniumtetra (pentafluorophenyl) borat,
Tributylammoniumtetra (pentafluorophenyl) aluminat,
Tripropylammoniumtetra (dimethylphenyl) borat,
Tributylammoniumtetra ( trifluoromethylphenyl) borat,
Tributylammoniumtetra (4-fluorophenyl)borat, N,N-Dimethylaniliniumtetra (phenyl) borat,
N,N-Diethylaniliniumtetra (phenyl) borat,
N,N-Dimethylaniliniumtetrakis (pentafluorophenyl)borate,
N,N-Dimethylaniliniumtetrakis (pentafluorophenyl) aluminat,
Di (propyl) ammoniumtetrakis (pentafluorophenyl) borat, Di (cyclohexyl) ammoniumtetrakis (pentafluorophenyl)borat,
Triphenylphosphoniumtetrakis (phenyl) borat,
Triethylphosphoniu tetrakis (phenyl) borat,
Diphenylphosphoniumtetrakis (phenyl )borat,
Tri (methylphenyl)phosphoniumtetrakis (phenyl) borat, Tri (dimethylphenyl)phosphoniumtetrakis (phenyl) borat,
Triphenylcarbeniumtetrakis (pentafluorophenyl)borat,
Triphenylcarbeniumtetrakis (pentafluorophenyl) aluminat,
Triphenylcarbeniumtetrakis (phenyl) aluminat,
Ferroceniumtetrakis (pentafluorophenyl) borat und/oder Ferroceniumtetrakis (pentafluorophenyl) aluminat.
Bevorzugt sind Triphenylcarbeniumtetrakis (pentafluorophenyl) borat und/oder
N,N-Dimethylaniliniumtetrakis (pentafluorophenyl) borat .
Es können auch Gemische mindestens einer Lewis-Säure und mindestens einer ionischen Verbindung eingesetzt werden.
Als Cokatalysatorkomponenten sind ebenfalls Boran- oder Carboran- Verbindungen wie z.B.
7, 8-Dicarbaundecaboran (13) ,
Undecahydrid-7 , 8-dimethyl-7, 8-dicarbaundecaboran, Dodecahydrid-l-phenyl-1, 3-dicarbanonaboran,
Tri (butyl) ammoniumundecahydrid-8-ethyl-7 , 9-dicarbaundecaborat, 4-Carbanonaboran (14) Bis (tri (butyl) ammonium)nonaborat, Bis (tri (butyl) ammonium)undecaborat, Bis (tri (butyl) ammonium) dodecaborat,
Bis (tri (butyl) ammonium) decachlorodecaborat, Tri (butyl) ammonium-1-carbadecaborate, Tri (butyl) ammonium-1-carbadodecaborate, Tri (butyl) ammonium-1-trimethylsilyl-l-carbadecaborate, Tri (butyl) ammoniumbis (nonahydrid-1, 3-dicarbonnonaborat) cobal- tate(HI) ,
Tri (butyl) ammoniumbis (undecahydrid-7 , 8-dicarbaundecaborat) fer- rat(III)
von Bedeutung.
Als weitere Cokatalysatoren, die ungeträgert oder geträgert vorliegen können, sind die in EP-A-0924223, DE-A-19622207, ΞP- A-0601830, EP-A-0824112, EP-A-0824113 , WO 99/06414, EP-A-0811627 und DE-A-19804970 genannten Verbindungen zu verwenden.
Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems kann ein beliebiger organischer oder anorganischer, inerter Feststoff sein, insbesondere ein poröser Träger wie Talk, anorgani - sehe Oxide und feinteilige Polymerpulver (z.B. Polyolefine) .
Geeignete anorganische Oxide finden sich in den Gruppen 2,3,4,5,13,14,15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der beiden Elemente und entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten oxiden Trägern eingesetzt werden können, sind z.B. MgO, Zr02, Ti02 oder B203, um nur einige zu nennen.
Die verwendeten Trägermaterialien weisen eine spezifische Oberfläche im Bereich von 10 bis 1000 m2/g, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 μm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 500 m2/g , einem Porenvolumen im Bereich zwischen 0,5 und 3,5 ml/g und einer mittleren Partikel - große im Bereich von 5 bis 350 μm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 bis 400 m2/g, einem Porenvolumen im Bereich zwischen 0,8 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 200 μm. Wenn das verwendete Trägermaterial von Natur aus einen geringen Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine Dehydratisierung oder Trocknung vor der Verwendung unterbleiben. Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und gleichzeitiger Inertgasüberlagerung (z.B. Stickstoff) erfolgen. Die Trocknungstemperatur liegt im Bereich zwischen 100 und 1000 °C, vorzugsweise zwischen 200 und 800 °C. Der Parameter Druck ist in diesem Fall nicht entscheidend. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden betragen. Kürzere oder längere Trocknungsdauern sind möglich, vorausgesetzt, daß unter den gewählten Bedingungen die Gleichgewichtseinstellung mit den Hydroxylgruppen auf der Trägeroberflä- ehe erfolgen kann, was normalerweise zwischen 4 und 8 Stunden erfordert.
Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Hydroxylgruppen auf der Oberfläche mit geeigneten Inertisierungs - mittein zur Reaktion gebracht werden. Durch die Umsetzung mit dem Inertisierungsreagenz können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner negativen Wechselwirkung mit den katalytisch aktiven Zentren führen. Geeignete Inertisierungsmittel sind beispielsweise Siliciumhalo- genide und Silane, wie Siliciumtetrachlorid, Chlortrimethylsilan, Dimethylaminotrichlorsilan oder metallorganische Verbindungen von Aluminium, Bor und Magnesium wie beispielsweise Trimethylalumi- nium, Triethylaluminium, Triisobutylaluminium, Triethylboran, Di- butylmagnesium. Die chemische Dehydratisierung oder Inertisierung des Trägermaterials erfolgt beispielsweise dadurch, daß man unter Luft- und Feuchtigkeitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösungsmittel mit dem Inertisierungsreagenz in reiner Form oder gelöst in einem geeigneten Lösungs- mittel zur Reaktion bringt. Geeignete Lösungsmittel sind z.B. aliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Toluol oder Xylol. Die Inertisierung erfolgt bei Temperaturen zwischen 25 °C und 120 °C, bevorzugt zwischen 50 und 70 °C. Höhere und niedrigere Temperaturen sind möglich. Die Dauer der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevorzugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemischen Dehydratisierung wird das Trägermaterial durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigneten inerten Lösungsmitteln wie sie bereits zuvor beschrieben wor- den sind gewaschen und anschließend im Inertgasstrom oder im Vakuum getrocknet. Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösungsmittelresten oder anderen Verunreini- gungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden.
Das Katalysatorsystem wird hergestellt, indem mindestens ein Metallocen als rac-meso-Isomerengemisch, mindestens ein Cokatalysa- tor und mindestens ein inertisierter Träger gemischt werden.
Zur Darstellung des geträgerten Katalysatorsystems wird mindestens eine der oben beschriebenen bei dem erfindungsgemäßen Auf- reinigungsverfahren erhältlichen Metallocen-Komponenten in einem geeigneten Lösungsmittel mit mindestens einer Cokatalysatorkompo- nente in Kontakt gebracht, wobei bevorzugt ein lösliches Reaktionsprodukt , ein Addukt oder ein Gemisch erhalten wird. Die so erhaltene Zubereitung wird dann mit dem dehydratisierten oder inertisierten Trägermaterial vermischt, das Lösungsmittel entfernt und das resultierende getragerte Metallocen-Katalysator- system getrocknet, um sicherzustellen, daß das Lösungsmittel vollständig oder zum größten Teil aus den Poren des Trägermaterials entfernt wird. Der getragerte Katalysator wird als frei fließendes Pulver erhalten.
Ein Verfahren zur Darstellung eines frei fließenden und gegebenenfalls vorpolymerisierten geträgerten Katalysatorsystems umfaßt die folgenden Schritte:
a) Herstellung einer Metallocen/Cokatalysator-Mischung in einem geeigneten Lösungs- oder Suspensionsmittel, wobei die Metall - ocen-Komponente, erhältlich aus dem erfindungsgemäßen Auf - reinigungsverfahren, die zuvor beschriebenen Strukturen besitzt. b) Aufbringen der Metallocen/Cokatalysatormischung auf einen porösen, bevorzugt anorganischen dehydratisierten Träger c) Entfernen des Hauptanteils an Lösungsmittel von der resultierenden Mischung d) Isolierung des geträgerten Katalysatorsystems e) Gegebenenfalls eine Vorpolymerisation des erhaltenen geträgerten Katalysatorsystems mit einem oder mehreren olef ischen Monomer (en), um ein vorpolymerisiertes geträgertes Katalysatorsystem zu erhalten.
Bevorzugte Lösungsmittel für die Herstellung der Metallocen/Coka- talysator-Mischung sind Kohlenwasserstoffe und Kohlenwasserstoff - gemische, die bei der gewählten Reaktionstemperatur flüssig sind und in denen sich die Einzelkomponenten bevorzugt lösen. Die Löslichkeit der Einzelkomponenten ist aber keine Voraussetzung, wenn sichergestellt ist, daß das Reaktionsprodukt aus Metallocen- und Cokatalysatorkomponenten in dem gewählten Lösungsmittel löslich ist. Beispiele für geeignete Lösungsmittel umfassen Alkane wie Pentan, Isopentan, Hexan, Heptan, Octan, und Nonan; Cycioalkane wie Cyclopentan und Cyclohexan; und Aromaten wie Benzol, Toluol. Ethylbenzol und Diethylbenzol . Ganz besonders bevorzugt ist Toluol.
Die bei der Präparation des geträgerten Katalysatorsystems eingesetzten Mengen an Aluminoxan und Metallocen können über einen weiten Bereich variiert werden. Bevorzugt wird ein molares Verhältnis von Aluminium zum Übergangsmetall im Metallocen von 10 : 1 bis 1000 : 1 eingestellt, ganz besonders bevorzugt ein Verhältnis von 50 : 1 bis 500 : 1.
Im Fall von Methylaluminoxan werden bevorzugt 30 % ige toluoli- sche Lösungen eingesetzt; die Verwendung von 10 %igen Lösungen ist aber auch möglich.
Zur Voraktivierung wird das Metallocen in Form eines Feststoffes in einer Lösung des Aluminoxans in einem geeigneten Lösungsmittel aufgelöst. Es ist auch möglich, das Metallocen getrennt in einem geeigneten Lösungsmittel aufzulösen und diese Lösung anschließend mit der Aluminoxan-Lösung zu vereinigen. Bevorzugt wird Toluol verwendet.
Die Voraktivierungszeit beträgt 1 Minute bis 200 Stunden.
Die Voraktivierung kann bei Raumtemperatur (25 °C) stattfinden. Die Anwendung höherer Temperaturen kann im Einzelfall die erforderliche Dauer der Voraktivierung verkürzen und eine zusätzliche Aktivitätssteigerung bewirken. Höhere Temperatur bedeutet in die- sem Fall ein Bereich zwischen 50 und 100 °C.
Die voraktivierte Lösung bzw. das Metallocen/Cokatalysator-Ge- misch wird anschließend mit einem inerten Trägermaterial, üblicherweise Kieselgel, das in Form eines trockenen Pulvers oder als Suspension in einem der oben genannten Lösungsmittel vorliegt, vereinigt. Bevorzugt wird das Trägermaterial als Pulver eingesetzt. Die Reihenfolge der Zugabe ist dabei beliebig. Die voraktivierte Metallocen-Cokatalysator-Lösung bzw. das Metallocen-Co- katalysatorgemisch kann zum vorgelegten Trägermaterial dosiert, oder aber das Trägermaterial in die vorgelegte Lösung eingetragen werden. Das Volumen der voraktivierten Lösung bzw. des Metallocen-Cokata- lysator-gemisches kann 100 % des Gesamtporenvolumens des eingesetzten Trägermaterials überschreiten oder aber bis zu 100 % des Gesamtporenvolumens betragen.
Die Temperatur, bei der die voraktivierte Lösung bzw. das Metal- locen-Cokatalysatorgemisch mit dem Trägermaterial in Kontakt gebracht wird, kann im Bereich zwischen 0 und 100 °C variieren. Niedrigere oder höhere Temperaturen sind aber auch möglich.
Anschließend wird das Lösungsmittel vollständig oder zum größten Teil vom geträgerten Katalysatorsystem entfernt, wobei die Mischung gerührt und gegebenenfalls auch erhitzt werden kann. Bevorzugt wird sowohl der sichtbare Anteil des Lösungsmittels als auch der Anteil in den Poren des Trägermaterials entfernt. Das Entfernen des Lösungsmittels kann in konventioneller Art und Weise unter Anwendung von Vakuum und/oder Spülen mit Inertgas erfolgen. Beim Trocknungsvorgang kann die Mischung erwärmt werden, bis das freie Lösungsmittel entfernt worden ist, was üblicher- weise 1 bis 3 Stunden bei einer vorzugsweise gewählten Temperatur zwischen 30 und 60 °C erfordert. Das freie Lösungsmittel ist der sichtbare Anteil an Lösungsmittel in der Mischung. Unter Restlösungsmittel versteht man den Anteil, der in den Poren eingeschlossen ist. Alternativ zu einer vollständigen Entfernung des Lösungsmittels kann das getragerte Katalysatorsystem auch nur bis zu einem gewissen Restlösungsmittelgehalt getrocknet werden, wobei das freie Lösungsmittel vollständig entfernt worden ist. Anschließend kann das getragerte Katalysatorsystem mit einem niedrig siedenden Koh- lenwasserstoff wie Pentan oder Hexan gewaschen und erneut getrocknet werden.
Das dargestellte getragerte Katalysatorsystem kann entweder direkt zur Polymerisation von Olefinen eingesetzt oder vor seiner Verwendung in einem Polymerisationsprozeß mit einem oder mehreren olefinischen Monomeren vorpolymerisiert werden. Die Ausführung der Vorpolymerisation von geträgerten Katalysatorsystemen ist beispielsweise in WO 94/28034 beschrieben.
Als Additiv kann während oder nach der Herstellung des geträgerten Katalysatorsystems eine geringe Menge eines Olefins, bevorzugt eines α-Olefins (beispielsweise Styrol oder Phenyldimethyl- vinylsilan) als aktivitätssteigernde Komponente, oder beispielsweise eines Antistatikums zugesetzt werden. Als Antistatikum wird üblicherweise eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt. Derartige Antistatika werden beispielsweise in ΞP-A-0, 636 , 636 beschrieben.
Das molare Verhältnis von Additiv zu Metallocenkomponente Verbindung (I) beträgt dabei bevorzugt zwischen I : 1000 bis 1000 : 1, ganz besonders bevorzugt 1 : 20 bis 20 : i.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines oder mehrerer Olefine in Gegenwart des Katalysatorsystems, enthaltend mindestens eine Übergangsmetallkomponente der Formel I oder II, die bei dem erfindungsgemäßen Aufreinigungsverfahren erhältlich ist. Unter dem Begriff Polymerisaton wird eine Homopolymerisation wie auch eine Copolymerisation verstanden.
Die bei dem erfindungsgemäßen Aufreinigungsverfahren erhaltenen Metallocene der Formeln I und II, zeigen gegenüber den Dihalogen- Verbindungen zumindest gleichwertige, zum Teil jedoch höhere Aktivitäten in der Polymerisation von Olefinen, und die erhaltenen Polyolefine zeigen eine Verminderung der unerwünschten niedermolekularen extrahierbaren Anteile.
Das dargestellte Katalysatorsystem kann als einzige Katalysatorkomponente für die Polymerisation von Olefinen mit 2 bis 20 C- Atomen eingesetzt werden, oder bevorzugt in Kombination mit mindestens einer AlkylVerbindung der Elemente aus der I. bis III. Hauptgruppe des Periodensystems, wie z.B. einem Aluminium-, Ma- gnesium- oder Lithiumalkyl oder einem Aluminoxan, eingesetzt werden. Die Alkylverbindung wird den Monomeren oder dem Suspensions- mittel zugesetzt und dient zur Reinigung der Monomere von Substanzen, die die Katalysatoraktivität beeinträchtigen können. Die Menge der zugesetzten Alkylverbindung hängt von der Qualität der eingesetzten Monomere ab.
Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben.
Bei der Polymerisation kann das Antistatikum zusammen mit oder getrennt von dem eingesetzten Katalysatorsystem in das Polymerisationssystem eindosiert werden.
Die mit dem Katalysatorsystem, das mindestens eines der bei dem erfindungsgemäßen Aufreinigungsverfahren erhaltenen Metallocene der Formeln I und II enthält, dargestellten Polymere, zeigen eine gleichmäßige Kornmorphologie und weisen keine Feinkornan- teile auf. Bei der Polymerisation mit dem Katalysatorsystem treten keine Beläge oder Verbackungen auf.
Mit dem Katalysatorsystem werden Polymere, wie Polypropylen mit außerordentlich hoher Stereo- und Regiospezifität erhalten.
Besonders charakteristisch für die Stereo- und Regiospezifität von Polymeren, insbesondere von Polypropylen, ist die Triaden- Taktizität (TT) und der Anteil an 2-1-insertierten Propeneinhei- ten (RI) , die sich aus den 13C-NMR-Spektren ermitteln lassen.
Die 13C-NMR- Spektren werden in einem Gemisch aus Hexachlorbuta- dien und Tetrachlorethan-d2 bei erhöhter Temperatur (365 K) gemessen. Alle 13C-NMR-Spektren der gemessenen Polypropylen-Proben wer- den auf das Resonanzsignal von Tetrachlorethan-d2 (δ = 73.81 ppm) geeicht.
Zur Bestimmung der Triaden-Taktizität des Polypropylens werden die Methyl-Resonanzsignale im 13C-NMR-Spektrum zwischen 23 und 16 ppm betrachtet; vgl. J. C. Randall, Polymer Sequence Determination: Carbon-13 NMR Method, Academic Press New York 1978; A. Zam- belli, P. Locatelli, G. Bajo, F. A. Bovey, Macromolucules 8 (1975), 687-689; H. N. Cheng, J. A. Ewen, Makromol. Chem. 190 (1989), 1931-1943. Drei aufeinander folgende 1-2-insertierte Pro- peneinheiten, deren Methylgruppen in der "Fischer-Projektion" auf der gleichen Seite angeordnet sind, bezeichnet man als mm - Triade (δ = 21.0 ppm bis 22.0 ppm). Zeigt nur die zweite Methylgruppe der drei aufeinander folgenden Propeneinheiten zur anderen Seite, spricht man von einer rr-Triade (δ = 19.5 ppm bis 20.3 ppm) und zeigt nur die dritte Methylgruppe der drei aufeinander folgenden Propeneinheiten zur anderen Seite, von einer mr-Triade (δ = 20.3 ppm bis 21.0 ppm). Die Triaden-Taktizität berechnet man nach folgender Formel :
TT (%) = mm / (mm + mr + rr) • 100
Wird eine Propeneinheit invers in die wachsende Polymerkette in- sertiert, spricht man von einer 2-1-Insertion; vgl. T. Tsutsui, N. Ishimaru, A. Mizuno, A. Toyota, N. Kashiwa, Polymer 30, (1989), 1350-56. Folgende verschiedene strukturelle Anordnungen sind möglich: CH, α,α CH, C;HH3 α,ß α,ß CH, CH,
-CH;—CH -CH CH CH CH;—CH;—CH CH —CH-
Der Anteil an 2-1-insertierten Propeneinheiten (RI) kann nach folgender Formel berechnet werden:
RI (%) = 0.5 Iα,ß (lα,α + Iα,ß + Iα,δ) • 100,
wobei
lα,α die Summe der Intensitäten der Resonanzsignale bei δ 41.84, 42.92 und 46.22 ppm, iα,ß die Summe der Intensitäten der Resonanzsignale bei δ 30.13, 32.12, 35.11 und 35.57 ppm
sowie
lα,δ die Intensität des Resonanzsignals bei δ 37.08 ppm be- deuten.
Das isotaktische Polypropylen, das mit dem Katalysatorsystem hergestellt worden ist, zeichnet sich durch einen Anteil an 2-1-in- sertierten Propeneinheiten RI < 0.5% bei einer Triaden-Taktizität TT > 98.0% und einen Schmelzpunkt > 153°C aus, wobei Mw/Mn des er- findungsgemaßen Polypropylens zwischen 2.5 und 3.5 liegt.
Die mit dem Katalysatorsystem herstellbaren Copolymere zeichnen sich durch eine gegenüber dem Stand der Technik deutlich höhere Molmasse aus. Gleichzeitig sind solche Copolymere durch Einsatz des Katalysatorsystems mit hoher Produktivität bei technisch relevanten Prozessparametern ohne Belagsbildung herstellbar.
Die nach dem Verfahren hergestellten Polymere sind insbesondere zur Herstellung reißfester, harter und steifer Formkörper wie Fa- sern, Filamente, Spritzgußteile, Folien, Platten oder Großhohlkörpern (z.B. Rohre) geeignet. Die Erfindung wird durch folgende, die Erfindung jedoch nicht einschränkende Beispiele erläutert.
Allgemeine Angaben: Die Herstellung und Handhabung der organo- 5 metallischen Verbindungen erfolgte unter Ausschluß von Luft und Feuchtigkeit unter Argon-Schutzgas (Schlenk-Technik bzw. Glove- Box) . Alle benötigten Lösungsmittel wurden vor Gebrauch mit Argon gespült und über Molsieb absolutiert.
10 Beispiel 1: Dimethylsilandiyl-bis (2-methyl-4, 5-benzo-inde- nyl) -zirkonium-monochloro-mono- (2 , 4-di-tert . -butyl- phenolat) (1)
20.6 g (0.1 mol) 2, -Di-tert. -butylphenol wurden in 200 ml To- 15 luol/20 ml THF bei Raumtemperatur mit 37.2 ml (0.1 mol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 28.8 g (0.05 mol) Dimethylsilandiyl-bis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 3h bei 100°C 20 gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 3 mal mit je 100 ml Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 31.1 g (83 %) Dimethylsilandiyl-bis (2-methyl-4, 5-benzo-indenyl) -zirko- 25 nium-monochloro-mono- (2, -di-tert . -butyl-phenolat) (1) erhalten.
1H-NMR (400 MHz, CDC13): 8.05 (dd, 1H) , 7.75 ( , 2H) , 7.65 (dd, 1H) , 7.60 (1H) , 7.5 - 7.15 (m, 6H) , 7.1 (m, 1H) , 7.0 (m, 1H) , 6.85 (s, 1H) , 6.8 (d, 1H) , 6.65 (m, 1H) , 5.45 (d, 1H) , 2.82 (s, 30 3H) , 2. 45 (s, 3H) , 1.45 (s, 3H) , 1.35 (s, 3H) , 1.25 (s, 9H) , 0.95 (s, 9H) .
Löslichkeitsvergleich:
35 50 mg Dimethylsilandiyl-bis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid lösten sich bei Raumtemperatur vollständig in 240 ml Toluol (Löslichkeit ca. 0.36 mmol/1).
50 mg der Verbindung (1) lösten sich bei Raumtemperatur in < 5 ml 0 Toluol sofort auf (Löslichkeit > 13 mmol/1) .
Beispiel la: Katalysatordarstellung mit (1) und Polymerisation:
35,1 mg (0,047 mmol) (1) wurden in 2,1 ml 30%-iger MAO-Lösung in 5 Toluol (Al/Zr=215) für 60 Minuten bei Raumtemperatur gerührt. Anschließend wurden 2 g Si02 (Grace XPO2107, vorbehandelt bei 140°C, 10 mbar, 10 Std.) dazugegeben und weitere 10 Minuten gerührt. Das Lösungsmittel wurde im Ölpumpenvakuum entfernt.
Ein trockener 2 -Reaktor wurde zunächst mit Stickstoff und an- schließend mit Propylen gespült und mit 1,5 1 flüssigem Propylen befüllt. Dazu wurden 2 ml TEA (20% ig in Varsol) gegeben und 15 Minuten gerührt. Anschließend wurde das oben hergestellte Katalysatorsystem (0,886 g) in 20 ml Heptan resuspendiert eingespritzt und mit 15 ml Heptan nachgespült. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde po- lymerisiert. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet. Es resultierten 470 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Kataly- satoraktivität betrug 0,53 kg PP/g Katalysator x h.
Vergleichsbeispiel:
Katalysatordarstellung mit Dimethylsilandiyl-bis- (2-methyl-4 , 5- benzo-indenyl) -zirkoniumdichlorid und Polymerisation
27,1 mg (0,047 mmol) Dimethylsilandiyl-bis- (2-methyl-4, 5-benzo- indenyl) -zirkoniumdichlorid wurden in 2,1 ml 30%-iger MAO-Lösung in Toluol (Al/Zr=215) für 60 Minuten bei Raumtemperatur gerührt. Anschließend wurden 2 g Si02 (Grace XPO2107, vorbehandelt bei 140°C, 10 mbar, 10 Std.) dazugegeben und weitere 10 Minuten gerührt. Das Lösungsmittel wurde im Ölpumpenvakuum entfernt.
Ein trockener 21-Reaktor wurde zunächst mit Stickstoff und an- schließend mit Propylen gespült und mit 1,5 1 flüssigem Propylen befüllt. Dazu wurden 2 ml TEA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wurde das oben hergestellte Katalysatorsystem (0,897 g) in 20 ml Heptan resuspendiert eingespritzt und mit 15 ml Heptan nachgespült. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde po- lymerisiert. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet. Es resultierten 410 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Kataly- satoraktivität betrug 0,46 kg PP/g Katalysator x h.
Beispiel 2 : Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkonium-mo- nochloro-mono- (2, 4-di-tert. -butyl-phenolat) (2)
1.03 g (5 mmol) 2, 4-Di-tert. -butylphenol wurden in 10 ml Toluol/1 ml THF bei Raumtemperatur mit 1.85 ml (5 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 1.19 g (2.5 mmol) Dime- thylsilandiybis (2-methyl-indenyl) -zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 2h bei 60°C gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 3 mal mit je 10 ml Toluol (60°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 0.87 g (53 %) Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkonium-monochloro- mono- (2, 4-di-tert. -butyl-phenolat) (2) erhalten.
1H-NMR (400 MHz, CDC13): 8.03 (dd,lH), 7.6 (dd, IH) , 7.25 - 7.2 (m, 2H) , 7.15 (m, IH) , 7.1-7.0 (m, 2H) , 6.9 (m, IH) , 6.8 (s, IH) , 6.75 (m, IH) , 6.7 (m, IH) , 6.3 (s, IH) , 5.55 (d, IH) , 2.65 (s, 3H) , 2. 3 (s, 3H) , 1.3 (s, 3H) , 1.25 (s, 9H) , 1.22 (s, 3H) , 1.15 (s, 9H) .
Löslichkeitsvergleich:
50 mg Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkoniumdichlorid lösten sich bei Raumtemperatur vollständig in 50 ml Toluol (Löslichkeit ca. 2.1 mmol/1) .
50 mg der Verbindung (2) lösten sich bei Raumtemperatur in < 5 ml Toluol sofort auf (Löslichkeit > 15 mmol/1) .
Beispiel 3: Dimethylsilandiyl-bis (2-methyl-4, 5-benzo-inde- nyl) -zirkonium-monochloro-mono- (2-isopropyl-5-methyl- phenolat) (3)
2.7 g (17.4 mmol) 2-Isopropyl-5-methylphenol wurden in 20 ml To- luol/2 ml THF bei Raumtemperatur mit 6.5 ml (17.4 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 5.0 (8.7 mmol) Dimethylsilandiyl-bis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlo- rid als Feststoff zugegeben. Die Suspension wurde 4h bei 100°C gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 2 mal mit je 25 ml Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 2.5 g (41 %) Dimethylsilandiyl-bis (2-methyl-4 , 5-benzo-indenyl) -zirkonium- monochloro-mono- (2-isopropyl-5-methyl-phenolat) (3) erhalten.
1H-NMR (400 MHz, CDC13): 7.9 (dd,lH), 7.81 (m, IH) , 7.74 (m, IH) , 7.54 (m, 2H) , 7.45 - 7.08 (m, 8H) , 6.65 (d, IH) , 6.55 (s, IH) , 6.35 (m, IH) , 5.56 (d, IH) , 2.58 (s, 3H) , 2. 35 (s, 3H) , 2.3 (m, IH), 2.1 (s, 3H), 1.37 (s, 3H) , 1.27 (s, 3H) , 0.75 (d, 3H) , 0.62 (d, 3H) .
Löslichkeitsvergleich:
5
50 mg Dimethylsilandiyl-bis (2-methyl-4 , 5-benzo-indenyl) -zirkoni - umdichlorid lösten sich bei Raumtemperatur vollständig in 240 ml Toluol (Löslichkeit ca. 0.36 mmol/1) .
10 50 mg der Verbindung (3) lösten sich bei Raumtemperatur in 4 ml Toluol auf (Löslichkeit ca. 18 mmol/1) .
Beispiel 4 : Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkonium-monochloro-mono- (2-isopropyl-5-methyl-phenolat) (4)
15
3.2 g (21 mmol) 2-Isopropyl-5-methylphenol wurden in 20 ml To- luol/2 ml THF bei Raumtemperatur mit 7.8 ml (21 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 5.0 g (10.5 mmol)
20 Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkoniumdichlorid als
Feststoff zugegeben. Die Suspension wurde 2h bei 100°C gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 2 mal mit je 25 ml Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfil-
25 triert und im Vakuum getrocknet. Es wurden 1.36 g ( 22 %) Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkonium-monochloro- mono- (2-isopropyl-5-methyl-phenolat) (4) erhalten.
1H-NMR (400 MHz, CDC13): 8.0 (m, IH) , 7.81 (m, IH) , 7.3 - 6.8 (m, 30 8H) , 6.55 (dm, IH) , 6.1 (s, IH) , 5.9 (d, IH) , 2.7 (hept, IH) , 2.45 (s, 3H) , 2. 25 (s, 3H) , 2.18 (s, 3H) , 1.4 (s, 3H) , 1.25 (s, 3H) , 1.1 (d, 3H) , 0.95 (d, 3H) .
Löslichkeitsvergleich: 35
50 mg Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkoniumdichlorid lösten sich bei Raumtemperatur vollständig in 50 ml Toluol (Löslichkeit ca. 2.1 mmol/1) .
40 50 mg der Verbindung (4) lösten sich bei Raumtemperatur in 5 ml Toluol auf (Löslichkeit ca. 17 mmol/1) .
Beispiel 5: Dimethylsilandiyl-bis (2-methyl-indenyl) -zirkonium-monochloro-mono- (2 , 4-di-methyl-phenolat) (5) 5 1.0 g (8.2 mmol) 2 , -Di-methylphenol wurden in 20 ml Toluol/2 ml THF bei Raumtemperatur mit 3.0 ml (8.2 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 1.9 g (4.0 mmol) Dimethylsilan- 5 diyl-bis (2-methyl-indenyl) -zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 8h bei 60°C gerührt und anschließend heiß über Celite filtriert. Nach Einengen des Lösungsmittels auf ca. 7 ml wurde der bei -30°C ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 0.65 g (29 %) Dime- 10 thylsilandiyl-bis (2-methyl-indenyl ) -zirkonium-monochloro- mono- (2, 4-di-methylphenolat) (5) erhalten.
1H-NMR (400 MHz, CDC13): 7.96 (dd.lH), 7.6 (m, IH) , 7.36 (m, IH) , 7.31 (m, IH) , 7.29 (d, IH) , 7.1 (m, IH) , 6.99 (m, IH) , 6.94 (m, 15 IH) , 6.88 (s, IH) , 6.75 (m, IH) , 6.65 (m, IH) , 6.06 (s, IH) , 5.93 (d, IH) , 2.4 (s, 3H) , 2. 24 (s, 3H) , 2.18 (s, 3H) , 1.85 (s, 3H) , 1.35 (s, 3H) , 1.24 (s, 3H) .
Beispiel 6: Dimethylsilandiyl-bis (2-methyl-4, 5-benzo-inde- 20 nyl) -zirkonium-monochloro-mono- (2 , 4-di-tert .pentyl- phenolat) (6)
0.85 g (3.5 mmol) 2, 4-Di-tert. -pentyl-phenol wurden in 10 ml To- luol/1 ml THF bei Raumtemperatur mit 1.3 ml (3.5 mmol) einer
25 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 1.0 (1.74 mmol) Dimethylsilandiyl-bis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 4h bei 100°C gerührt, mit 40 ml Toluol verdünnt und anschließend heiß über Ce-
30 lite filtriert. Der Filterkuchen wurde noch 2 mal mit je 25 ml
Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels auf 10 ml wurde der ausgefallene gelbe Feststoff abfiltriert, mit wenig kaltem Toluol gewaschen und im Vakuum getrocknet. Es wurden 0.85 g (63 %) Dimethylsilandiyl-bis (2-methyl-4, 5-benzo-indenyl) -zirko- 5 nium-monochloro-mono- (2, 4-di-tert. pentyl-phenolat) (6) erhalten.
1H-NMR (400 MHz, CDC13): 8.00 (d,lH), 7.74 (t, 2H) , 7.64-7.57 (m, 2H) , 7.45 - 7.27 (m, 5H),7.14 (s, IH) , 7.10 (m, IH) , 6.98 (m, IH) , 6.78 (s, IH) , 6.65 (d, IH) , 6.52 (dd, IH) , 5.38 (d, IH) , 0 2.78 (s, 3H) , 2. 41 (s, 3H) , 1.46 (quart., 2H) , 1.41 (s, 3H) ,
1.30 (s, 3H) , 1.22 ( , 2H) , 1.14 (s, 3H) , 1.13 (s, 3H) , 0.91 (s, 3H) , 0.88 (s, 3H) , 0.57 (t, 3H) , 0.39 (t, 3H) .
5 Löslichkeitsvergleich:
50 mg Dimethylsilandiybis (2-methyl-4 , 5-benzo-indenyl) -zirkoniumdichlorid lösten sich bei Raumtemperatur vollständig in 240 ml Toluol (Löslichkeit ca. 0.36 mmol/1) .
55 mg der Verbindung (6) lösten sich bei Raumtemperatur in 4 ml Toluol auf (Löslichkeit ca. 17.7 mmol/1) .

Claims

Patentansprüche
1. Verfahren zur Aufreinigung von Verbindungen der Formel (la)
worin
M ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf, besonders bevorzugt Zirkonium,
R1 gleich oder verschieden sind und ein Rest SiR3 12 ist, worin R12 gleich oder verschieden ein Wasserstoff atom oder eine
Cι-C o-kohlenstof f haltige Gruppe, bevorzugt Cι-C2o-Alkyl, Ci-Cio-Fluoralkyl, Cι-C10-Alkoxy, C6-C20-Aryl, C6-Cι0-Fluoraryl, Cβ-Cio-Aryloxy, C2-Cχo-Alkenyl , C7-C40-Arylalkyl, C7-C 0-Alkyla- ryl oder C8-C o-Arylalkenyl, oder R1 eine Cι~C3o - kohlenstoffhaltige Gruppe, bevorzugt
Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Ci5-Alkylalkenyl, C6-C2 -Aryl, C5-C24-Heteroaryl, C -C30-Arylalkyl, C7-C3_-Alkylaryl, f luorhaltiges Cι-C25-Alkyl, f luorhaltiges C6-C2 -Aryl, fluorhalti- ges C7-C30-Arylalkyl , f luorhaltiges C7_C30-Alkylaryl oder cι~Cι2-Alkoxy ist, oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C -C2 -Ringsystem bilden, welches seinerseits substituiert sein kann,
R2 gleich oder verschieden sind und Rest SiR3 12 ist, worin R12 gleich oder verschieden ein Wasserstoff atom oder eine Cι-C4_-kohlenstof f haltige Gruppe, bevorzugt Cι-C2o~Alkyl, Ci-Cio-Fluoralkyl, Cι-Cι0-Alkoxy, C6-Cι4-Aryl, C6-Cι0-Fluoraryl,
C6-Cι0-Aryloxy, C2-Cι0-Alkenyl , C7-C 0-Arylalkyl, C7-C40-Alkyla- ryl oder Ca-C40-Arylalkenyl, oder R2 eine Cι~C3o - kohlenstoffhaltige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Cι5-Alkylalkenyl, C6-C24-Aryl, C5"C2 -Heteroaryl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluor- haltiges Cι-C2s-Alkyl, fluorhaltiges C6-C24-Aryl, fluorhalti- ges C7-C3o-Arylalkyl, fluorhaltiges C7_C3o-Alkylaryl oder Cι-Ci2-Alkoxy ist, oder zwei oder mehrere Reste R2 können so miteinander verbunden sein, daß die Reste R2 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
X ein Halogenatom, insbesondere Chlor, ist, n gleich 1 bis 5 für k = 0, und n gleich 0 bis 4 für k = 1 ist, n' gleich 1 bis 5 für k = 0, und n' gleich 0 bis 4 für k - 1 ist, gleich 1 bis 4 ist, bevorzugt 2, k gleich Null oder 1 ist, wobei für k = 0 ein unverbrücktes Metallocen, für k = 1 ein verbrücktes Metallocen vorliegt, wo- bei k = 1 bevorzugt ist, und
B ein verbrückendes Strukturelement zwischen den beiden Cyclo- pentadienylringen bezeichnet, bedeutet
umfassend die Schritte:
a) Umsetzung der Verbindung der Formel (la) mit einer Ligande- naustausch-komponente
MlYR3
worin
M1 ein Kation oder Kationfragment, insbesondere Li, Na, K, MgCl, MgBr, Mgl, oder das mit einem Amin korrespondie- rende Ammoniumskation ist,
R3 gleich oder verschieden Wasserstoff oder eine Cι~C4o - kohlenstoff altige Gruppe, bevorzugt Cι-C25-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-Cι5-Alkylalkenyl , C6-C24-Aryl,
C5~C24-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluorhaltiges Cι-C25-Alkyl , fluorhaltiges C6-C2 -Aryl, fluorhaltiges C7-C 0-Arylalkyl oder fluorhaltiges C7_C3o-Alkylaryl ist, Y ein Element der 6. Hauptgruppe des Periodensystems der
Elemente, insbesondere Sauerstoff oder Schwefel, oder ein Fragment CR3 2, NR3, NR3(CO)-, NR (S02)-, PR 3 oder P(=0)R3, 0(C0)-, 0(S02)- ist.
unter Ausbildung der Verbindung der Formel (I)
worin
M, R1, R2, R3, X, Y, n, n' , m, k, B und R12 die vorstehende Bedeutung haben und m' gleich 1 bis 4 ist, bevorzugt 1 oder 2, wobei die Verbindung der Formel MXX, wobei M1 und X die vorstehenden Bedeutungen haben, abgespalten wird, in einem inerten Lösungsmittel oder Lösungsmittelgemisch,
b) gegebenenfalls Abtrennung von festen Rückständen der Formel MiX c) gegebenenfalls Abtrennen des inerten Lösungsmittels oder Lösungsmittelgemisches, d) Umkristallisation der Verbindung der Formel (I) in einem aprotischen Kohlenwasserstoff, e) Abtrennen der Verbindung der Formel (I) von der Mutterlauge.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in
Schritt d) ein polarer oder unpolarer, aprotischer Kohlenwasserstoff oder Kohlenwasserstoffgemisch eingesetzt wird.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß in Schritt d) Toluol, Hexan, Heptan, Xylol, Tetrahydrofu- ran (THF) , Dimethoxyethan (DME) , Toluol/THF, Heptan/DME oder Toluol/DME eingesetzt wird.
4. Verwendung der gemäß Anspruch 1 erhaltenen Verbindung zur
Herstellung eines Katalysatorsyεtems zur Polymerisation von Olefinen.
5. Katalysatorsystem enthaltend mindestens eine Verbindung gemäß Anspruch 1 und einen Träger, sowie gegebenenfalls einen Coka- talysator.
6. Verfahren zur Herstellung eines Polyolefins in Gegenwart eines Katalysatorsystems gemäß Anspruch 5.
7. Verwendung eines Katalysators gemäß Anspruch 5 zur Polymerisation von einem oder mehreren Olefinen.
EP99958064A 1998-11-25 1999-11-18 Verfahren zur aufreinigung von metallocenen Withdrawn EP1133503A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03015009A EP1361226A3 (de) 1998-11-25 1999-11-18 Verfahren zur Aufreinigung von Metallocenen

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19854350 1998-11-25
DE19854350 1998-11-25
DE1999100585 DE19900585A1 (de) 1999-01-11 1999-01-11 Verfahren zur Aufreinigung von Metallocenen
DE19900585 1999-01-11
PCT/EP1999/008849 WO2000031089A1 (de) 1998-11-25 1999-11-18 Verfahren zur aufreinigung von metallocenen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP03015009A Division EP1361226A3 (de) 1998-11-25 1999-11-18 Verfahren zur Aufreinigung von Metallocenen

Publications (1)

Publication Number Publication Date
EP1133503A1 true EP1133503A1 (de) 2001-09-19

Family

ID=26050367

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03015009A Ceased EP1361226A3 (de) 1998-11-25 1999-11-18 Verfahren zur Aufreinigung von Metallocenen
EP99958064A Withdrawn EP1133503A1 (de) 1998-11-25 1999-11-18 Verfahren zur aufreinigung von metallocenen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03015009A Ceased EP1361226A3 (de) 1998-11-25 1999-11-18 Verfahren zur Aufreinigung von Metallocenen

Country Status (4)

Country Link
US (1) US6900343B1 (de)
EP (2) EP1361226A3 (de)
JP (1) JP2002530414A (de)
WO (1) WO2000031089A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1133504B1 (de) * 1998-11-25 2003-03-12 Basell Polyolefine GmbH Verfahren zur herstellung von monoaryloxy-ansa-metallocenen
JP2002088110A (ja) * 2000-09-13 2002-03-27 Denki Kagaku Kogyo Kk 重合用遷移金属触媒成分、それを用いたオレフィン−芳香族ビニル化合物重合体の製造方法
JP2003012682A (ja) * 2001-06-27 2003-01-15 Sumitomo Chem Co Ltd ジルコニウム化合物、その製造方法およびその用途
JP4390770B2 (ja) * 2002-10-25 2009-12-24 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング rac−ジオルガノシリルビス(2−メチルベンゾ[e]インデニル)ジルコニウム化合物のラセモ選択的合成法
JP2006511607A (ja) * 2002-12-20 2006-04-06 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング モノシクロペンタジエニル錯体
BRPI0513108A (pt) * 2004-07-22 2008-04-29 Basell Polyolefine Gmbh processo para produzir polìmeros de buteno-1 fracionáveis
CN100567338C (zh) 2004-07-22 2009-12-09 巴塞尔聚烯烃股份有限公司 制备可分级的1-丁烯聚合物的方法
KR102412130B1 (ko) 2017-12-26 2022-06-23 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법 및 이로부터 제조된 촉매를 이용하는 폴리프로필렌의 제조방법
CN110568102A (zh) * 2019-09-11 2019-12-13 苏州普耀光电材料有限公司 一种利用气相色谱仪测定mo源纯度的方法
WO2021111282A1 (ko) * 2019-12-03 2021-06-10 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752597A (en) 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
JPH0780930B2 (ja) * 1985-12-26 1995-08-30 三井石油化学工業株式会社 α−オレフインの重合方法
ATE227742T1 (de) * 1986-09-24 2002-11-15 Mitsui Chemicals Inc Olefinpolymerisationsverfahren
JPH0780932B2 (ja) * 1987-01-14 1995-08-30 三井石油化学工業株式会社 α−オレフインの重合方法
DE3742934A1 (de) 1987-12-18 1989-06-29 Hoechst Ag Verfahren zur herstellung einer chiralen, stereorigiden metallocen-verbindung
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
EP0485823B1 (de) 1990-11-12 1995-03-08 Hoechst Aktiengesellschaft 2-Substituierte Bisindenylmetallocene, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren bei der Olefinpolymerisation
EP0537686B1 (de) 1991-10-15 2005-01-12 Basell Polyolefine GmbH Verfahren zur Herstellung eines Olefinpolymers unter Verwendung von Metallocenen mit speziell substituierten Indenylliganden
EP0549900B1 (de) 1991-11-30 1996-08-21 Hoechst Aktiengesellschaft Metallocene mit benzokondensierten Indenylderivaten als Liganden, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren
TW294669B (de) 1992-06-27 1997-01-01 Hoechst Ag
DE4406109A1 (de) 1994-02-25 1995-08-31 Witco Gmbh Verfahren zur Herstellung von verbrückten stereorigiden Metallocenen
US5556997A (en) 1995-04-24 1996-09-17 Albemarle Corporation Enhanced synthesis of racemic metallocenes
DE19547248A1 (de) 1995-12-18 1997-06-19 Hoechst Ag Verfahren zur Abreichung von anorganischen Nebenprodukten
EP0780396B1 (de) 1995-12-18 2002-10-02 Basell Polyolefine GmbH Verfahren zur Abreicherung von Nebenprodukten in Produktgemischen
DE19547247A1 (de) * 1995-12-18 1997-06-19 Hoechst Ag Verfahren zur Abreicherung von organometallischen Nebenprodukten in Produktgemischen
JPH09176221A (ja) * 1995-12-27 1997-07-08 Sumitomo Chem Co Ltd オレフィン重合用触媒及びそれを使用したオレフィン重合体の製造方法
EP1027445A1 (de) 1997-04-29 2000-08-16 Mogen International N.V. Anti-pilzverbindung, die geta-1,6-glukanase enthält, und wirte, die deise enthalten
JP3777810B2 (ja) * 1998-07-24 2006-05-24 Jsr株式会社 オレフイン性不飽和化合物の水素添加触媒および水素添加方法
EP1133504B1 (de) 1998-11-25 2003-03-12 Basell Polyolefine GmbH Verfahren zur herstellung von monoaryloxy-ansa-metallocenen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0031089A1 *

Also Published As

Publication number Publication date
US6900343B1 (en) 2005-05-31
EP1361226A2 (de) 2003-11-12
WO2000031089A1 (de) 2000-06-02
JP2002530414A (ja) 2002-09-17
EP1361226A3 (de) 2004-01-02

Similar Documents

Publication Publication Date Title
EP1396495B1 (de) Metallocenmonohalogenide
EP1133504B1 (de) Verfahren zur herstellung von monoaryloxy-ansa-metallocenen
EP1054911B1 (de) Katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP0942938B1 (de) Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP0776913B1 (de) Hochmolekulare Copolymere
EP0859800B1 (de) Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP1074557A2 (de) Übergangsmetallverbindung, Ligandensystem, Katalysatorsystem und seine Verwendung zur Polymerisation von Olefinen
EP1066330B1 (de) Katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
WO2000031089A1 (de) Verfahren zur aufreinigung von metallocenen
EP1082353A1 (de) Katalysatorsystem und seine verwendung zur polymerisation von propylen
EP1003757B1 (de) Verfahren zur herstellung von metallocenen
EP0811640A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19922020A1 (de) Übergangsmetallverbindung, Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP0557718B1 (de) Katalysator für die Olefinpolymerisation, Verfahren zu seiner Herstellung und seine Verwendung
EP1334107B1 (de) Non-metallocene, verfahren zur herstellung von diesen und deren verwendung zur polymerisation von olefinen
WO1999054367A1 (de) Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten
DE19900585A1 (de) Verfahren zur Aufreinigung von Metallocenen
EP0780402B1 (de) Geträgertes Katalysatorensystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19962905A1 (de) Übergangsmetallverbindung, Ligandensystem, Katalysatorsystem und seine Verwendung zur Polymerisation und Copolymerisation von Olefinen
DE19912576A1 (de) Verfahren zur Herstellung von Monoaryloxy-Ansa-Metallocenen
DE19713549A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19713550A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011228

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYOLEFINE GMBH

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030715