EP1132600A2 - Méthode d'adaptation pour la commande d' injection - Google Patents

Méthode d'adaptation pour la commande d' injection Download PDF

Info

Publication number
EP1132600A2
EP1132600A2 EP01103435A EP01103435A EP1132600A2 EP 1132600 A2 EP1132600 A2 EP 1132600A2 EP 01103435 A EP01103435 A EP 01103435A EP 01103435 A EP01103435 A EP 01103435A EP 1132600 A2 EP1132600 A2 EP 1132600A2
Authority
EP
European Patent Office
Prior art keywords
injection
correction factor
lean
cylinder
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01103435A
Other languages
German (de)
English (en)
Other versions
EP1132600A3 (fr
EP1132600B1 (fr
Inventor
Gerd Dr. Rösel
Hong Dr. Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1132600A2 publication Critical patent/EP1132600A2/fr
Publication of EP1132600A3 publication Critical patent/EP1132600A3/fr
Application granted granted Critical
Publication of EP1132600B1 publication Critical patent/EP1132600B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors

Definitions

  • the invention relates to an adaptation method for control the injection of a multi-cylinder internal combustion engine, the phased stoichiometric, Lambda-1 controlled and operated lean becomes.
  • the internal combustion engine In a lower load range, the internal combustion engine is used a heavily layered cylinder load and high excess air operated (hereinafter referred to as stratified-lean Operation designated). This will include through a late injection in the compression stroke shortly before the ignition point reached. The internal combustion engine is avoided of throttle losses largely when the throttle valve is open operated.
  • the internal combustion engine becomes lean in an upper load range and operated with homogeneous cylinder charge (hereinafter referred to as homogeneously lean operation called).
  • the injection takes place already during the intake stroke to ensure thorough mixing to get fuel and air.
  • the air mass sucked in is according to the requested torque, for example requested by a driver at an accelerator pedal is set via a throttle valve.
  • the internal combustion engine can also be used with stoichiometric Fuel-air mixture operated (in the following referred to as stoichiometric operation). Doing so the required amount of fuel from the inducted in a known manner Combustion air mass taking into account the Speed calculated and if necessary via a lambda control corrected.
  • homogeneous operation The homogeneous, lean operation and the stoichiometric operation are summarized below under the term "homogeneous operation”.
  • Fuel injectors naturally have a certain one Deviation of their actual behavior from the specified target behavior on. This deviation can be due to manufacturing tolerances be, or result from changes in operations, for example through deposits. It is therefore known in stoichiometric operation a so-called cylinder equality perform in the cylinder-specific differences of the injection valves are adaptively compensated. By correcting the control of the respective Injectors ensure that each cylinder is exactly in the stoichiometric operation with lambda 1 control is running. Each after tolerance or age-related deviation that the respective Injector shows, this equality can be a Excess or shortage of fuel mean that during operation of the respective injection valve is used as a correction must become.
  • This cylinder equation is for direct injection Internal combustion engines are particularly important because of their injectors directly into the combustion chamber of the internal combustion engine protrude and therefore subject to particularly strong aging influences are.
  • the invention is based on the knowledge that in the stratified-lean Operation for the behavior of the internal combustion engine essentially the spray characteristics of an injector emitted beam is determining. Are there individual changes in injector characteristics in stratified-lean operation mainly relevant to torque, whereas in homogeneous operation (both homogeneously lean and also stoichiometric) of the internal combustion engine mainly relevant to emissions are. According to the invention is therefore a known ⁇ equality in homogeneous operation of the internal combustion engine carried out, a first correction factor for change predefined basic injection values for each injection valve determined and saved. With this first correction factor is achieved that the respective injectors all show the same actual behavior; tolerance or aging Deviations in the fuel mass delivered are balanced.
  • the torque equalization is from respective last stored first correction factor of previous homogeneous operating phase, i.e. the first Correction factor is now for stratified-lean operation used, in addition a determination or adaptation of a second correction factor that is specific for the stratified and lean operation and together with that first correction factor is used. Starting from these The values are then adapted using an independent process the second correction factor in lean operation.
  • a target for torque equalization in the stratified-lean Operation can preferably run smoothly of the internal combustion engine serve. You can do this using, for example of a knock sensor detect the smooth running cylinder selectively and Injection duration and / or start of injection for the individual Change the injection valves appropriately so that they run smoothly increases.
  • a knock sensor detects the smooth running cylinder selectively and Injection duration and / or start of injection for the individual Change the injection valves appropriately so that they run smoothly increases.
  • the deviation of the actual behavior of an injection valve must of his target behavior not in every phase be the same as the internal combustion engine.
  • the deviation depends on the fuel pressure.
  • the individual cylinder Correction factors of ⁇ and / or torque equalization to design depending on the operating parameters. Instead of a single first and second correction factor for each cylinder then you will save for a given Operating parameter classification according to several first and Store second correction factors, for example in suitable ones Maps.
  • Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable.
  • Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable.
  • Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable.
  • the internal combustion engine has a piston 10, which is in a Cylinder 11 delimits a combustion chamber 12.
  • a combustion chamber 12 In the Combustion chamber 12 opens into an intake duct 13 at an inlet valve 14 through which the combustion air enters the combustion chamber 12 streams.
  • An outlet valve 15 connects the Combustion chamber 12 with an exhaust tract 16, in the other Course an oxygen sensor in the form of a broadband Lambda probe 17 and a NOx storage catalytic converter 18 with not shown three-way pre-catalyst.
  • a control unit 21 uses the signal from the lambda probe 17, a control unit 21 the fuel-air mixture accordingly the target specifications in different operating modes of the internal combustion engine regulated / controlled. For example, in stoichiometric operation a known lambda control.
  • a lambda control is located downstream of the NOx storage catalytic converter 18 a further lambda probe 32 which is used for control and setpoint control.
  • a NOx sensor can also be used.
  • the NOx storage catalytic converter 18 serves to operate during lean operation the exhaust gas limit values required for the internal combustion engine To be able to maintain NOx connections. It adsorbs due to its coating, those generated during lean combustion NOx compounds in the exhaust gas.
  • Throttle valve 20 The combustion air for the cylinder 11 flows through one Air mass meter 23 in the intake duct 13.
  • Throttle valve 20 is controlled by an electric motor Throttle body (E-gas system), whose opening cross section next to actuation by a driver (driver's pedal position) too can be influenced by the control unit 21. With that you can For example, reduce disturbing load change reactions.
  • the throttle valve 20 is controlled by the control unit 21 almost completely opened in stratified lean operation.
  • the control device 21 also provides appropriate intervention on the throttle valve 20 for a smooth transition from stoichiometric to homogeneously lean and from there to stratified-lean Business.
  • thermosensor 24 in the intake duct 13 24, which is connected to the control unit 21.
  • the temperature sensor 24 can also be used in the air mass meter 23 be integrated.
  • a spark plug 25 and an injection valve protrude in the combustion chamber 12 26, which is used for fuel injection from a High-pressure accumulator 27 is fed, which is part of a known Fuel supply for direct petrol injection is.
  • the control unit 21 is finally with a knock sensor 28 connected, the mechanical vibrations on the housing the internal combustion engine detects and a corresponding signal delivers.
  • the speed of the internal combustion engine is over a the crankshaft or a sensor wheel attached to it Sensor 29 detected.
  • Others for operating the internal combustion engine necessary control parameters, e.g. accelerator pedal position, Signals from temperature sensors etc. are sent to the control unit 21 are also supplied and are general in FIG. 1 identified by reference numeral 30.
  • control device 21 is connected to a memory 34, in which different threshold values TQI_SW1, TQI_SW2 as well at least the maps KF1 and KF2 are stored, whose meaning will be discussed later.
  • the control unit 21 determines, depending on the operation, whether the internal combustion engine stoichiometric, homogeneously lean or stratified-lean to be operated.
  • control device 21 continuously determines the control data for the injection valve 26, that is, the start of injection and the injection duration or the injection end.
  • the injection starts on the crankshaft position related, known to the control unit 21 by means of the sensor 29 is.
  • Individuals due to aging and production tolerance Deviations of the individual injection valves 26 at to compensate for a multi-cylinder internal combustion engine is from Control unit 21 performed an adaptation process, the Flow chart is shown in Fig. 2, in which those beginning with S. Reference numerals denote steps of the process sequence.
  • a step S1 corresponding sizes are first initialized.
  • the map KF1 is either with Default values, or with the last execution values determined during the adaptation process.
  • This Query is necessary if the adaptation process as independent process in control unit 21 is running. It is against it The query can be integrated into the operating mode control omitted in step S2, since it is then always known which operating mode is present.
  • Step S4 Signal of the lambda probe 32 recorded individually for each cylinder.
  • This cylinder-specific detection makes it possible to assess which mixture each cylinder receives on average. Doing so the internal combustion engine with the currently valid control values operated for injection.
  • the currently valid control values consist of a basic control value and a current value of a first correction factor to be described from the map KF1 together.
  • Step S5 queries whether there is a change in operating mode in the meantime took place. If this is the case, before step S2 jumped back, otherwise it is in the branch labeled "-" continued.
  • step S4 the system jumps back in a loop before step S4.
  • step S6 shows that individual cylinders not on average with the target mixture through their injectors 26 have been supplied, becomes cylinder-selective in step S7 a fuel quantity correction is calculated.
  • the to be metered to the cylinders via their injection valves 26 Corrected the fuel quantity to the target mixture. For cylinders, that were operated with too rich a mixture, so calculates a fuel shortage; for cylinders with were operated to a lean mixture, a fuel excess.
  • This fuel quantity correction is the first mentioned above Correction factor. It is stored in the map KF1 in step S8.
  • step S4 is then instructed to control unit 21 during activation of the injection valves 26 the corresponding fuel quantity corrections map KF1 to be taken into account. This will usually happen by the injection duration is reduced or extended accordingly. Through the sequence these steps achieve cylinder equality. As mentioned, the loop only becomes a step S5 jumped out if there is an operating mode change.
  • the internal combustion engine runs in stratified, lean operation so can equality by adapting the injectors 26 not with steps S4 to S8, because then no longer predominantly determining the injected fuel mass for the behavior of the internal combustion engine, but Consider the beam characteristics too is. Therefore, the first correction factor, i.e. the Fuel quantity and quantity of the map KF1 not be used more alone. Rather, an independent, Additional adaption for torque equalization in the stratified-lean Operation of the internal combustion engine necessary. Therefore is in lean operation of the internal combustion engine in Step S9 first on a further map KF2 with a second correction factor accessed. For torque equalization the injection takes place with two correction values, the first correction value that occurs during the stratified-lean Mode of operation remains unchanged, and the second Correction factor that is changed by adaptation.
  • the first correction factor i.e. the Fuel quantity and quantity of the map KF1 not be used more alone. Rather, an independent, Additional adaption for torque equalization in the stratified-lean Operation of the internal combustion engine necessary. Therefore
  • step S10 the smooth running is detected cylinder-selectively.
  • This block 31 can for example also on the Signals from a torque sensor (not shown in FIG. 1) Take recourse.
  • step S10 provides the difference of the torques delivered to the individual cylinders.
  • step S11 it is again queried whether a Operating mode change is present. If this is the case, will Step S2 jumps back, otherwise step S12 continued.
  • This step S12 checks whether the difference of the Torques given torques below a threshold lies. Depending on the operating mode, this can be the Threshold value TQI_SW1 for the case of homogeneously lean operation or the threshold value TQI_SW2 for the case stratified-lean Act. If the difference is less than Threshold value for all cylinders, is jumped back before step S10, otherwise proceed to step S13.
  • step S13 the second correction factor becomes cylinder-selective for taking the beam characteristics of the Injector 26 updated.
  • This adaptation of the second Correction factor takes place on a torque equalization the cylinder 11 out.
  • the so adapted or second correction factor is changed in for each cylinder the map KF2 entered.
  • step S14 the control device 21 instructed the second correction factor of the map KF2 together with the unchanged first Correction factor from the map KF1 when controlling the Injectors 26 to be considered. Then before step S10 jumped back.
  • the adaptation of the control of the injection valves 26 is used thus in stratified and lean operation of the internal combustion engine the first correction factor from ⁇ equality, but not the second correction factor in homogeneous operation.
  • the second correction factor that of torque equalization is adapted in stratified-lean operation, resembles a change in the jet characteristics of the injection valves 26, for example due to coking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
EP01103435A 2000-03-10 2001-02-14 Méthode d'adaptation pour la commande d' injection Expired - Lifetime EP1132600B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10011690A DE10011690C2 (de) 2000-03-10 2000-03-10 Verfahren zur Zylindergleichstellung
DE10011690 2000-03-10

Publications (3)

Publication Number Publication Date
EP1132600A2 true EP1132600A2 (fr) 2001-09-12
EP1132600A3 EP1132600A3 (fr) 2003-03-19
EP1132600B1 EP1132600B1 (fr) 2004-06-09

Family

ID=7634220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01103435A Expired - Lifetime EP1132600B1 (fr) 2000-03-10 2001-02-14 Méthode d'adaptation pour la commande d' injection

Country Status (3)

Country Link
EP (1) EP1132600B1 (fr)
KR (1) KR20010091962A (fr)
DE (2) DE10011690C2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149840A (en) * 1989-05-18 1992-09-22 Unilever Patent Holdings B.V. Hydroxy furanone preparation
EP1469179A1 (fr) * 2003-04-16 2004-10-20 Robert Bosch Gmbh Procédé et dispositif pour réguler un moteur à combustion interne
FR2861427A1 (fr) * 2003-10-24 2005-04-29 Renault Sa Procede d'injection de carburant dans un moteur a combustion interne mettant en oeuvre le calcul d'une valeur de consigne
EP1541842A1 (fr) * 2003-12-11 2005-06-15 Perkins Engines Company Limited Ajustage adaptatif d'un injecteur de carburant pendant une condition de fonctionnement sans carburant
WO2005075806A1 (fr) * 2004-02-09 2005-08-18 Siemens Aktiengesellschaft Procede de compensation d'ecarts de quantites d'injection entre les cylindres d'un moteur a combustion interne
FR2872221A1 (fr) * 2004-06-25 2005-12-30 Bosch Gmbh Robert Procede de gestion d'un moteur a combustion interne
WO2007036386A1 (fr) * 2005-09-29 2007-04-05 Siemens Aktiengesellschaft Procede et dispositif pour commander un moteur a combustion interne
FR2910550A1 (fr) * 2006-12-21 2008-06-27 Renault Sas Procede de correction des derives d'un injecteur du moteur.
WO2012062437A1 (fr) * 2010-11-11 2012-05-18 Daimler Ag Procédé de détermination d'un type de défaut du mélange air-carburant
WO2012062402A1 (fr) * 2010-11-11 2012-05-18 Daimler Ag Procédé de correction d'un défaut du mélange air-carburant
WO2015003841A1 (fr) * 2013-07-09 2015-01-15 Robert Bosch Gmbh Procédé de séparation des erreurs de quantité de carburant et de quantité d'air acheminées à au moins un cylindre d'un moteur à combustion interne
WO2016116196A1 (fr) * 2015-01-21 2016-07-28 Continental Automotive Gmbh Commande pilote d'un moteur à combustion interne

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257686A1 (de) * 2002-12-10 2004-07-15 Siemens Ag Verfahren zum Anpassen der Charakteristik eines Einspritzventils
DE10304245B3 (de) * 2003-02-03 2004-07-15 Siemens Ag Verfahren zur Adaption einer Signalabtastung von Lambdasondensignalwerten bei einer Mehrzylinder-Brennkraftmaschine
DE10304242B3 (de) * 2003-02-03 2004-04-29 Siemens Ag Verfahren zur Ermittlung eines Parameters einer Verbrennung in einem Zylinder einer mehrzylindrigen Brennkraftmaschine, Brennkraftmaschine mit einer mehrflutiger Abgasanlage und mehrflutige Abgasanlage
DE10317684B4 (de) * 2003-04-17 2015-02-12 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben einer Brennkraftmaschine
DE10323671A1 (de) * 2003-05-16 2004-12-09 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE10333994B4 (de) * 2003-07-25 2015-04-30 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE10339251B4 (de) * 2003-08-26 2015-06-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
EP1526267A3 (fr) 2003-10-21 2010-07-28 Continental Automotive GmbH Méthode et dispositif pour compenser la dérive d'un injecteur dans un moteur à combustion interne à injection directe
DE102004044808B4 (de) * 2004-09-16 2015-12-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen zylinderindividueller Füllungsunterschiede
DE102005045933B4 (de) * 2005-09-26 2017-04-13 Robert Bosch Gmbh Zylindergleichstellung im Schichtbetrieb unter Berücksichtigung von Laufunruhetermen aus dem Homogenbetrieb
DE102006006552B8 (de) * 2006-02-13 2007-06-06 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006032172B4 (de) * 2006-07-12 2021-03-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Zylindergleichstellung einer Brennkraftmaschine
EP2136058A1 (fr) 2008-06-19 2009-12-23 Continental Automotive GmbH Adaptation de masse de carburant minimum utilisant un détecteur de pression de cylindre
DE102008058008B3 (de) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800176A1 (de) * 1988-01-07 1989-07-20 Bosch Gmbh Robert Steuereinrichtung fuer eine brennkraftmaschine und verfahren zum einstellen von parametern der einrichtung
DE4019574A1 (de) * 1989-08-18 1991-02-21 Avl Verbrennungskraft Messtech Verfahren zur adaptiven regelung des einspritzsystems einer brennkraftmaschine sowie vorrichtung zur durchfuehrung des verfahrens
DE19700711A1 (de) * 1997-01-10 1998-09-17 Siemens Ag Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine
DE19828279A1 (de) * 1998-06-25 1999-12-30 Bosch Gmbh Robert Gleichstellung der zylinderindividuellen Drehmomentenbeiträge beim mehrzylindrigen Verbrennungsmotor
DE19947037C1 (de) * 1999-09-30 2000-10-05 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122139C2 (de) * 1991-07-04 2000-07-06 Bosch Gmbh Robert Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
DE19812305C2 (de) * 1998-03-20 2001-12-06 Siemens Ag Verfahren zur Zylindergleichstellung bei einer direkteinspritzenden Brennkraftmaschine
DE19814155A1 (de) * 1998-03-30 1999-10-14 Siemens Ag Verfahren zur Zylindergleichstellung bei einer mit Direkteinspritzung arbeitenden Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800176A1 (de) * 1988-01-07 1989-07-20 Bosch Gmbh Robert Steuereinrichtung fuer eine brennkraftmaschine und verfahren zum einstellen von parametern der einrichtung
DE4019574A1 (de) * 1989-08-18 1991-02-21 Avl Verbrennungskraft Messtech Verfahren zur adaptiven regelung des einspritzsystems einer brennkraftmaschine sowie vorrichtung zur durchfuehrung des verfahrens
DE19700711A1 (de) * 1997-01-10 1998-09-17 Siemens Ag Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine
DE19828279A1 (de) * 1998-06-25 1999-12-30 Bosch Gmbh Robert Gleichstellung der zylinderindividuellen Drehmomentenbeiträge beim mehrzylindrigen Verbrennungsmotor
DE19947037C1 (de) * 1999-09-30 2000-10-05 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149840A (en) * 1989-05-18 1992-09-22 Unilever Patent Holdings B.V. Hydroxy furanone preparation
EP1469179A1 (fr) * 2003-04-16 2004-10-20 Robert Bosch Gmbh Procédé et dispositif pour réguler un moteur à combustion interne
FR2861427A1 (fr) * 2003-10-24 2005-04-29 Renault Sa Procede d'injection de carburant dans un moteur a combustion interne mettant en oeuvre le calcul d'une valeur de consigne
EP1541842A1 (fr) * 2003-12-11 2005-06-15 Perkins Engines Company Limited Ajustage adaptatif d'un injecteur de carburant pendant une condition de fonctionnement sans carburant
US6964261B2 (en) 2003-12-11 2005-11-15 Perkins Engines Company Limited Adaptive fuel injector trimming during a zero fuel condition
WO2005075806A1 (fr) * 2004-02-09 2005-08-18 Siemens Aktiengesellschaft Procede de compensation d'ecarts de quantites d'injection entre les cylindres d'un moteur a combustion interne
US7319930B2 (en) 2004-02-09 2008-01-15 Siemens Aktiengesellschaft Method for balancing out the differences in the injection quantities between the cylinders in an internal combustion engine
US7203591B2 (en) 2004-06-25 2007-04-10 Robert Bosch Gmbh Method for controlling an internal combustion engine
FR2872221A1 (fr) * 2004-06-25 2005-12-30 Bosch Gmbh Robert Procede de gestion d'un moteur a combustion interne
WO2007036386A1 (fr) * 2005-09-29 2007-04-05 Siemens Aktiengesellschaft Procede et dispositif pour commander un moteur a combustion interne
FR2910550A1 (fr) * 2006-12-21 2008-06-27 Renault Sas Procede de correction des derives d'un injecteur du moteur.
WO2012062437A1 (fr) * 2010-11-11 2012-05-18 Daimler Ag Procédé de détermination d'un type de défaut du mélange air-carburant
WO2012062402A1 (fr) * 2010-11-11 2012-05-18 Daimler Ag Procédé de correction d'un défaut du mélange air-carburant
WO2015003841A1 (fr) * 2013-07-09 2015-01-15 Robert Bosch Gmbh Procédé de séparation des erreurs de quantité de carburant et de quantité d'air acheminées à au moins un cylindre d'un moteur à combustion interne
WO2016116196A1 (fr) * 2015-01-21 2016-07-28 Continental Automotive Gmbh Commande pilote d'un moteur à combustion interne
US10767586B2 (en) 2015-01-21 2020-09-08 Vitesco Technologies GmbH Pilot control of an internal combustion engine

Also Published As

Publication number Publication date
DE10011690A1 (de) 2001-09-20
KR20010091962A (ko) 2001-10-23
DE50102508D1 (de) 2004-07-15
DE10011690C2 (de) 2002-02-07
EP1132600A3 (fr) 2003-03-19
EP1132600B1 (fr) 2004-06-09

Similar Documents

Publication Publication Date Title
EP1132600B1 (fr) Méthode d'adaptation pour la commande d' injection
DE102006043670B4 (de) System und Verfahren für einen aufgeladenen Motor mit Direkteinspritzung
DE19737375C2 (de) Steuergerät für einen Motor mit innerer Verbrennung, Direkt-Einspritzung und Funkenzündung
DE102008000069B4 (de) Vorrichtung zum Steuern einer Einspritzung von Kraftstoff in eine Kraftmaschine und Vorrichtung zum Steuern einer Verbrennung in einer Kraftmaschine
DE69922292T2 (de) Vorrichting zur Steuerung der Moden einer Brennkraftmaschine mit Direkteinspritzung
DE19631986A1 (de) Steuereinrichtung für eine direkteinspritzende Benzinbrennkraftmaschine
DE102015200815A1 (de) Verfahren und System für die Vorzündungssteuerung
DE112019002741T9 (de) Steuerungsvorrichtung und Steuerungsverfahren für eine Verbrennungskraftmaschine
EP0943053B1 (fr) Procede pour commander un moteur a combustion interne a injection directe
DE102007053719B3 (de) Zylinder-Kenngrößen geführte Einspritzstrategie
DE102004005721B4 (de) Regelsystem und Regelverfahren für einen Verbrennungsmotor
DE10043859A1 (de) Verfahren zur Diagnose der Gemischbildung
DE102016110519B4 (de) Verbrennungssystem-Controller
DE10137851B4 (de) Kraftstoffeinspritzregelsystem für einen direkt einspritzenden Motor
DE102006053253B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19724249A1 (de) Ansaugregelgerät und -verfahren für einen Motor
DE19522659C2 (de) Kraftstoffzufuhrsystem und Kraftstoffzufuhrverfahren für eine Verbrennungskraftmaschine
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
DE102007000046B4 (de) Steuersystem für eine Selbstzündungsbrennkraftmaschine
EP1099051B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE10064000A1 (de) Hybrider Betriebsmodus für fremdgezündete Verbrennungskraftmaschinen mit Kraftstoff-Direkteinspritzung (DISI)
DE102008041689B4 (de) Verfahren und Motorsteuergerät zur Adaption von Verdampfungsparametern eines Kraftstoffs bei einem dualen Einspritzsystem
DE69104885T2 (de) Brennkraftmaschine mit Verbrennung eines mageren Gemisches.
EP1081363B1 (fr) Méthode pour contrôler un moteur à explosion
DE102007062171B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 02D 41/14 A

Ipc: 7F 02D 41/30 B

Ipc: 7F 02D 41/34 B

17P Request for examination filed

Effective date: 20030417

17Q First examination report despatched

Effective date: 20030821

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040609

REF Corresponds to:

Ref document number: 50102508

Country of ref document: DE

Date of ref document: 20040715

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090223

Year of fee payment: 9

Ref country code: SE

Payment date: 20090216

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090213

Year of fee payment: 9

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100214

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140228

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50102508

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901