EP1132600A2 - Adapting method for the control of injection - Google Patents
Adapting method for the control of injection Download PDFInfo
- Publication number
- EP1132600A2 EP1132600A2 EP01103435A EP01103435A EP1132600A2 EP 1132600 A2 EP1132600 A2 EP 1132600A2 EP 01103435 A EP01103435 A EP 01103435A EP 01103435 A EP01103435 A EP 01103435A EP 1132600 A2 EP1132600 A2 EP 1132600A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- injection
- correction factor
- lean
- cylinder
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0085—Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2441—Methods of calibrating or learning characterised by the learning conditions
- F02D41/2445—Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3076—Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0614—Actual fuel mass or fuel injection amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
Definitions
- the invention relates to an adaptation method for control the injection of a multi-cylinder internal combustion engine, the phased stoichiometric, Lambda-1 controlled and operated lean becomes.
- the internal combustion engine In a lower load range, the internal combustion engine is used a heavily layered cylinder load and high excess air operated (hereinafter referred to as stratified-lean Operation designated). This will include through a late injection in the compression stroke shortly before the ignition point reached. The internal combustion engine is avoided of throttle losses largely when the throttle valve is open operated.
- the internal combustion engine becomes lean in an upper load range and operated with homogeneous cylinder charge (hereinafter referred to as homogeneously lean operation called).
- the injection takes place already during the intake stroke to ensure thorough mixing to get fuel and air.
- the air mass sucked in is according to the requested torque, for example requested by a driver at an accelerator pedal is set via a throttle valve.
- the internal combustion engine can also be used with stoichiometric Fuel-air mixture operated (in the following referred to as stoichiometric operation). Doing so the required amount of fuel from the inducted in a known manner Combustion air mass taking into account the Speed calculated and if necessary via a lambda control corrected.
- homogeneous operation The homogeneous, lean operation and the stoichiometric operation are summarized below under the term "homogeneous operation”.
- Fuel injectors naturally have a certain one Deviation of their actual behavior from the specified target behavior on. This deviation can be due to manufacturing tolerances be, or result from changes in operations, for example through deposits. It is therefore known in stoichiometric operation a so-called cylinder equality perform in the cylinder-specific differences of the injection valves are adaptively compensated. By correcting the control of the respective Injectors ensure that each cylinder is exactly in the stoichiometric operation with lambda 1 control is running. Each after tolerance or age-related deviation that the respective Injector shows, this equality can be a Excess or shortage of fuel mean that during operation of the respective injection valve is used as a correction must become.
- This cylinder equation is for direct injection Internal combustion engines are particularly important because of their injectors directly into the combustion chamber of the internal combustion engine protrude and therefore subject to particularly strong aging influences are.
- the invention is based on the knowledge that in the stratified-lean Operation for the behavior of the internal combustion engine essentially the spray characteristics of an injector emitted beam is determining. Are there individual changes in injector characteristics in stratified-lean operation mainly relevant to torque, whereas in homogeneous operation (both homogeneously lean and also stoichiometric) of the internal combustion engine mainly relevant to emissions are. According to the invention is therefore a known ⁇ equality in homogeneous operation of the internal combustion engine carried out, a first correction factor for change predefined basic injection values for each injection valve determined and saved. With this first correction factor is achieved that the respective injectors all show the same actual behavior; tolerance or aging Deviations in the fuel mass delivered are balanced.
- the torque equalization is from respective last stored first correction factor of previous homogeneous operating phase, i.e. the first Correction factor is now for stratified-lean operation used, in addition a determination or adaptation of a second correction factor that is specific for the stratified and lean operation and together with that first correction factor is used. Starting from these The values are then adapted using an independent process the second correction factor in lean operation.
- a target for torque equalization in the stratified-lean Operation can preferably run smoothly of the internal combustion engine serve. You can do this using, for example of a knock sensor detect the smooth running cylinder selectively and Injection duration and / or start of injection for the individual Change the injection valves appropriately so that they run smoothly increases.
- a knock sensor detects the smooth running cylinder selectively and Injection duration and / or start of injection for the individual Change the injection valves appropriately so that they run smoothly increases.
- the deviation of the actual behavior of an injection valve must of his target behavior not in every phase be the same as the internal combustion engine.
- the deviation depends on the fuel pressure.
- the individual cylinder Correction factors of ⁇ and / or torque equalization to design depending on the operating parameters. Instead of a single first and second correction factor for each cylinder then you will save for a given Operating parameter classification according to several first and Store second correction factors, for example in suitable ones Maps.
- Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable.
- Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable.
- Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable.
- the internal combustion engine has a piston 10, which is in a Cylinder 11 delimits a combustion chamber 12.
- a combustion chamber 12 In the Combustion chamber 12 opens into an intake duct 13 at an inlet valve 14 through which the combustion air enters the combustion chamber 12 streams.
- An outlet valve 15 connects the Combustion chamber 12 with an exhaust tract 16, in the other Course an oxygen sensor in the form of a broadband Lambda probe 17 and a NOx storage catalytic converter 18 with not shown three-way pre-catalyst.
- a control unit 21 uses the signal from the lambda probe 17, a control unit 21 the fuel-air mixture accordingly the target specifications in different operating modes of the internal combustion engine regulated / controlled. For example, in stoichiometric operation a known lambda control.
- a lambda control is located downstream of the NOx storage catalytic converter 18 a further lambda probe 32 which is used for control and setpoint control.
- a NOx sensor can also be used.
- the NOx storage catalytic converter 18 serves to operate during lean operation the exhaust gas limit values required for the internal combustion engine To be able to maintain NOx connections. It adsorbs due to its coating, those generated during lean combustion NOx compounds in the exhaust gas.
- Throttle valve 20 The combustion air for the cylinder 11 flows through one Air mass meter 23 in the intake duct 13.
- Throttle valve 20 is controlled by an electric motor Throttle body (E-gas system), whose opening cross section next to actuation by a driver (driver's pedal position) too can be influenced by the control unit 21. With that you can For example, reduce disturbing load change reactions.
- the throttle valve 20 is controlled by the control unit 21 almost completely opened in stratified lean operation.
- the control device 21 also provides appropriate intervention on the throttle valve 20 for a smooth transition from stoichiometric to homogeneously lean and from there to stratified-lean Business.
- thermosensor 24 in the intake duct 13 24, which is connected to the control unit 21.
- the temperature sensor 24 can also be used in the air mass meter 23 be integrated.
- a spark plug 25 and an injection valve protrude in the combustion chamber 12 26, which is used for fuel injection from a High-pressure accumulator 27 is fed, which is part of a known Fuel supply for direct petrol injection is.
- the control unit 21 is finally with a knock sensor 28 connected, the mechanical vibrations on the housing the internal combustion engine detects and a corresponding signal delivers.
- the speed of the internal combustion engine is over a the crankshaft or a sensor wheel attached to it Sensor 29 detected.
- Others for operating the internal combustion engine necessary control parameters, e.g. accelerator pedal position, Signals from temperature sensors etc. are sent to the control unit 21 are also supplied and are general in FIG. 1 identified by reference numeral 30.
- control device 21 is connected to a memory 34, in which different threshold values TQI_SW1, TQI_SW2 as well at least the maps KF1 and KF2 are stored, whose meaning will be discussed later.
- the control unit 21 determines, depending on the operation, whether the internal combustion engine stoichiometric, homogeneously lean or stratified-lean to be operated.
- control device 21 continuously determines the control data for the injection valve 26, that is, the start of injection and the injection duration or the injection end.
- the injection starts on the crankshaft position related, known to the control unit 21 by means of the sensor 29 is.
- Individuals due to aging and production tolerance Deviations of the individual injection valves 26 at to compensate for a multi-cylinder internal combustion engine is from Control unit 21 performed an adaptation process, the Flow chart is shown in Fig. 2, in which those beginning with S. Reference numerals denote steps of the process sequence.
- a step S1 corresponding sizes are first initialized.
- the map KF1 is either with Default values, or with the last execution values determined during the adaptation process.
- This Query is necessary if the adaptation process as independent process in control unit 21 is running. It is against it The query can be integrated into the operating mode control omitted in step S2, since it is then always known which operating mode is present.
- Step S4 Signal of the lambda probe 32 recorded individually for each cylinder.
- This cylinder-specific detection makes it possible to assess which mixture each cylinder receives on average. Doing so the internal combustion engine with the currently valid control values operated for injection.
- the currently valid control values consist of a basic control value and a current value of a first correction factor to be described from the map KF1 together.
- Step S5 queries whether there is a change in operating mode in the meantime took place. If this is the case, before step S2 jumped back, otherwise it is in the branch labeled "-" continued.
- step S4 the system jumps back in a loop before step S4.
- step S6 shows that individual cylinders not on average with the target mixture through their injectors 26 have been supplied, becomes cylinder-selective in step S7 a fuel quantity correction is calculated.
- the to be metered to the cylinders via their injection valves 26 Corrected the fuel quantity to the target mixture. For cylinders, that were operated with too rich a mixture, so calculates a fuel shortage; for cylinders with were operated to a lean mixture, a fuel excess.
- This fuel quantity correction is the first mentioned above Correction factor. It is stored in the map KF1 in step S8.
- step S4 is then instructed to control unit 21 during activation of the injection valves 26 the corresponding fuel quantity corrections map KF1 to be taken into account. This will usually happen by the injection duration is reduced or extended accordingly. Through the sequence these steps achieve cylinder equality. As mentioned, the loop only becomes a step S5 jumped out if there is an operating mode change.
- the internal combustion engine runs in stratified, lean operation so can equality by adapting the injectors 26 not with steps S4 to S8, because then no longer predominantly determining the injected fuel mass for the behavior of the internal combustion engine, but Consider the beam characteristics too is. Therefore, the first correction factor, i.e. the Fuel quantity and quantity of the map KF1 not be used more alone. Rather, an independent, Additional adaption for torque equalization in the stratified-lean Operation of the internal combustion engine necessary. Therefore is in lean operation of the internal combustion engine in Step S9 first on a further map KF2 with a second correction factor accessed. For torque equalization the injection takes place with two correction values, the first correction value that occurs during the stratified-lean Mode of operation remains unchanged, and the second Correction factor that is changed by adaptation.
- the first correction factor i.e. the Fuel quantity and quantity of the map KF1 not be used more alone. Rather, an independent, Additional adaption for torque equalization in the stratified-lean Operation of the internal combustion engine necessary. Therefore
- step S10 the smooth running is detected cylinder-selectively.
- This block 31 can for example also on the Signals from a torque sensor (not shown in FIG. 1) Take recourse.
- step S10 provides the difference of the torques delivered to the individual cylinders.
- step S11 it is again queried whether a Operating mode change is present. If this is the case, will Step S2 jumps back, otherwise step S12 continued.
- This step S12 checks whether the difference of the Torques given torques below a threshold lies. Depending on the operating mode, this can be the Threshold value TQI_SW1 for the case of homogeneously lean operation or the threshold value TQI_SW2 for the case stratified-lean Act. If the difference is less than Threshold value for all cylinders, is jumped back before step S10, otherwise proceed to step S13.
- step S13 the second correction factor becomes cylinder-selective for taking the beam characteristics of the Injector 26 updated.
- This adaptation of the second Correction factor takes place on a torque equalization the cylinder 11 out.
- the so adapted or second correction factor is changed in for each cylinder the map KF2 entered.
- step S14 the control device 21 instructed the second correction factor of the map KF2 together with the unchanged first Correction factor from the map KF1 when controlling the Injectors 26 to be considered. Then before step S10 jumped back.
- the adaptation of the control of the injection valves 26 is used thus in stratified and lean operation of the internal combustion engine the first correction factor from ⁇ equality, but not the second correction factor in homogeneous operation.
- the second correction factor that of torque equalization is adapted in stratified-lean operation, resembles a change in the jet characteristics of the injection valves 26, for example due to coking.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
Die Erfindung betrifft ein Adaptionsverfahren zur Steuerung der Einspritzung einer Mehrzylinder-Brennkraftmaschine, die phasenweise stöchiometrisch, Lambda-1-geregelt und mager betrieben wird.The invention relates to an adaptation method for control the injection of a multi-cylinder internal combustion engine, the phased stoichiometric, Lambda-1 controlled and operated lean becomes.
Um den Kraftstoffverbrauch von Otto-Brennkraftmaschinen weiter zu reduzieren, kommen Brennkraftmaschinen mit magerer Verbrennung immer häufiger zum Einsatz. Bei einer solchen mageren Betriebsweise wird zwischen zwei grundlegenden Betriebsarten unterschieden.To continue the fuel consumption of Otto internal combustion engines to reduce, internal combustion engines come with lean Combustion is increasingly used. With such a skinny one Operating mode is between two basic operating modes distinguished.
In einem unteren Lastbereich wird die Brennkraftmaschine mit einer stark geschichteten Zylinderbeladung und hohem Luftüberschuss betrieben (im folgenden als geschichtet-magerer Betrieb bezeichnet). Dies wird u.a. durch eine späte Einspritzung in den Verdichtungshub kurz vor dem Zündzeitpunkt erreicht. Die Brennkraftmaschine wird dabei unter Vermeidung von Drosselverlusten weitgehend bei geöffneter Drosselklappe betrieben.In a lower load range, the internal combustion engine is used a heavily layered cylinder load and high excess air operated (hereinafter referred to as stratified-lean Operation designated). This will include through a late injection in the compression stroke shortly before the ignition point reached. The internal combustion engine is avoided of throttle losses largely when the throttle valve is open operated.
In einem oberen Lastbereich wird die Brennkraftmaschine mager und mit homogener Zylinderladung betrieben (im folgenden als homogen-magerer Betrieb bezeichnet). Die Einspritzung erfolgt bereits während des Ansaugtaktes, um eine gute Durchmischung von Kraftstoff und Luft zu erhalten. Die angesaugte Luftmasse wird entsprechend dem angeforderten Drehmoment, das beispielsweise von einem Fahrer an einem Fahrpedal abgefordert wird, über eine Drosselklappe eingestellt.The internal combustion engine becomes lean in an upper load range and operated with homogeneous cylinder charge (hereinafter referred to as homogeneously lean operation called). The injection takes place already during the intake stroke to ensure thorough mixing to get fuel and air. The air mass sucked in is according to the requested torque, for example requested by a driver at an accelerator pedal is set via a throttle valve.
Schließlich kann die Brennkraftmaschine auch mit stöchiometrischem Kraftstoff-Luft-Gemisch betrieben werden (im folgenden als stöchiometrischer Betrieb bezeichnet). Dabei wird auf bekannte Weise die benötigte Kraftstoffmenge aus der angesaugten Verbrennungsluftmasse unter Berücksichtigung der Drehzahl berechnet und gegebenenfalls über eine Lambda-Regelung korrigiert.Finally, the internal combustion engine can also be used with stoichiometric Fuel-air mixture operated (in the following referred to as stoichiometric operation). Doing so the required amount of fuel from the inducted in a known manner Combustion air mass taking into account the Speed calculated and if necessary via a lambda control corrected.
Der homogen-magere Betrieb und der stöchiometrische Betrieb werden nachfolgend unter dem Begriff "homogener Betrieb" zusammengefasst.The homogeneous, lean operation and the stoichiometric operation are summarized below under the term "homogeneous operation".
Kraftstoff-Einspritzventile weisen naturgemäß eine gewisse
Abweichung ihres Ist-Verhaltens vom spezifizierten SollVerhalten
auf. Diese Abweichung kann fertigungstoleranzenbedingt
sein, oder sich durch Veränderungen im Betrieb ergeben,
beispielsweise durch Ablagerungen. Es ist deshalb bekannt, im
stöchiometrischen Betrieb eine sogenannte Zylinder-Gleichstellung
durchzuführen, in der zylinderindividuelle Unterschiede
der Einspritzventile adaptiv ausgeglichen werden.
Dabei wird durch Korrektur der Ansteuerung der jeweiligen
Einspritzventile dafür gesorgt, dass jeder Zylinder exakt im
stöchiometrischen Betrieb mit Lambda-1-Regelung läuft. Je
nach toleranz- oder altersbedingter Abweichung, die das jeweilige
Einspritzventil zeigt, kann diese Gleichstellung eine
Mehr- oder Mindermenge an Kraftstoff bedeuten, die beim Betrieb
des jeweiligen Einspritzventils als Korrektur zugrundegelegt
werden muss.Fuel injectors naturally have a certain one
Deviation of their actual behavior from the specified target behavior
on. This deviation can be due to manufacturing tolerances
be, or result from changes in operations,
for example through deposits. It is therefore known in
stoichiometric operation a so-called cylinder equality
perform in the cylinder-specific differences
of the injection valves are adaptively compensated.
By correcting the control of the respective
Injectors ensure that each cylinder is exactly in the
stoichiometric operation with
Diese Zylinder-Gleichstellung ist bei direkt einspritzenden Brennkraftmaschinen besonders von Bedeutung, da deren Einspritzventile direkt in den Brennraum der Brennkraftmaschine ragen und mithin besonders stark Alterungseinflüssen unterworfen sind.This cylinder equation is for direct injection Internal combustion engines are particularly important because of their injectors directly into the combustion chamber of the internal combustion engine protrude and therefore subject to particularly strong aging influences are.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben, mit dem bei einer Brennkraftmaschine, die sowohl im stöchiometrischen als auch im mageren Betrieb läuft, eine Adaption der Einspritzsteuerung erreicht wird, um Veränderungen der Einspritzventile sowohl in stöchiometrischen als auch in mageren Betriebsphasen auszugleichen. It is an object of the present invention to provide a method with that in an internal combustion engine that is both in stoichiometric as well as in lean operation, an adaptation the injection control is achieved to make changes of injectors in both stoichiometric and balance in lean operating phases.
Diese Aufgabe wird durch die in Anspruch 1 gekennzeichnete
Erfindung gelöst.This object is characterized by that in
Die Erfindung geht von der Erkenntnis aus, dass im geschichtet-mageren Betrieb für das Verhalten der Brennkraftmaschine im wesentlichen die Strahlcharakteristik des von einem Einspritzventil abgegebenen Strahles bestimmend ist. Dabei sind individuelle Veränderungen der Einspritzventilcharakteristik im geschichtet-mageren Betrieb vorwiegend drehmomentrelevant, wogegen sie im homogenen Betrieb (sowohl homogen-mager als auch stöchiometrisch) der Brennkraftmaschine hauptsächlich emissionsrelevant sind. Erfindungsgemäß wird deshalb eine bekannte λ-Gleichstellung im homogenen Betrieb der Brennkraftmaschine durchgeführt, ein erster Korrekturfaktor zur Veränderung vorgegebener Einspritzgrundwerte für jedes Einspritzventil ermittelt und abgespeichert. Mit diesem ersten Korrekturfaktor ist erreicht, dass die jeweiligen Einspritzventile alle das gleiche Istverhalten zeigen; toleranz- oder alterungsbedingte Abweichungen der abgegebenen Kraftstoffmasse sind ausgeglichen.The invention is based on the knowledge that in the stratified-lean Operation for the behavior of the internal combustion engine essentially the spray characteristics of an injector emitted beam is determining. Are there individual changes in injector characteristics in stratified-lean operation mainly relevant to torque, whereas in homogeneous operation (both homogeneously lean and also stoichiometric) of the internal combustion engine mainly relevant to emissions are. According to the invention is therefore a known λ equality in homogeneous operation of the internal combustion engine carried out, a first correction factor for change predefined basic injection values for each injection valve determined and saved. With this first correction factor is achieved that the respective injectors all show the same actual behavior; tolerance or aging Deviations in the fuel mass delivered are balanced.
Wechselt die Brennkraftmaschine nun in den geschichtet-mageren Betrieb, so wird hier ebenfalls eine Gleichstellung durchgeführt, wobei nun nicht mehr ein stöchiometrisches oder homogen-mageres Gemisch für die einzelnen Zylinder zielführend ist, sondern das vom jeweiligen Zylinder abgegebene Drehmoment; man spricht deshalb von Drehmoment-Gleichstellung. Zur Ermittlung der zylinderindividuellen Korrekturfaktoren der Drehmoment-Gleichstellung wird dabei vom jeweiligen zuletzt abgespeicherten ersten Korrekturfaktor der vorherigen homogenen Betriebsphase ausgegangen, d.h. der erste Korrekturfaktor wird nun für den geschichtet-mageren Betrieb verwendet, wobei zusätzlich eine Ermittlung oder Adaption eines zweiten Korrekturfaktors erfolgt, der spezifisch für den geschichtet-mageren Betrieb ist und zusammen mit dem ersten Korrekturfaktor verwendet wird. Ausgehend von diesen Werten erfolgt dann mit einem eigenständigen Verfahren die Adaption des zweiten Korrekturfaktors im mageren Betrieb.The engine now changes to the stratified-lean Operation, so here is also an equality carried out, now no longer a stoichiometric or Homogeneous, lean mixture for the individual cylinders but that emitted by the respective cylinder Torque; one therefore speaks of torque equalization. To determine the cylinder-specific correction factors the torque equalization is from respective last stored first correction factor of previous homogeneous operating phase, i.e. the first Correction factor is now for stratified-lean operation used, in addition a determination or adaptation of a second correction factor that is specific for the stratified and lean operation and together with that first correction factor is used. Starting from these The values are then adapted using an independent process the second correction factor in lean operation.
Da im homogenen Betrieb in erster Linie die injizierte Kraftstoffmasse, im geschichtet-mageren Betrieb aber im wesentlichen die Strahlcharakteristik bestimmend für das Verhalten der Brennkraftmaschine ist, kann der zweite Korrekturfaktor, der in der Adaption einer geschichtet-mageren Betriebsphase ermittelt wurde, schwerlich auf die λ-Gleichstellung im homogenen Betrieb verwendet werden. Deshalb wird vorzugsweise die λ-Gleichstellung im homogenen Betrieb bei einem Wechsel des Betriebsmodus von geschichtet-magerem Betrieb nach homogenem Betrieb wieder mit dem in dem Adaptionsalgorithmus des geschichtet-mageren Betriebes unveränderten ersten Korrekturfaktor, der als Ergebnis der Adaption in der vorherigen homogenen Betriebsphase erhalten wurde, fortgefahren und der letzte Wert des zweiten Korrekturfaktors bei der homogenen Betriebsphase nicht verwendet. Es laufen also zwei Adaptionsalgorithmen unabhängig, einer für den homogenen Betrieb und einer für den geschichtet-mageren Betrieb.Since in homogeneous operation it is primarily the injected fuel mass, in stratified and lean operation, however, essentially the beam characteristic determines the behavior the internal combustion engine, the second correction factor, that in the adaptation of a stratified-lean operating phase was hardly determined on the λ equality in homogeneous Operation. Therefore, the λ equality in homogeneous operation when changing the Operating mode from stratified-lean operation to homogeneous Operation again with that in the adaptation algorithm of the stratified-lean Operation unchanged first correction factor, which as a result of the adaptation in the previous homogeneous Operating phase was obtained, continued and the last value of the second correction factor for the homogeneous Operating phase not used. So there are two adaptation algorithms independent, one for homogeneous operation and one for the stratified and lean operation.
Als Zielgröße für die Drehmoment-Gleichstellung im geschichtet-mageren Betrieb kann vorzugsweise die Laufruhe der Brennkraftmaschine dienen. Dazu kann man beispielsweise mittels eines Klopfsensors die Laufruhe zylinderselektiv erfassen und Einspritzdauer und/oder Einspritzbeginn für die einzelnen Einspritzventile geeignet so verändern, dass die Laufruhe steigt. Kann man in geschichtet-mageren Betriebsphasen in gewissen Betriebszuständen die Laufruhe nicht erfassen, wie es beispielsweise bei starker Dynamik der Brennkraftmaschine der Fall sein kann, ist es möglich, die Adaption des zweiten Korrekturfaktors auszusetzen.As a target for torque equalization in the stratified-lean Operation can preferably run smoothly of the internal combustion engine serve. You can do this using, for example of a knock sensor detect the smooth running cylinder selectively and Injection duration and / or start of injection for the individual Change the injection valves appropriately so that they run smoothly increases. One can in certain stratified lean operating phases Operating conditions do not capture the smooth running like it does for example with strong dynamics of the internal combustion engine Case, it is possible to adapt the second correction factor to suspend.
Natürlich muss die Abweichung des Istverhaltens eines Einspritzventils von seinem Sollverhalten nicht in jeder Phase der Brennkraftmaschine gleich sein. Beispielsweise ist denkbar, dass die Abweichung vom Kraftstoffdruck abhängt. Es ist deshalb in einer weiteren Ausbildung möglich, die zylinderindividuellen Korrekturfaktoren der λ- und/oder der Drehmoment-Gleichstellung betriebsparameterabhängig zu gestalten. Statt jeweils pro Zylinder einen einzelnen ersten und zweiten Korrekturfaktor zu speichern, wird man dann für eine gegebene Betriebsparametereinteilung entsprechend mehrere erste und zweite Korrekturfaktoren ablegen, beispielsweise in geeigneten Kennfeldern.Of course, the deviation of the actual behavior of an injection valve must of his target behavior not in every phase be the same as the internal combustion engine. For example, it is conceivable that the deviation depends on the fuel pressure. It is therefore possible in a further training, the individual cylinder Correction factors of λ and / or torque equalization to design depending on the operating parameters. Instead of a single first and second correction factor for each cylinder then you will save for a given Operating parameter classification according to several first and Store second correction factors, for example in suitable ones Maps.
Die getrennten ersten und zweiten Korrekturfaktoren haben weiter den Vorteil, dass die auf sie wirkenden Adaptionsalgorithmen im homogenen und in geschichtet-magerem Betrieb langsam ausgelegt werden können. Im homogenen Betrieb wirkt nur der erste Korrekturfaktor, und nur dieser wird adaptiert, in geschichtet-magerem Betrieb wirken erster und zweiter Korrekturfaktor, aber nur der zweite Korrekturfaktor wird durch Adaption verändert.Have the separate first and second correction factors further the advantage that the adaptation algorithms acting on them slow in homogeneous and stratified-lean operation can be interpreted. In homogeneous operation only works the first correction factor, and only this is adapted, in stratified and lean operation act first and second correction factor, but only the second correction factor is through adaptation changed.
Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous developments of the invention are the subject of subclaims.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung in einem Ausführungsbeispiel näher erläutert. In der Zeichnung zeigt:
- Fig. 1
- eine schematische Darstellung einer Brennkraftmaschine mit Direkteinspritzung und
- Fig. 2
- einen Ablaufplan eines Verfahrens zur Adaption der Ansteuerung von Einspritzvehtilen der Brennkraftmaschine der Fig. 1.
- Fig. 1
- is a schematic representation of an internal combustion engine with direct injection and
- Fig. 2
- 1 shows a flowchart of a method for adapting the control of injection systems of the internal combustion engine of FIG. 1.
Fig. 1 zeigt in schematischer Darstellung eine Brennkraftmaschine mit Benzin-Direkteinspritzung, die sowohl mit stöchiometrischem als auch mit magerem Kraftstoff-Luft-Gemisch betreibbar ist. Aus Gründen der Übersichtlichkeit sind nur diejenigen Bestandteile der Brennkraftmaschine eingezeichnet, die für das Verständnis der Erfindung notwendig sind; insbesondere ist nur ein Zylinder einer mehrzylindrigen Brennkraftmaschine dargestellt.Fig. 1 shows a schematic representation of an internal combustion engine with gasoline direct injection, both with stoichiometric as well as with a lean fuel-air mixture is operable. For reasons of clarity only those components of the internal combustion engine drawn in, necessary for understanding the invention; in particular is just one cylinder of a multi-cylinder internal combustion engine shown.
Die Brennkraftmaschine weist einen Kolben 10 auf, der in einem
Zylinder 11 einen Verbrennungsraum 12 begrenzt. In den
Verbrennungsraum 12 mündet ein Ansaugkanal 13 an einem Einlassventil
14, durch das die Verbrennungsluft in den Verbrennungsraum
12 strömt. Ein Auslassventil 15 verbindet den
Verbrennungsraum 12 mit einem Abgastrakt 16, in dessen weiteren
Verlauf ein Sauerstoffsensor in Form einer breitbandigen
Lambda-Sonde 17 sowie ein NOx-Speicherkatalysator 18 mit
nicht dargestelltem Drei-Wege-Vorkatalysator liegen.The internal combustion engine has a
Unter Rückgriff auf das Signal der Lambda-Sonde 17 wird von
einem Steuergerät 21 das Kraftstoff-Luft-Gemisch entsprechend
den Sollvorgaben in verschiedenen Betriebsmodi der Brennkraftmaschine
geregelt/gesteuert. Beispielsweise erfolgt im
stöchiometrischen Betrieb eine bekannte Lambda-Regelung.Using the signal from the lambda probe 17,
a
Für eine solche Lambda-Regelung befindet sich stromab des
NOx-Speicherkatalysators 18 eine weitere Lambda-Sonde 32, die
für eine Führungs- und Sollwertregelung verwendet wird. Die
Sauerstoffsonde ist in diesem Falle eine binäre Lambda-Sonde
32 (Zweipunkt-Lambda-Sonde), die bei einem Lambdawert von λ =
1 Sprungcharakteristik zeigt. Anstelle der Lambda-Sonde 32
kann auch ein NOx-Messaufnehmer verwendet werden. Weiter befindet
sich im Abgastrakt in der Regel noch ein Temperaturfühler
33.For such a lambda control is located downstream of the
NOx storage catalytic converter 18 a
Der NOx-Speicherkatalysator 18 dient dazu, um bei magerem Betrieb
der Brennkraftmaschine geforderte Abgasgrenzwerte bezüglich
NOx-Verbindungen einhalten zu können. Er adsorbiert
aufgrund seiner Beschichtung die bei magerer Verbrennung erzeugten
NOx-Verbindungen im Abgas. The NOx storage
Um die speziell bei Brennkraftmaschinen mit Direkteinspritzung
im geschichtet-mageren Betrieb auftretenden NOx-Emissionen
zu verringern, ist eine Abgasrückführung vorgesehen.
Dabei wird durch Zumischen von Abgas zu angesaugter
Frischluft die Temperatur der Verbrennung gesenkt, womit
zugleich die NOx-Emissionen reduziert werden. Deshalb ist vom
Abgastrakt 16 stromauf des NOx-Speicherkatalysators 18 eine
Abgasrückführleitung 19 zum Ansaugkanal 13 geführt, die zwischen
einer Drosselklappe 20 und dem Einlassventil 14 in den
Ansaugkanal mündet. In die Abgasrückführleitung 19 ist ein
steuerbares Ventil 22 geschaltet, das üblicherweise als Abgasrückführventil
bezeichnet wird. Durch Ansteuerung des Ventils
22 kann die Menge an rückgeführtem Abgas eingestellt
werden.In particular for internal combustion engines with direct injection
NOx emissions occurring in stratified, lean operation
to reduce exhaust gas recirculation is provided.
By mixing in exhaust gas, it is sucked in
Fresh air lowered the temperature of the combustion, with what
NOx emissions are reduced at the same time. Therefore from
Exhaust tract 16 upstream of the NOx storage
Die Verbrennungsluft für den Zylinder 11 strömt über einen
Luftmassenmesser 23 in den Ansaugkanal 13. Die darin angeordnete
Drosselklappe 20 ist ein elektromotorisch angesteuertes
Drosselorgan (E-Gas-System), dessen Öffnungsquerschnitt neben
der Betätigung durch einen Fahrer (Fahrerpedalstellung) auch
vom Steuergerät 21 beeinflusst werden kann. Damit lassen sich
beispielsweise störende Lastwechselreaktionen reduzieren.
Darüber hinaus wird die Drosselklappe 20 vom Steuergerät 21
im geschichtet mageren Betrieb nahezu vollständig geöffnet.
Weiter sorgt das Steuergerät 21 durch entsprechenden Eingriff
an der Drosselklappe 20 für einen weichen Übergang von stöchiometrischem
zu homogen-magerem und von dort zum geschichtet-mageren
Betrieb.The combustion air for the cylinder 11 flows through one
Air mass meter 23 in the
Schließlich befindet sich im Ansaugkanal 13 noch ein Temperatursensor
24, der an das Steuergerät 21 angeschlossen ist.
Natürlich kann der Temperatursensor 24 auch in den Luftmassenmesser
23 integriert sein.Finally, there is a temperature sensor in the
Im Verbrennungsraum 12 ragen eine Zündkerze 25 sowie ein Einspritzventil
26, das zur Einspritzung mit Kraftstoff aus einem
Hochdruckspeicher 27 gespeist wird, der Teil einer bekannten
Kraftstoffversorgung zur Benzin-Direkteinspritzung
ist. Das Steuergerät 21 ist schließlich noch mit einem Klopfsensor
28 verbunden, der mechanische Schwingungen am Gehäuse
der Brennkraftmaschine erfasst und ein entsprechendes Signal
abgibt. Die Drehzahl der Brennkraftmaschine wird über einen
die Kurbelwelle bzw. ein daran befestigtes Geberrad abtastenden
Fühler 29 erfasst. Weitere zum Betrieb der Brennkraftmaschine
nötige Steuerparameter, beispielsweise Fahrpedalstellung,
Signale von Temperatursensoren usw. werden dem Steuergerät
21 ebenfalls zugeführt und sind in der Fig. 1 allgemein
mit dem Bezugszeichen 30 gekennzeichnet.A
Im Steuergerät 21 ist schließlich ein Block 31 zur Drehmomentermittlung
und -überwachung vorgesehen, dessen Funktion
später erläutert wird.Finally, there is a
Ferner ist das Steuergerät 21 mit einem Speicher 34 verbunden,
in dem verschiedene Schwellenwerte TQI_SW1, TQI_SW2 sowie
mindestens die Kennfelder KF1 und KF2 gespeichert sind,
auf deren Bedeutung noch eingegangen wird.Furthermore, the
Das Steuergerät 21 legt betriebsabhängig fest, ob die Brennkraftmaschine
stöchiometrisch, homogen-mager oder geschichtet-mager
betrieben werden soll.The
In jedem Betriebsmodus bestimmt das Steuergerät 21 ständig
die Ansteuerdaten für das Einspritzventil 26, also den Einspritzbeginn
sowie die Einspritzdauer bzw. das Einspritzende.
Dabei wird der Einspritzbeginn auf die Kurbelwellenstellung
bezogen, die mittels des Fühlers 29 dem Steuergerät 21 bekannt
ist. Um alterungs- und produktionstoleranzbedingte individuelle
Abweichungen der einzelnen Einspritzventile 26 bei
einer Mehrzylinder-Brennkraftmaschine auszugleichen, wird vom
Steuergerät 21 ein Adaptionsverfahren durchgeführt, dessen
Flussdiagramm in Fig. 2 dargestellt ist, in der die mit S beginnenden
Bezugszeichen Schritte des Verfahrensablaufes bezeichnen. In each operating mode, the
In einem Schritt Sl werden zuerst entsprechende Größen initialisiert. Insbesondere wird das Kennfeld KF1 entweder mit Standardwerten vorbelegt, oder mit bei der letzten Ausführung des Adaptionsverfahrens ermittelten Werten beschrieben.In a step S1, corresponding sizes are first initialized. In particular, the map KF1 is either with Default values, or with the last execution values determined during the adaptation process.
Anschließend wird in einem Schritt S2 abgefragt, ob die
Brennkraftmaschine sich im homogenen Betriebsmodus befindet
(λ=1). Ist dies der Fall, wird in der mit einem "+"-Zeichen
bezeichneten Verzweigung weitergefahren. Befindet sich die
Brennkraftmaschine nicht im homogenen Betriebsmodus, wird mit
dem mit einem "-"-Zeichen bezeichneten Ast fortgefahren. Diese
Abfrage ist dann nötig, wenn das Adaptionsverfahren als
unabhängiger Prozess im Steuergerät 21 abläuft. Ist es dagegen
in die Betriebsmodussteuerung eingebunden, kann die Abfrage
in Schritt S2 entfallen, da dann immer bekannt ist,
welcher Betriebsmodus vorliegt.Subsequently, a query is made in a step S2 as to whether the
Internal combustion engine is in the homogeneous operating mode
(λ = 1). If this is the case, the is marked with a "+" sign
designated branch continued. Is the
Internal combustion engine not in homogeneous operating mode, is with
the branch marked with a "-" sign. This
Query is necessary if the adaptation process as
independent process in
Im Falle des homogenen Betriebes wird in einem Schritt S4 das
Signal der Lambda-Sonde 32 zylinderindividuell erfasst. Diese
zylinderindividuelle Erfassung ermöglicht es, zu beurteilen,
welches Gemisch jeder Zylinder im Mittel erhält. Dabei wird
die Brennkraftmaschine mit den derzeit gültigen Ansteuerwerten
für die Einspritzung betrieben. Die derzeit gültigen Ansteuerwerte
setzen sich aus einem Ansteuergrundwert und einem
aktuellen Wert eines noch zu beschreibenden ersten Korrekturfaktors
aus dem Kennfeld KF1 zusammen. Anschließend wird in
Schritt S5 abgefragt, ob zwischenzeitlich ein Wechsel des Betriebsmodus
erfolgte. Ist dies der Fall, wird vor Schritt S2
zurückgesprungen, ansonsten wird im mit "-" bezeichneten Ast
fortgefahren.In the case of homogeneous operation, in a step S4
Signal of the
Dann wird im Schritt S6 als nächstes überprüft, ob sich aus der zylinderindividuellen Erfassung in Schritt S4 erkennen lässt, dass alle Zylinder mit dem Soll-Gemisch, bei stöchiometrischem Betrieb also im Mittel mit λ=1 betrieben wurden. Then, in step S6, it is next checked whether it turns out recognize the cylinder-specific detection in step S4 leaves that all cylinders with the target mixture, at stoichiometric Operation was operated on average with λ = 1.
Ist dies der Fall, wird in einer Schleife vor Schritt S4 zurückgesprungen.If this is the case, the system jumps back in a loop before step S4.
Zeigt sich in der Abfrage des Schrittes S6, dass einzelne Zylinder
nicht im Mittel mit Soll-Gemisch durch ihre Einspritzventile
26 versorgt wurden, wird in Schritt S7 zylinderselektiv
eine Kraftstoffmengenkorrektur berechnet. Dabei wird die
den Zylindern über ihre Einspritzventile 26 zuzumessende
Kraftstoffmenge auf das Soll-Gemisch hin korrigiert. Für Zylinder,
die mit zu fettem Gemisch betrieben wurden, wird also
eine Kraftstoffmindermenge errechnet; für Zylinder, die mit
zu magerem Gemisch betrieben wurden, eine Kraftstoffmehrmenge.The query in step S6 shows that individual cylinders
not on average with the target mixture through their
Diese Kraftstoffmengenkorrektur ist der oben erwähnte erste Korrekturfaktor. Er wird in Schritt S8 im Kennfeld KF1 abgelegt.This fuel quantity correction is the first mentioned above Correction factor. It is stored in the map KF1 in step S8.
Anschließend wird vor Schritt S4 zurückgesprungen. In Schritt
S4 wird dann das Steuergerät 21 angewiesen, bei der Ansteuerung
der Einspritzventile 26 die entsprechenden Kraftstoffmengenkorrekturen
des Kennfeldes KF1 zu berücksichtigen. Dies
wird in der Regel dadurch geschehen, dass die Einspritzdauer
entsprechend reduziert oder verlängert wird. Durch die Abfolge
dieser Schritte wird eine Zylinder-Gleichstellung erreicht.
Aus der Schleife wird wie erwähnt nur dann in Schritt
S5 herausgesprungen, wenn ein Betriebsmoduswechsel vorliegt.Then jump back before step S4. In step
S4 is then instructed to control
Läuft die Brennkraftmaschine im geschichtet-mageren Betrieb
so kann die Gleichstellung durch Adaption der Einspritzventile
26 nicht mit den Schritten S4 bis S8 erfolgen, da dann
nicht mehr die eingespritzte Kraftstoffmasse vorwiegend bestimmend
für das Verhalten der Brennkraftmaschine ist, sondern
auch die Strahlcharakteristik wesentlich zu berücksichtigen
ist. Deshalb kann der erste Korrekturfaktor, d.h. die
Kraftstoffmehr- und -mindermenge des Kennfeldes KF1 nicht
mehr alleine verwendet werden. Vielmehr ist eine eigenständige,
zusätzliche Adaption zur Drehmoment-Gleichstellung im geschichtet-mageren
Betrieb der Brennkraftmaschine nötig. Deshalb
wird im mageren Betrieb der Brennkraftmaschine im
Schritt S9 zuerst auf ein weiteres Kennfeld KF2 mit einem
zweiten Korrekturfaktor zugegriffen. Zur Drehmoment-Gleichstellung
erfolgt die Einspritzung mit zwei Korrekturwerten,
dem ersten Korrekturwert, der während der geschichtet-mageren
Betriebsweise unverändert bleibt, und dem zweiten
Korrekturfaktor, der durch Adaption verändert wird.The internal combustion engine runs in stratified, lean operation
so can equality by adapting the
Anschließend wird die Einspritzung mit derzeit gültigen Ansteuerwerten vorgenommen. Diese setzen sich aus einem Ansteuergrundwert, dem ersten Korrekturfaktor und dem aktuellen Wert des zweiten Korrekturfaktors aus dem Kennfeld KF2 zusammen.Then the injection with currently valid control values performed. These consist of a basic control value, the first correction factor and the current one Value of the second correction factor from the map KF2 together.
Dann wird in Schritt S10 die Laufruhe zylinderselektiv erfasst.
Dies erfolgt im oben erwähnten Block 31 des Steuergerätes
21 durch geeignete Auswertung des Signales des Klopfsensors
28, um das von jedem Zylinder abgegebene Drehmoment
zu erfassen. Dieser Block 31 kann beispielsweise auch auf die
Signale eines (in Fig. 1 nicht dargestellten) Drehmomentsensors
Rückgriff nehmen.Then, in step S10, the smooth running is detected cylinder-selectively.
This takes place in the above-mentioned
Die Erfassung in Schritt S10 liefert die Differenz der von den einzelnen Zylindern abgegebenen Drehmomente.The detection in step S10 provides the difference of the torques delivered to the individual cylinders.
Anschließend wird in Schritt S11 wiederum abgefragt, ob ein Betriebsmoduswechsel vorliegt. Ist dies der Fall, wird vor Schritt S2 zurückgesprungen, ansonsten wird mit Schritt S12 fortgefahren.Subsequently, in step S11 it is again queried whether a Operating mode change is present. If this is the case, will Step S2 jumps back, otherwise step S12 continued.
Dieser Schritt S12 überprüft, ob die Differenz der von den Zylindern abgegebenen Drehmomente unter einem Schwellwert liegt. Dabei kann es sich je nach Betriebsmodus um den Schwellwert TQI_SW1 für den Fall des homogen-mageren Betriebes oder den Schwellwert TQI_SW2 für den Fall geschichtet-mageren Betriebes handeln. Unterschreitet die Differenz den Schwellenwert für alle Zylinder, wird vor Schritt S10 zurückgesprungen, ansonsten mit Schritt S13 fortgefahren.This step S12 checks whether the difference of the Torques given torques below a threshold lies. Depending on the operating mode, this can be the Threshold value TQI_SW1 for the case of homogeneously lean operation or the threshold value TQI_SW2 for the case stratified-lean Act. If the difference is less than Threshold value for all cylinders, is jumped back before step S10, otherwise proceed to step S13.
In Schritt S13 wird zylinderselektiv der zweite Korrekturfaktor
für die Berücksichtigung der Strahlcharakteristik des
Einspritzventils 26 fortgeschrieben. Diese Adaption des zweiten
Korrekturfaktors erfolgt auf eine Drehmoment-Gleichstellung
der Zylinder 11 hin. Der so adaptierte bzw.
veränderte zweite Korrekturfaktor wird für jeden Zylinder in
das Kennfeld KF2 eingetragen.In step S13, the second correction factor becomes cylinder-selective
for taking the beam characteristics of the
Nun erfolgt die Einspritzung mit korrigierten Werten. Bei der
Einspritzkorrektur kann es sich um eine Einspritzdaueränderung
handeln, es ist aber auch eine Einspritzbeginnkorrektur
oder eine Kombination der beiden möglich. Zur Korrektur werden
beide Korrekturfaktoren eingesetzt. Dabei wird in Schritt
S14 das Steuergerät 21 angewiesen, den zweiten Korrekturfaktor
des Kennfeldes KF2 zusammen mit dem unveränderten ersten
Korrekturfaktor aus dem Kennfeld KF1 bei der Ansteuerung der
Einspritzventile 26 zu berücksichtigen. Dann wird vor Schritt
S10 zurückgesprungen.Now the injection takes place with corrected values. In the
Injection correction can be a change in injection duration
act, but it is also an injection start correction
or a combination of the two possible. For correction
both correction factors used. Doing so in step
S14 the
Die Adaption der Ansteuerung der Einspritzventile 26 verwendet
somit im geschichtet-mageren Betrieb der Brennkraftmaschine
den ersten Korrekturfaktor aus der λ-Gleichstellung,
jedoch nicht den zweiten Korrekturfaktor im homogenen Betrieb.
Dies hat seinen Hintergrund darin, dass die Ergebnisse
der λ-Gleichstellung für den homogenen Betrieb auf die Drehmoment-Gleichstellung
für den geschichtet-mageren Betrieb angewendet
werden können, weil bei der λ-Gleichstellung im homogenen
Betrieb Unterschiede der eingespritzten Kraftstoffmasse
berücksichtigt werden, die sowohl dort als auch im geschichtet-mageren
Betrieb der Brennkraftmaschine Gültigkeit
besitzen. Der zweite Korrekturfaktor, der bei der Drehmoment-Gleichstellung
im geschichtet-mageren Betrieb adaptiert wird,
gleicht eine Änderung der Strahlcharakteristik der Einspritzventile
26, bedingt beispielsweise durch Verkokung, aus. Diese
Unterschiede der Strahlcharakteristik der Einspritzventile
26 sind jedoch im homogenen Betrieb der Brennkraftmaschine
nicht oder nur kaum relevant, weshalb die Ergebnisse der
Drehmoment-Gleichstellung beim Adaptionsverfahren im geschichtet-mageren
Betrieb der Brennkraftmaschine nicht den
ersten Korrekturfaktor der λ-Gleichstellung beim Adaptionsverfahren
im homogenen Betrieb der Brennkraftmaschine rückwirken
dürfen.The adaptation of the control of the
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10011690 | 2000-03-10 | ||
DE10011690A DE10011690C2 (en) | 2000-03-10 | 2000-03-10 | Cylinder equalization procedure |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1132600A2 true EP1132600A2 (en) | 2001-09-12 |
EP1132600A3 EP1132600A3 (en) | 2003-03-19 |
EP1132600B1 EP1132600B1 (en) | 2004-06-09 |
Family
ID=7634220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01103435A Expired - Lifetime EP1132600B1 (en) | 2000-03-10 | 2001-02-14 | Adapting method for the control of injection |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1132600B1 (en) |
KR (1) | KR20010091962A (en) |
DE (2) | DE10011690C2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5149840A (en) * | 1989-05-18 | 1992-09-22 | Unilever Patent Holdings B.V. | Hydroxy furanone preparation |
EP1469179A1 (en) * | 2003-04-16 | 2004-10-20 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
FR2861427A1 (en) * | 2003-10-24 | 2005-04-29 | Renault Sa | Fuel injection method for use in e.g. diesel engine, involves determining set point value of fuel flow by multiplying required flow value with parameter corresponding to current circumstance of vehicle, to inject fuel in engine |
EP1541842A1 (en) * | 2003-12-11 | 2005-06-15 | Perkins Engines Company Limited | Adaptive fuel injector trimming during a zero fuel condition |
WO2005075806A1 (en) * | 2004-02-09 | 2005-08-18 | Siemens Aktiengesellschaft | Method for equalizing the differences in injection quantities between the cylinders of a combustion engine |
FR2872221A1 (en) * | 2004-06-25 | 2005-12-30 | Bosch Gmbh Robert | METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE |
WO2007036386A1 (en) * | 2005-09-29 | 2007-04-05 | Siemens Aktiengesellschaft | Method and device for operating an internal combustion engine |
FR2910550A1 (en) * | 2006-12-21 | 2008-06-27 | Renault Sas | Injector drift correction method for e.g. motor vehicle's direct injection oil engine, involves comparing actual injected and set point fuel quantities, and determining correction to be carried out to set point by using torque estimation |
WO2012062402A1 (en) * | 2010-11-11 | 2012-05-18 | Daimler Ag | Method for correcting an air-fuel mixture error |
WO2012062437A1 (en) * | 2010-11-11 | 2012-05-18 | Daimler Ag | Method for determining a type of an air-fuel mixture error |
WO2015003841A1 (en) * | 2013-07-09 | 2015-01-15 | Robert Bosch Gmbh | Method for isolating quantity errors of a fuel amount and an air amount supplied to at least one cylinder of an internal combustion engine |
WO2016116196A1 (en) * | 2015-01-21 | 2016-07-28 | Continental Automotive Gmbh | Pilot control of an internal combustion engine |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10257686A1 (en) | 2002-12-10 | 2004-07-15 | Siemens Ag | Method for adjusting the characteristics of an injector |
DE10304245B3 (en) * | 2003-02-03 | 2004-07-15 | Siemens Ag | Sampling adapting method for lambda probe signal values in multi-cylinder IC engine, with cylinder-selective lambda regulation adjusting sampling time points for individual cylinders |
DE10304242B3 (en) * | 2003-02-03 | 2004-04-29 | Siemens Ag | Determining combustion parameter in second cylinder of multi-cylinder internal combustion engine involves estimating parameter from lambda probe signal if no significant roughness between combustions |
DE10317684B4 (en) | 2003-04-17 | 2015-02-12 | Robert Bosch Gmbh | Method and control device for operating an internal combustion engine |
DE10323671A1 (en) * | 2003-05-16 | 2004-12-09 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
DE10333994B4 (en) * | 2003-07-25 | 2015-04-30 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
DE10339251B4 (en) * | 2003-08-26 | 2015-06-25 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
EP1526267A3 (en) | 2003-10-21 | 2010-07-28 | Continental Automotive GmbH | Method and device for compensating the drift of an injector for an internal combustion engine with direct injection |
DE102004044808B4 (en) * | 2004-09-16 | 2015-12-17 | Robert Bosch Gmbh | Method and device for detecting cylinder-individual filling differences |
DE102005045933B4 (en) * | 2005-09-26 | 2017-04-13 | Robert Bosch Gmbh | Cylinder equilibrium in shift operation, taking into account runtime alarms from homogeneous operation |
DE102006006552B8 (en) * | 2006-02-13 | 2007-06-06 | Siemens Ag | Method and device for operating an internal combustion engine |
DE102006032172B4 (en) * | 2006-07-12 | 2021-03-18 | Bayerische Motoren Werke Aktiengesellschaft | Method for equalizing cylinders in an internal combustion engine |
EP2136058A1 (en) | 2008-06-19 | 2009-12-23 | Continental Automotive GmbH | Minimum fuel mass adaptation using cylinder pressure sensor |
DE102008058008B3 (en) * | 2008-11-19 | 2010-02-18 | Continental Automotive Gmbh | Device for operating an internal combustion engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3800176A1 (en) * | 1988-01-07 | 1989-07-20 | Bosch Gmbh Robert | CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR SETTING PARAMETERS OF THE DEVICE |
DE4019574A1 (en) * | 1989-08-18 | 1991-02-21 | Avl Verbrennungskraft Messtech | Fuel injection adaptive electronic control for combustion engine - adjusting quantity between lower and upper threshold values with storage of new value of target quantity |
DE19700711A1 (en) * | 1997-01-10 | 1998-09-17 | Siemens Ag | IC engine fuel injection system error compensation method |
DE19828279A1 (en) * | 1998-06-25 | 1999-12-30 | Bosch Gmbh Robert | Electronic control device for parameter which influences unsteady running of IC engine |
DE19947037C1 (en) * | 1999-09-30 | 2000-10-05 | Siemens Ag | Control method for multi-cylinder IC engine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4122139C2 (en) * | 1991-07-04 | 2000-07-06 | Bosch Gmbh Robert | Method for cylinder equalization with regard to the fuel injection quantities in an internal combustion engine |
DE19812305C2 (en) * | 1998-03-20 | 2001-12-06 | Siemens Ag | Method for cylinder equalization in a direct-injection internal combustion engine |
DE19814155A1 (en) * | 1998-03-30 | 1999-10-14 | Siemens Ag | Method for cylinder equalization in an internal combustion engine working with direct injection |
-
2000
- 2000-03-10 DE DE10011690A patent/DE10011690C2/en not_active Expired - Fee Related
-
2001
- 2001-02-14 EP EP01103435A patent/EP1132600B1/en not_active Expired - Lifetime
- 2001-02-14 DE DE50102508T patent/DE50102508D1/en not_active Expired - Lifetime
- 2001-03-10 KR KR1020010012433A patent/KR20010091962A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3800176A1 (en) * | 1988-01-07 | 1989-07-20 | Bosch Gmbh Robert | CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR SETTING PARAMETERS OF THE DEVICE |
DE4019574A1 (en) * | 1989-08-18 | 1991-02-21 | Avl Verbrennungskraft Messtech | Fuel injection adaptive electronic control for combustion engine - adjusting quantity between lower and upper threshold values with storage of new value of target quantity |
DE19700711A1 (en) * | 1997-01-10 | 1998-09-17 | Siemens Ag | IC engine fuel injection system error compensation method |
DE19828279A1 (en) * | 1998-06-25 | 1999-12-30 | Bosch Gmbh Robert | Electronic control device for parameter which influences unsteady running of IC engine |
DE19947037C1 (en) * | 1999-09-30 | 2000-10-05 | Siemens Ag | Control method for multi-cylinder IC engine |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5149840A (en) * | 1989-05-18 | 1992-09-22 | Unilever Patent Holdings B.V. | Hydroxy furanone preparation |
EP1469179A1 (en) * | 2003-04-16 | 2004-10-20 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
FR2861427A1 (en) * | 2003-10-24 | 2005-04-29 | Renault Sa | Fuel injection method for use in e.g. diesel engine, involves determining set point value of fuel flow by multiplying required flow value with parameter corresponding to current circumstance of vehicle, to inject fuel in engine |
EP1541842A1 (en) * | 2003-12-11 | 2005-06-15 | Perkins Engines Company Limited | Adaptive fuel injector trimming during a zero fuel condition |
US6964261B2 (en) | 2003-12-11 | 2005-11-15 | Perkins Engines Company Limited | Adaptive fuel injector trimming during a zero fuel condition |
WO2005075806A1 (en) * | 2004-02-09 | 2005-08-18 | Siemens Aktiengesellschaft | Method for equalizing the differences in injection quantities between the cylinders of a combustion engine |
US7319930B2 (en) | 2004-02-09 | 2008-01-15 | Siemens Aktiengesellschaft | Method for balancing out the differences in the injection quantities between the cylinders in an internal combustion engine |
US7203591B2 (en) | 2004-06-25 | 2007-04-10 | Robert Bosch Gmbh | Method for controlling an internal combustion engine |
FR2872221A1 (en) * | 2004-06-25 | 2005-12-30 | Bosch Gmbh Robert | METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE |
WO2007036386A1 (en) * | 2005-09-29 | 2007-04-05 | Siemens Aktiengesellschaft | Method and device for operating an internal combustion engine |
FR2910550A1 (en) * | 2006-12-21 | 2008-06-27 | Renault Sas | Injector drift correction method for e.g. motor vehicle's direct injection oil engine, involves comparing actual injected and set point fuel quantities, and determining correction to be carried out to set point by using torque estimation |
WO2012062402A1 (en) * | 2010-11-11 | 2012-05-18 | Daimler Ag | Method for correcting an air-fuel mixture error |
WO2012062437A1 (en) * | 2010-11-11 | 2012-05-18 | Daimler Ag | Method for determining a type of an air-fuel mixture error |
WO2015003841A1 (en) * | 2013-07-09 | 2015-01-15 | Robert Bosch Gmbh | Method for isolating quantity errors of a fuel amount and an air amount supplied to at least one cylinder of an internal combustion engine |
WO2016116196A1 (en) * | 2015-01-21 | 2016-07-28 | Continental Automotive Gmbh | Pilot control of an internal combustion engine |
US10767586B2 (en) | 2015-01-21 | 2020-09-08 | Vitesco Technologies GmbH | Pilot control of an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
DE10011690A1 (en) | 2001-09-20 |
DE50102508D1 (en) | 2004-07-15 |
EP1132600B1 (en) | 2004-06-09 |
DE10011690C2 (en) | 2002-02-07 |
EP1132600A3 (en) | 2003-03-19 |
KR20010091962A (en) | 2001-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1132600B1 (en) | Adapting method for the control of injection | |
DE102006043670B4 (en) | System and method for a supercharged direct injection engine | |
DE19737375C2 (en) | Control unit for an engine with internal combustion, direct injection and spark ignition | |
DE102008000069B4 (en) | Apparatus for controlling injection of fuel into an engine and apparatus for controlling combustion in an engine | |
DE69922292T2 (en) | Device for controlling the modes of a direct injection internal combustion engine | |
DE19631986A1 (en) | Control unit for vehicle direct injection IC petrol engine | |
DE102015200815A1 (en) | Method and system for the pre-ignition control | |
DE112019002741T9 (en) | Control device and control method for an internal combustion engine | |
EP0943053B1 (en) | Method for controlling a direct-injection internal combustion engine | |
DE102007053719B3 (en) | Internal combustion engine e.g. flat engine, operating device for motor vehicle, involves determining mass of gas in cylinder as parameter for quantity of gas, and determining oxygen concentration of gas as parameter for quality of gas | |
DE102004005721B4 (en) | Control system and control method for an internal combustion engine | |
DE10043859A1 (en) | Method of diagnosing mixture formation | |
DE102016110519B4 (en) | combustion system controller | |
DE10137851B4 (en) | Fuel injection control system for a direct injection engine | |
DE102006053253B4 (en) | Method for operating an internal combustion engine | |
DE19724249A1 (en) | Suction regulator system for adjusting amount of air fed to IC engine cylinder | |
DE10033946B4 (en) | Fuel injection control system for a direct injection internal combustion engine | |
DE102007000046B4 (en) | Control system for a compression-ignition internal combustion engine | |
EP1099051B1 (en) | Method for operating an internal combustion engine | |
DE10064000A1 (en) | Hybrid control process for internal combustion engines involves establishing required value for operating parameter on basis of actual engine operating state | |
DE102008041689B4 (en) | Method and engine control unit for adapting vaporization parameters of a fuel in a dual injection system | |
DE69104885T2 (en) | Internal combustion engine with combustion of a lean mixture. | |
EP1081363B1 (en) | Method to control an internal combustion engine | |
DE102007062171B4 (en) | Method for operating an internal combustion engine | |
EP1241336B1 (en) | Method and device for regulating an external exhaust gas recirculation rate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7F 02D 41/14 A Ipc: 7F 02D 41/30 B Ipc: 7F 02D 41/34 B |
|
17P | Request for examination filed |
Effective date: 20030417 |
|
17Q | First examination report despatched |
Effective date: 20030821 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT SE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040609 |
|
REF | Corresponds to: |
Ref document number: 50102508 Country of ref document: DE Date of ref document: 20040715 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050310 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090223 Year of fee payment: 9 Ref country code: SE Payment date: 20090216 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090213 Year of fee payment: 9 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100214 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140228 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50102508 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |