EP1131389B1 - Verfahren und einrichtung zum katalytischen cracken mit abwärts- und aufwärtsströmenden reaktoren - Google Patents

Verfahren und einrichtung zum katalytischen cracken mit abwärts- und aufwärtsströmenden reaktoren Download PDF

Info

Publication number
EP1131389B1
EP1131389B1 EP99972244A EP99972244A EP1131389B1 EP 1131389 B1 EP1131389 B1 EP 1131389B1 EP 99972244 A EP99972244 A EP 99972244A EP 99972244 A EP99972244 A EP 99972244A EP 1131389 B1 EP1131389 B1 EP 1131389B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
reactor
zone
feed
riser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99972244A
Other languages
English (en)
French (fr)
Other versions
EP1131389A1 (de
Inventor
Thierry Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1131389A1 publication Critical patent/EP1131389A1/de
Application granted granted Critical
Publication of EP1131389B1 publication Critical patent/EP1131389B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/06Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to a method and a device for the catalytic cracking of hydrocarbon charges.
  • the cracking reaction takes place in an elongated enclosure of substantially circular cross section, the catalyst being admitted to the lower part of the enclosure and the hydrocarbon feed previously atomized.
  • the contacting of the feedstock with the hot catalyst makes it possible to vaporize the hydrocarbons which then drive the catalyst towards the upper part of the reaction zone, the introduction of a driving fluid aiding the upward movement.
  • the products formed during the reaction have a very wide range of boiling points.
  • the products formed are generally distinguished according to their boiling point and their chemical nature: dry gases H2, H2S, molecules having 1 or 2 carbon atoms LPG (liquefied petroleum gases) molecules with 3 or 4 carbon atoms gasoline Molecules having at least 5 carbon atoms and boiling in less than 220 ° C LCO (light cycle oil) molecules whose boiling point is greater than 220 ° C and less than 360 ° C slurry molecules boiling in excess of 360 ° C coke heavy molecules (generally polyaromatic remaining adsorbed on the catalyst after the reaction).
  • dry gases H2, H2S molecules having 1 or 2 carbon atoms
  • LPG liquefied petroleum gases
  • gasoline Molecules having at least 5 carbon atoms and boiling in less than 220 ° C LCO (light cycle oil) molecules whose boiling point is greater than 220 ° C and less than 360 ° C slurry molecules boiling in excess of 360 ° C coke heavy molecules (generally polyaromatic remaining adsorbed on the catalyst after the reaction).
  • the yields that are generally obtained naturally depend on the quality of the treated feeds.
  • the observed yields (in% weight of the load) on the units are: dry gas 1-5% LPG 10-25% gasoline 30-55% OCH 15-25% slurry 5-20% coke 3-10%
  • the formed coke is burned in one or more chambers called regenerators to which the catalyst flows at its outlet from the reactor.
  • the heat produced by the combustion of the coke makes it possible to heat the catalyst, which is then reintroduced at the reactor inlet and brought into contact with the feedstock.
  • the catalytic cracking process is an adiabatic process.
  • the heat recovered by the catalyst during its passage through the regeneration zone is equal to the heat lost by the catalyst as it passes through the reaction zone. This therefore imposes on the operator operating conditions that are not independent of each other.
  • the operating conditions that affect the most efficiencies and selectivities for a given reactor are essentially the catalyst flow, which is generally related to the feed rate under the name C / O (C for Catalyst and O for Oil).
  • OLC which may be of interest in countries where middle distillates are in high demand in the fuel market, but LPGs (including propylene) and gasoline are unlikely to be maximized.
  • reaction zones generally used in the majority of cracking units current catalytic converters make it easy to operate under conditions of little cracking severe (C / O from 4 to 8 and reactor outlet temperatures of 500 to 550 ° C).
  • Time to hydrocarbon residence in this reaction zone consisting at least of a tube of substantially circular and elongated section in which the fluids flow globally from bottom to top commonly called riser, and from a separation system cracking vapors and catalyst is generally greater than 2s, of the order of 2 to About 10s.
  • the residence time of the hydrocarbons in contact with the catalyst is often itself greater than 1 s.
  • the downstream reactor combined with a mixture, as described in patent WO / FR98 / 12279, makes it possible to optimize the selectivities in recoverable products (LPG, gasolines) by minimizing the products not recoverable (a small increase in coke compared to a conventional reactor, but in very different temperature and C / O conditions, about 30% less gas dry compared to conventional technology) and to maximize conversion, thanks to obtaining conditions of very serious severity.
  • the main advantage of this type of device is to be able to contact catalyst and load optimally through the initial use of a downflow reactor.
  • the amount of coke present on the catalyst varies between 0.7 and 1.5% by weight, depending on the feedstock treated, the catalyst, operating conditions and the dimensioning of the unit. We know that under these conditions, the residual activity of the catalyst is low. It is therefore illusory to want to reintroduce catalyst in a new reaction chamber.
  • the catalyst from the downstream reactor can advantageously be introduced again into a reaction chamber such as a riser, optionally mixed with a regenerated catalyst stream (that is to say directly from the regeneration chamber).
  • the object of the present invention is to remedy these shortcomings of the prior art by proposing a series of distinct reaction zones that can operate under conditions of temperature and C / O very different. More specifically, the invention relates to a method of catalytic cracking composed of a reaction zone having at least two reactors, with in at least one of these reactors a flow of fluids and catalyst globally downstream (dropper reactor) and in at least one of these reactors a fluid flow and generally upward catalyst (reactor riser), these reactors being characterized by the fact that in each reactor, hydrocarbons introduced into the reactor are brought into contact with hot catalyst which allows the vaporization of these hydrocarbons if they are introduced in liquid form, these vaporized hydrocarbons reacting in the presence of the catalyst, these reacted hydrocarbons are then separated from the catalyst by separation means (inertial separators and / or cyclones) and leave the reaction zone to undergo the usual downstream treatments (fractionation, ). Reactors are also characterized by the fact that the downstream reactor (s) is followed by at least one up
  • the invention relates to a process for catalytic cracking in a bed or fluidized a hydrocarbon feedstock in two reaction zones, one to flow downstream catalyst, the other catalyst upflow, the process being characterized in that a feedstock and catalyst from at least one zone are introduced regeneration in the upper part of the downflow zone, circulate the filler and catalyst in said zone in a weight ratio: catalyst on filler C / O: 5 to 20, the cracked gases are separated from the coked catalyst from the flow zone descending into a first separation zone, the cracked gases are recovered, the coked catalyst in the lower part of the upflow zone, a charge in the lower part of said upflow zone, circulates the coked catalyst and said feedstock in a weight ratio C / O: 4 to 8, the catalyst is separated off wastewater produced in a second separation zone, the catalyst is stripped means of a gas filling in a stripping zone, the effluent and the gases of stripping and the used catalyst is recycled to the regeneration zone where it is regenerated at less in part by means of a regeneration gas
  • the residence times of the load in the dropper and the riser are respectively in general from 50 to 650 ms in the dropper and from 600 to 3000 ms in the nser and preferably 100 to 500 m s in the dropper and 1000 to 2500 ms in the riser.
  • the residence time is defined as the ratio of the volume of each of the reaction chambers (riser or dropper), referred to volume flow rate of the gaseous effluents from each chamber under the exit conditions.
  • the spent catalyst can be regenerated in two zones of superimposed regeneration, the spent catalyst to be regenerated is introduced into a first zone regeneration, the catalyst thus at least partially regenerated being sent to the second upper regeneration zone and the regenerated catalyst from the zone of Higher regeneration is introduced into the downflow zone.
  • the catalyst / oil ratio (C / O) may advantageously be between 7 and 15 for downflow reactor and between 5 and 7 for the upflow reactor.
  • the catalyst temperature at the outlet of the dropper is generally greater than that at the outlet of the riser. It may be from 500 ° C. to 700 ° C. and advantageously from 550 ° C. to 600 ° C. while that of the catalyst at the riser outlet may be from 500 ° C. to 550 ° C. and advantageously from 515 ° C to 530 ° C. These temperatures are closely dependent on the values of the ratios of the C / O, the C / O ratio of the dropper being higher than that of the user.
  • the feedstock supplying each of the reactors can be either a fresh load, ie a recycling of some of the products resulting from a fractionation downstream, or a mixture of both.
  • the charge can be injected co-currently or countercurrently into each of the two reactors.
  • the charge flow rate, for example, of recycle, in the Downstream reactor may be less than 50% by mass of the charge rate to be converted circulating in the riser reactor.
  • the invention also relates to the device for implementing the method. It generally comprises a first substantially vertical downflow reactor having an upper inlet and a lower outlet, first regenerated catalyst feed means connected to at least one spent catalyst regenerator and connected to said upper inlet, first atomized charge feed means disposed below the first catalyst feed means, a first chamber for separating the catalyst from a gas phase connected to the lower outlet of the first downstream reactor and having a gas phase outlet and a coked catalyst outlet, a second substantially vertical upflow reactor having a lower inlet and an upper outlet, a second catalyst supply means being connected to the coked catalyst outlet of the first separation chamber and to the lower inlet of the second reactor, second feed means in a feed located above the lower inlet of the second reactor, a second spent catalyst separation chamber and a second gas phase connected to said upper outlet of the second reactor, said second chamber having a catalyst stripping chamber and having an upper gas phase outlet and a lower catalyst outlet used, said lower output being connected to the regenerator.
  • FIG. 1 attached is a representation of the process under these conditions.
  • the catalyst regenerated in a regeneration zone (3) is transported to the inlet of a reactor globally descending by transfer means (4), withdrawn from the downstream reactor by means of transport (5) and introduced into an upstream reactor (2), then having traveled the reactor ascending, is transported by a line (7) to the regeneration zone (3).
  • the reactor ascendant can also be supplied with freshly regenerated catalyst by means (6) transporting the catalyst from the regeneration zone downward of the upstream reactor (2).
  • the load supplying each of the reactors can be either a fresh charge (line (8) for the downstream reactor, line (9) for the upstream reactor), or a recycle of a part of products from the downstream fractionation (line (16) for the downstream reactor, line (14) for the riser reactor), a mixture of both. It is possible to introduce in each reactor of the recycles of the fractionation independently of the means of introduction of the cool load (line (15) for the downstream reactor, line (13) for the upstream reactor).
  • the gaseous effluents from each reactor are transported to a zone of fractionation (10) of the various hydrocarbon cuts by conduits (11) for downstream reactor and (12) for the upstream reactor).
  • Figure 1 there is shown a arrangement where the fractionation is common to both reaction chambers.
  • the fractionation is independent for each of the reactors, which may be of great interest if the operating conditions of the two reaction zones are very different from each other. Indeed, in this case, the yield structures very different can economically justify the interest of effluent fractionation adapted to each of the reaction chambers.
  • FIG. 2 describes a possible arrangement of the various constituents of the process the invention. It is indeed necessary for the catalyst to circulate correctly between the different speakers that the pressures of each of the speakers are compatible with the rates of catalyst and hydrocarbon circulation desired in each of the enclosures.
  • the regeneration zone (3) consists of two enclosures (301) and (302) in which the catalyst is regenerated in a fluidized bed, air being introduced into each chamber.
  • the catalyst is transported between the two chambers by means of a lift (303), in which gas introduced at the base at a sufficient speed can transport the catalyst between the two speakers. This transport gas can be air.
  • the proportion of air needed to the regeneration is 30 to 70% in the enclosure (301), 5 to 20% in the lift (303) in order to transport the catalyst and 15 to 40% in the enclosure (302).
  • the Gaseous flue gases are dusted off by passing through separators (such as cyclones, shown here schematically (306 and 307).
  • separators such as cyclones, shown here schematically (306 and 307).
  • each enclosure (301) and (302) can be controlled by valves on the lines allowing the evacuation of combustion effluents, at least partially dusted.
  • FIG 2 shows how it is possible to transfer catalyst from a regeneration chamber (302) to the reactor (1).
  • the catalyst is withdrawn into a wall through an inclined line (304) of an angle generally between 30 and 70 ° with respect to the horizontal conducting the catalyst to a enclosure (305) in which the circulation of the catalyst is slowed down to allow evacuation any gas bubbles to the regeneration chamber through a balancing line (308).
  • the catalyst is then accelerated and descends through a transfer tube (309) to the reactor inlet.
  • the catalyst is maintained in the fluidized state through the addition of small amounts of gas throughout the transport. If the catalyst is thus maintained in a fluid state, this makes it possible to obtain at the entrance to the zone reaction (1) a pressure higher than that of smoke from external cyclones (307).
  • the reaction zone (1) defined as descending generally consists of means for introducing the catalyst (101), which may be a valve on a solid, an orifice, or simply opening a conduit, a contacting zone (103) located under (101) where the countercurrent catalyst, for example, encounters the hydrocarbon feed introduced by means (102), generally consisting of atomizers where the charge is finely divided into droplets usually using the introduction of auxiliary fluids such as steam of water.
  • the means for introducing the catalyst are located above the means introduction of the charge.
  • an area may optionally be reaction tube (104), of substantially elongate shape, shown vertically on the Figure 2 but this condition is not exclusive.
  • the average residence time of hydrocarbons in zones 103 to 104 will be less than 650 ms, preferably between 50 and 500ms.
  • the effluents of the dropper are then separated in a separator (105) described in application FR98 / 09672 incorporated as a reference where the residence time must be limited to maximum.
  • the gaseous effluents (cracked gases) of the separator can then undergo a step additional dedusting through external cyclones (108) arranged downstream on a line (106).
  • the gaseous effluents (cracked gases) are evacuated by a line (107).
  • the catalyst in the fluidized bed (111) then undergoes stripping (contact with a light gas such as steam, nitrogen, ammonia, hydrogen or even hydrocarbons whose number of carbon atoms is less than 3 (by means which are well described in the prior art) before being transferred to the upward reaction zone (2) through the conduit (110).
  • a light gas such as steam, nitrogen, ammonia, hydrogen or even hydrocarbons whose number of carbon atoms is less than 3 (by means which are well described in the prior art
  • Effluents gaseous stripping is generally removed from the fluidized bed (111) through the same means (106) and (108) which allow the evacuation of gaseous effluents from the zone reaction (1) via line (107). All effluents can be cooled by means of quench (not shown) on lines (106) or (107)
  • the reaction zone (2) is a substantially elongated tubular zone, many of which Examples are described in the prior art.
  • the load of hydrocarbons is introduced by means (202), generally consisting of atomizers where the charge is finely divided into droplets, usually using the introduction of fluids auxiliaries such as water vapor, introduced at the base of the reactor.
  • Means of introduction catalyst are located below the feed introduction means.
  • the introduction of the charge must be located above at least one catalyst inlet.
  • all the catalyst comes from the downstream reactor and the charge introduction means are therefore located above the pipe (110).
  • the upstream reactor will then be fed by several catalyst streams, at least one from a reactor descending.
  • the reaction is then carried out in the tubular or riser reactor (201).
  • the effluents from the riser are then separated in a separator (203) such as that described in FIG. (2) and in PCTFR application 98/01866 incorporated as a reference.
  • the catalyst from the separation (203) is then introduced into a fluidized bed (211) of a stripping chamber (212) through conduits or openings (204).
  • the catalyst in (211) is then stripped (contact with a light gas such as water vapor, nitrogen, ammonia, hydrogen or even hydrocarbons with less than 3 carbon atoms means which are well described in the prior art) before being transferred to the regeneration (301) through conduits (7).
  • the reaction gaseous effluents separated in (203) are discharged through a conduit (205) to a secondary separator (207) such that a cyclone before being directed to the fractionation section (10) via a conduit (206).
  • the stripping gaseous effluents are generally discharged from the fluidized bed (211) through the same means (206) which allow the evacuation of gaseous effluents from the zone reactional (2).
  • the coked catalyst is withdrawn from the stripping chamber (212) and recycled in the first regeneration chamber (301), located under the chamber 302 regeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Claims (17)

  1. Verfahren zum katalytischen Cracken im in Bewegung versetzten oder fluidisierten Bett von einer Beschickung von Kohlenwasserstoffen in zwei Reaktionszonen, die eine (1) bei absteigendem Katalysatorfluss, die andere (2) bei aufsteigendem Katalysatorfluss, wobei das Verfahren dadurch gekennzeichnet ist, dass man eine Beschickung (102) und Katalysator, der von wenigstens einer Regenerierungszone (302) kommt, in den oberen Teil der Zone mit absteigendem Fluss zirkulieren lässt, man die Beschickung und den Katalysator in der Zone gemäß einem Gewichtsverhältnis: Katalysator zu Beschickung C/O: 5 bis 20 für eine Verweildauer unter 650 ms zirkulieren lässt, man die gecrackten Gase von dem verkokten, von der Zone mit absteigendem Fluss kommenden Katalysator in einer ersten Trennzone (105) trennt, man die gecrackten Gase gewinnt (107), man den verkokten Katalysator in den unteren Teil der Zone mit aufsteigendem Fluss einführt, man eine Beschickung in den unteren Teil der Zone (2) mit aufsteigendem Fluss einführt (202), man dort den verkokten Katalysator und die Beschickung gemäß einem Gewichtsverhältnis C/O: 4 bis 8 zirkulieren lässt, man den verbrauchten Katalysator von dem erzeugten Abstrom in einer zweiten Trennzone (203) trennt, man den Katalysator mit einem Strippinggas in einer Strippingzone (212) abstreift, man den Abstrom und die Strippinggase gewinnt (206) und man den verbrauchten Katalysator in die Regenerierungszone rezykliert (7), wo er wenigstens teilweise mittels eines Regenerierungsgases regeneriert wird.
  2. Verfahren nach Anspruch 1, bei dem die Verweildauer der Beschickung in dem Abstiegsreaktor 100 bis 500 ms ist und jene der Beschickung in dem Aufstiegsreaktor 600 bis 3000 ms, vorzugsweise 1000 bis 2500 ms ist.
  3. Verfahren nach einem der Ansprüche 1 bis 2, bei dem der verbrauchte Katalysator in zwei übereinanderliegenden Regenerierungszonen regeneriert wird, der zu regenerierende, verbrauchte Katalysator in eine erste, untere Regenerierungszone eingeführt wird, wobei der so wenigstens teilweise regenerierte Katalysator in die zweite obere Regenerierungszone geschickt wird und der regenerierte Katalysator, der von der oberen Regenerierungszone kommt, in die Zone mit absteigendem Fluss eingeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem das Verhältnis C/O zwischen 7 und 15 für einen Reaktor mit absteigendem Fluss und zwischen 5 und 7 für einen Reaktor mit aufsteigendem Fluss liegt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem die Beschickung, die jeden der Reaktoren speist, eine frische Beschickung, ein Rezyklat eines Teils der Produkte aus einer Fraktionierung stromaufwärts oder ein Gemisch der beiden ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem der verkokte Katalysator, der von der Zone mit aufsteigendem Fluss durch ein Gas abgestreift wird, nachdem er getrennt worden ist und bevor er in den Aufstiegsreaktor eingeführt wird und die Strippinggase gewonnen werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Reaktionszone bei aufsteigendem Fluss außerdem mit regeneriertem Katalysator gespeist wird.
  8. Verfahren nach Anspruch 7, bei dem man die Beschickung zwischen den beiden Punkten zur Einführung von regeneriertem Katalysator und verkoktem Katalysator in die Zone aufsteigenden Flusses einführt.
  9. Verfahren nach Anspruch 7, bei dem man die Beschickung über dem Punkt zur Einführung verkokten Katalysators und dem Punkt zur Einführung von regeneriertem Katalysator in den Aufstiegsreaktor einführt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem man eine frische Beschickung in den Aufstiegsreaktor und das Rezyklat wenigstens teilweise in den Abstiegsreaktor einführt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, bei dem der Durchsatz an Beschickung und vorzugsweise an Rezyklat in dem Abstiegsreaktor wenigstens 50 Masse-% an Durchsatz umzuwandelnder Beschickung ist, die in dem Aufstiegsreaktor zirkuliert.
  12. Vorrichtung zum katalytischen Cracken im fluidisierten oder in Bewegung versetzten Bett von einer Kohlenwasserstoffbeschickung, umfassend:
    einen ersten, im wesentlichen vertikalen Abstiegsreaktor (1), mit einem oberen Einlass und einem unteren Auslass,
    ein erstes Mittel zur Zufuhr (101) an regeneriertem Katalysator, das mit wenigstens einem Regenerierer von verbrauchtem Katalysator verbunden und mit dem oberen Einlass verbunden ist,
    ein erstes Mittel zur Zufuhr (102) zerstäubter Beschickung, das unter den ersten Mitteln zur Zufuhr an Katalysator angeordnet ist,
    ein erster umschlossener Raum zur Trennung (105) des Katalysators von einer Gasphase, der mit dem unteren Auslass des ersten Abstiegsreaktor (1) verbunden ist und einen Auslass (105) der Gasphase und einen Auslass an verkokten Katalysator hat,
    einen zweiten, im wesentlichen vertikalen Aufstiegsreaktor (2) mit einem unteren Einlass und einem oberen Auslass,
    ein zweites Mittel zur Zufuhr (110) von Katalysator, das mit dem Auslass verkokten Katalysators von dem ersten umschlossenen Raum zur Trennung und dem unteren Einlass des zweiten Reaktors verbunden ist,
    ein zweites Mittel zur Zufuhr (202) einer Beschickung, das über dem unteren Einlass des zweiten Reaktors angeordnet ist,
    ein zweiter umschlossener Raum zur Trennung (203) von verbrauchtem Katalysator und von einer Gasphase, verbunden mit dem oberen Auslass des zweiten Reaktors, welcher zweite umschlossene Raum eine Kammer zum Abstreifen (212) von Katalysator umfasst und einen oberen Auslass (206) von einer Gasphase und einen unteren Auslass (7) von verbrauchtem Katalysator hat, wobei der untere Auslass mit dem Regenerierer (301) verbunden ist.
  13. Vorrichtung nach Anspruch 12, bei der der erste umschlossene Raum zur Trennung (105) eine Kammer (111) zum Abstreifen des Katalysators in Kommunikation mit dieser umfasst.
  14. Vorrichtung nach einem der Ansprüche 12 oder 13, bei der der zweite Aufstiegsreaktor ein zusätzliches Mittel zur Zufuhr an Katalysator umfasst, das mit dem Regenerierer verbunden ist und über dem Mittel zur Zufuhr frischer Beschickung angeordnet ist.
  15. Vorrichtung nach einem der Ansprüche 12 oder 13, bei der der zweite Aufstiegsreaktor ein zusätzliches Mittel zur Zufuhr an Katalysator umfasst, das mit dem Regenerierer verbunden ist und unter dem Mittel zur Zufuhr der Beschickung angeordnet ist.
  16. Vorrichtung nach einem der Ansprüche 12 bis 15, bei der Mittel zum Abschrecken der Abströme vor dem ersten umschlossenen Raum zur Trennung angeordnet sind.
  17. Vorrichtung nach einem der Ansprüche 12 bis 15, die zwei Katalysatorregenerierer umfasst, in der der zweite Regenerierer (302) mit dem ersten Mittel zur Zufuhr (309, 101) an Katalysator des ersten Abstiegsreaktors (1) verbunden ist und in der der erste, unter dem Zweiten angeordnete Regenerierer (301) mit dem zweiten umschlossenen Raum (203, 211) zur Trennung und zum Abstreifen verbunden ist.
EP99972244A 1998-11-13 1999-11-12 Verfahren und einrichtung zum katalytischen cracken mit abwärts- und aufwärtsströmenden reaktoren Expired - Lifetime EP1131389B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9814319 1998-11-13
FR9814319A FR2785907B1 (fr) 1998-11-13 1998-11-13 Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant
PCT/FR1999/002801 WO2000029508A1 (fr) 1998-11-13 1999-11-12 Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant

Publications (2)

Publication Number Publication Date
EP1131389A1 EP1131389A1 (de) 2001-09-12
EP1131389B1 true EP1131389B1 (de) 2004-07-14

Family

ID=9532733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99972244A Expired - Lifetime EP1131389B1 (de) 1998-11-13 1999-11-12 Verfahren und einrichtung zum katalytischen cracken mit abwärts- und aufwärtsströmenden reaktoren

Country Status (9)

Country Link
US (1) US6641715B1 (de)
EP (1) EP1131389B1 (de)
JP (1) JP2002530467A (de)
KR (1) KR100607922B1 (de)
AT (1) ATE271114T1 (de)
DE (1) DE69918710T2 (de)
ES (1) ES2226502T3 (de)
FR (1) FR2785907B1 (de)
WO (1) WO2000029508A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015599A1 (en) * 2022-07-14 2024-01-18 Uop Llc Process and apparatus for separating catalyst from product gas

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802211B1 (fr) * 1999-12-14 2002-02-01 Inst Francais Du Petrole Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant
FR2811327B1 (fr) * 2000-07-05 2002-10-25 Total Raffinage Distribution Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives
CN1205305C (zh) * 2001-11-29 2005-06-08 中国石油化工股份有限公司 一种催化裂化反应-再生系统
FR2894849B1 (fr) * 2005-12-20 2008-05-16 Inst Francais Du Petrole Nouveau reacteur a deux zones reactionnelles fluidisees avec systeme de separation gaz/solide integre
CN101029248B (zh) * 2006-02-28 2012-08-15 中国石油化工股份有限公司 一种增产轻烯烃的方法
US20080011644A1 (en) * 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of heavy oils in conjuction with FCC unit operations
US20080011645A1 (en) * 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of paraffinic naphtha in conjuction with FCC unit operations
FR2909897B1 (fr) * 2006-12-13 2009-06-26 Inst Francais Du Petrole Nouveau systeme de separation gaz solide pour les regenerateurs des unites de craquage catalytique en lit fluidise
FR2918070B1 (fr) * 2007-06-27 2012-10-19 Inst Francais Du Petrole Zone reactionnelle comportant deux risers en parallele et une zone de separation gaz solide commune en vue de la production de propylene
FR2935377B1 (fr) * 2008-08-29 2013-02-15 Inst Francais Du Petrole Procede de conversion d'une charge lourde en essence et en propylene presentant une structure de rendement modulable
KR20100091403A (ko) * 2009-02-10 2010-08-19 에스케이에너지 주식회사 질소를 이용한 스트리핑 방법
WO2012004805A1 (en) 2010-07-08 2012-01-12 Indian Oil Corporation Ltd. Upflow regeneration of fcc catalyst for multi stage cracking
EP2591073B1 (de) 2010-07-08 2019-07-03 Indian Oil Corporation Ltd. Zweistufiges katalytisches fluid-cracking-verfahren
US9458394B2 (en) 2011-07-27 2016-10-04 Saudi Arabian Oil Company Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902856A (en) * 1971-10-05 1975-09-02 Texaco Inc Hydrogenation reactor with improved flow distribution
US4385985A (en) * 1981-04-14 1983-05-31 Mobil Oil Corporation FCC Reactor with a downflow reactor riser
US4424116A (en) * 1982-03-25 1984-01-03 Ashland Oil, Inc. Converting and stripping heavy hydrocarbons in two stages of riser conversion with regenerated catalyst
US4606810A (en) * 1985-04-08 1986-08-19 Mobil Oil Corporation FCC processing scheme with multiple risers
FR2615199B1 (fr) * 1987-05-11 1991-01-11 Inst Francais Du Petrole Procede de vapocraquage dans une zone reactionnelle en lit fluide
FR2667609B1 (fr) * 1990-10-03 1993-07-16 Inst Francais Du Petrole Procede et dispositif de craquage catalytique en lit fluide a courant descendant.
FR2690922B1 (fr) * 1992-05-07 1994-07-22 Inst Francais Du Petrole Procede et dispositif de craquage catalytique dans deux zones reactionnelles successives.
FR2715163B1 (fr) * 1994-01-18 1996-04-05 Total Raffinage Distribution Procédé de craquage catalytique en lit fluidisé d'une charge d'hydrocarbures, notamment d'une charge à forte teneur en composés azotés basiques.
FR2753453B1 (fr) * 1996-09-18 1998-12-04 Total Raffinage Distribution Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures, mettant en oeuvre une zone de mise en contact amelioree
FR2811327B1 (fr) * 2000-07-05 2002-10-25 Total Raffinage Distribution Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015599A1 (en) * 2022-07-14 2024-01-18 Uop Llc Process and apparatus for separating catalyst from product gas

Also Published As

Publication number Publication date
KR20010089439A (ko) 2001-10-06
EP1131389A1 (de) 2001-09-12
DE69918710T2 (de) 2004-12-02
DE69918710D1 (de) 2004-08-19
WO2000029508A1 (fr) 2000-05-25
ATE271114T1 (de) 2004-07-15
FR2785907B1 (fr) 2001-01-05
US6641715B1 (en) 2003-11-04
FR2785907A1 (fr) 2000-05-19
KR100607922B1 (ko) 2006-08-04
JP2002530467A (ja) 2002-09-17
ES2226502T3 (es) 2005-03-16

Similar Documents

Publication Publication Date Title
EP1242569B1 (de) Verfahren und vorrichtung zur katalytischen spaltung mit aufwärts- und abwärtsbetriebenen parallelen reaktoren
EP1131389B1 (de) Verfahren und einrichtung zum katalytischen cracken mit abwärts- und aufwärtsströmenden reaktoren
EP1800742B1 (de) Reaktor mit zwei fluidisierbaren Reaktionsstufen und einem integrierten Gas/Feststofftrennsystem
EP0208609B2 (de) Verfahren und Einrichtung für das katalytische Kracken von Kohlenwasserstoffen mit Kontrolle der Reaktionstemperatur
CA2352018C (fr) Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives
EP2627736B1 (de) Mehrstufiges rissbildungs- und ablösungsverfahren in einer fcc-einheit
EP0171330B1 (de) Verfahren und Vorrichtung für die katalystische Wirbelschichtspaltung
EP2336273B1 (de) Katalytisches Krackverfahren mit Maximierung der Dieselbasen
EP0323297A1 (de) Wirbelschichtverfahren zur Kohlenwasserstoffumwandlung
JPH0645787B2 (ja) 炭化水素の接触分解方法
EP0489726B1 (de) Verfahren und einrichtung zum dampfkracken von kohlenwasserstoffen in der wirbelschichtphase
FR2659346A1 (fr) Procede de craquage avec oligomerisation ou trimerisation des olefines presentes dans les effluents.
EP0291408B1 (de) Dampfspaltungsverfahren in einer Wirbelschicht-Reaktionszone
CA2095794C (fr) Procede et dispositif de craquage catalytique dans deux zones reactionnelles successives
FR2770225A1 (fr) Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique
EP0536054A1 (de) Verbesserungen an Vorrichtungen für das katalytische Wirbelschichtkracken von Kohlenwasserstoffeinsätzen
FR2521157A1 (fr) Preparation d'une charge de craquage catalytique fluide par vaporisation selective
WO1991003527A1 (fr) Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee
EP0322276A1 (de) Verfahren und Einrichtung für das katalytische Kracken von schweren Einsätze, die eine zweite Wirbelschichtabstreifzone enthalten
LU84039A1 (fr) Procede et appareil de vaporisation selective
FR2659976A1 (fr) Craquage catalytique avec refroidissement brusque.
BE892090A (fr) Preparation d'une charge de craquage catalytique fluide par vaporisation selective
FR3038904A1 (fr) Procede permettant de realiser le bouclage du bilan thermique sur une unite de craquage catalytique de naphta dite ncc
FR2523997A1 (fr) Procede et appareil de vaporisation selective pour l'elimination du carbone et des metaux contenus dans les fractions lourdes de petrole
FR2627187A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040714

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69918710

Country of ref document: DE

Date of ref document: 20040819

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040714

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2226502

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20041130

26N No opposition filed

Effective date: 20050415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041214

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69918710

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181203

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181214

Year of fee payment: 20

Ref country code: FR

Payment date: 20181121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69918710

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191113